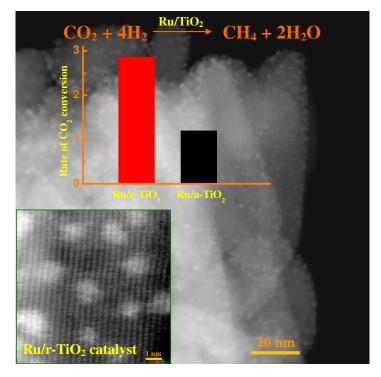
Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.


Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

Graphical abstract

Rutile-type TiO_2 is a promising support for preparing a highly dispersed Ru catalyst, which exhibited high activity in CO_2 methanation.

Catalysis Cata Science & Technology

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Crystal Phase Effects on the Structure and Performance of Ruthenium Nanoparticles for the CO₂ Hydrogenation

Qingquan Lin,^{a,b,c} Xiao Yan Liu,^a Ying Jiang,^d Yong Wang,^d Yanqiang Huang,*^a and Tao Zhang^a

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The effect of TiO₂ phase structure on the dispersion of Ru nanoparticles was investigated in this study. Rutile-type TiO₂ (r-TiO₂) appears to be a superior support to prohibit the aggregation of RuO₂ during the calcination in air. Compared with anatase-type TiO₂ (a-TiO₂) supported Ru nanoparticles (4.0 ± 2.4 nm), r-TiO₂ supported ones exhibited a quite narrower particle size distribution (1.1 ± 0.2 nm). This unique

¹⁰ property was contributed to a strong interaction between RuO_2 and $r-TiO_2$ in terms of the formation of Ru-O-Ti bond, which was confirmed by the X-ray absorption measurements and H₂-TPR experiments. To great extent, this strong interaction not only promotes Ru nanoparticles highly dispersed, but also prevents their aggregation. As a result, the Ru/r-TiO₂ catalysts displayed a much higher activity and thermal stability than the Ru/a-TiO₂ in the reaction of CO₂ methanation.

15 1. Introduction

Supported metal nanoparticles are widely used in a great variety of catalytic applications. The activity and the selectivity of these catalysts, to a great extent, differ with the specific interaction between the active metal and the support. ^[1, 2] Understanding the

²⁰ influence of the supports' structure on the metal nanoparticles has been an important issue in the areas of heterogeneous catalysis for decades.^[3-5]

The methanation of $\rm CO_2$, also known as Sabatier reaction, has received renewed interests, [6] not only because of environmental

- ²⁵ concern, but also due to the potential usage as chemical storage of excess H₂ generated from renewable energy. One of the major challenges for its commercial application is to develop an efficient and stable catalyst with high activity at low temperatures. Among all the investigated CO₂ methanation catalysts, Ru/TiO₂
- $_{\rm 30}$ has been regarded as the most effective one and has the highest selectivity towards CH₄.^[7-9] Previous studies have demonstrated that the reduction of CO₂ requires the cooperation of Ru that is able to dissociate H₂ and the metal-support interface that is able

to activate CO₂. ^[6b, 10] Therefore, several novel approaches have ³⁵ been proposed recently to obtain a highly active Ru/TiO₂ catalyst by downsizing the Ru particles, such as spray reaction method ^[11], polyhedral barrel sputtering technique ^[12], photohole-oxidationassisted approach ^[13].

Although TiO₂ has been shown to be the most efficient support ⁴⁰ for Ru catalyst in CO₂ methanation reaction, ^[6a, 8] the effect of crystalline phases of TiO₂ on the structure and catalytic properties of Ru nano-particles has not been full recognized. Actually, in the case of Deacon reaction (4HCl+O₂=2H₂O+2Cl₂), the catalytic activity and stability of RuO₂ catalyst is highly dependent on the ⁴⁵ crystalline phase of TiO₂.^[14] Rutile-type TiO₂ (r-TiO₂) is a much better support than anatase-TiO₂ (r-TiO₂) in stabilizing RuO₂ due to the interfacial lattice matching, resulting in a higher reactivity and stability in Deacon reaction. Therefore, we prepared the supported Ru catalysts using phase-pure r-TiO₂ and a-TiO₂, and ⁵⁰ tried to verify this effect and elucidate different catalytic performances in CO₂ methanation.

2. Experimental

2.1 Catalyst preparation

The phase-pure $r-TiO_2$ and $a-TiO_2$ supports, were synthesized as s5 reported previously. ^[15] The specific area of them is 27 and 45 m² g⁻¹, respectively.

The Ru catalysts were prepared by a wet-impregnation method using the r-TiO₂ and a-TiO₂ supports. The weight loading of Ru was targeted at 5 wt%. Aqueous solutions (2.55 mL) of RuCl₃ $_{60}$ (0.306 mol_{Ru} L⁻¹ in ultra-super water, Sinopharm Chemical Reagent Co., Ltd) were diluted to 25.5 mL and heated at 50 °C stirring in water bath, then the r-TiO₂ or a-TiO₂ support (1.500 g)

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), Dalian 116023, China. Fax: (+) 86 411 84685940.

E-mail: <u>yqhuang@dicp.ac.cn</u> (Y. Huang)

^b State Key Laboratory of Fine Chemicals, School of Chemical engineering, Dalian University of Technology, Dalian 116024, China.

^c Graduate University of Chinese Academy of Sciences, Beijing 10049, China.

^d Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering,

Zhejiang University, Hangzhou 310027, China.

[†] Electronic Supplementary Information (ESI) available: See DOI: 10.1039/ b000000x/

were poured into the solution and kept stirring until the water were evaporated. And then the samples were dried at 120 °C for 12 h, and calcined in air at 300 °C for 4 h. The resultant precipitate was washed 10 more times with diluted ammonia s solution and 3 times with deionizied water to remove the residual chlorides. Finally, the samples were dried at 80 °C for 8 h and reduced in H₂ at 400 °C for 1 h.

2.2 Activity test

The CO₂ methanation activities of these Ru catalysts were ¹⁰ evaluated in a continuous-flow fixed-bed reactor operating at atmospheric pressure. The catalyst (40 mg, 20 ~ 40 mesh) diluted in 400 mg SiO₂ (20~40 mesh) was loaded in a U-shape quartz reactor (i.d. 6 mm), the feed gas containing 18 vol.% CO₂, 72 vol.% H₂ and balanced with 10 vol.% N₂ (employed as internal

¹⁵ standard gas) was passed through the reactor at a flow rate of 50 ml min⁻¹, corresponding to a total space velocity of 75, 000 mL h⁻¹ g_{ca} ⁻¹.

The reactant gases and effluent gases from the reactor were first passed through an ice-bath unit to remove the water vapor,

 $_{20}$ and then analyzed on line with an Agilent 6890 gas chromatograph using Helium as carrier gas. The TDX-01 column connected to a TCD detector was used to identify and quantify outlet gases (H₂, N₂, CO, CH₄ and CO₂). The CO₂ conversion was calculated based on the difference between inlet and outlet $_{25}$ concentrations.

The CO_2 conversion was calculated by the equation as follows using the area of each detected gas:

Conversion (CO₂%) =
$$\frac{CO_2(in) - CO_2(out) * \frac{N_2(in)}{N_2(out)}}{CO_2(in)} * 100\%$$

2.3 Catalyst characterizations

³⁰ X-ray diffraction (XRD) patterns were recorded with a PANalytical X'Pert-Pro powder X-ray diffractometer, using Cu K α monochromatized radiation ($\lambda = 0.1541$ nm) at a scan speed of 5° min⁻¹.

High-angle annular dark-field scanning transmission electron

- ³⁵ microscopy (HAADF-STEM) images were obtained on a Titan G2 80-200 with ChemiSTEM. High-resolution TEM images (HRTEM) were taken on a Tecnai G2 F30 Field Emission Gun Transmission Electron Microscope.
- The X-ray absorption spectra (XAS) of the Ru K-edge were ⁴⁰ measured at the BL01C1 of the National Synchrotron Radiation Research Center, Hsinchu, Taiwan. The electron storage ring is operated at 1.5 GeV with a beam current of 360 mA under a topup injection mode. The samples were reduced in H₂ at 400 °C for 1 h, and then protected under inert atmosphere to prevent
- ⁴⁵ oxidation before sealing them at an oxygen-free glove box. The data analysis package (Athena, Artemis) was used for the data analysis and fitting ^[16].

Temperature-programmed reduction (H_2 -TPR) experiments were evaluated on a Micromeritics Auto Chem II 2920 automatic

⁵⁰ catalyst characterization system. Prior to the H₂-TPR experiment, 80 mg of the sample already calcined at 300 °C for 4 h was loaded into a U-shape quartz reactor and thermally treated in air

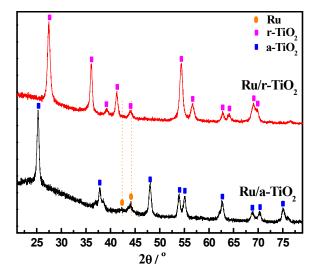


Fig. 1 The XRD patterns of supported Ru catalysts

at 200 °C for 2 h to remove adsorbed carbonates and hydrates. Then, after cooling to room temperature, the flowing gas was so switched to a 10 vol.% H₂-Ar, and the catalyst was heated to 900 °C at a ramping rate of 10 °C min⁻¹.

3. Results and discussions

3.1 Distribution of the Ru catalysts over different phase type TiO_2 supports

60 To reveal the crystalline phase influence of the support on the structure of the Ru nanoparticles, the XRD analysis of the Ru/r-TiO₂ and Ru/a-TiO₂ catalysts were carried out as presented in Fig. 1. Except the diffraction peaks of a-TiO₂ support, the peaks at 2θ value of 42.3 ° and 44.1 °, assigned to metallic ruthenium (PDF 65 NO. 06-0633), were observed on the Ru/a-TiO₂ catalysts. However, there were no characteristic peaks of Ru⁰ observed on the rutile-type TiO₂ supported Ru/r-TiO₂ catalysts, indicating a high dispersion of Ru on the r-TiO₂ support. The representative images of the Ru/r-TiO₂ and Ru/a-TiO₂ catalysts were presented 70 through the HAADF-STEM and HRTEM in Fig. 2, Fig. S1 and Fig. S2. From the Fig. 2a, S1a and S2a, we could easily see many severely sintered ruthenium nanoparticles larger than 10 nm on the surface of a-TiO₂ support, displaying in the shape of bright round spot or narrow strip in the HAADF-STEM images. To be 75 noted, there were still a few Ru nanoparticles smaller than 5 nm observed from the images with high magnification (Fig. 2c). However, on the Ru/r-TiO2, ultra-fine Ru nanopartiles with uniform particle size were dispersed on the surface of r-TiO₂ support. There were no particles larger than 3 nm observed 80 despite of our careful observation (Fig. 2b, 2d, S1b, S2b). More intuitively, the average particle size of the Ru/a-TiO₂ catalyst was found to be 4.0 ± 2.4 nm. However, it was only 1.1 ± 0.2 nm with a quite narrower particle size distribution for the Ru/r-TiO₂ catalyst. These results indicated that the phase type of TiO₂ could 85 remarkably affect the dispersion of Ru on its surface, and the r-TiO₂ appears to be an efficient support to stabilize nano-sized smaller particles of Ru.

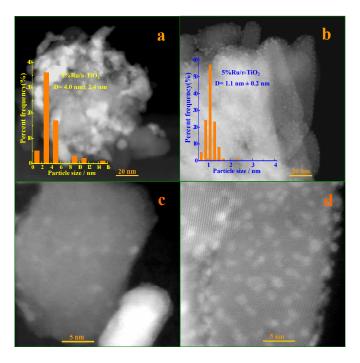
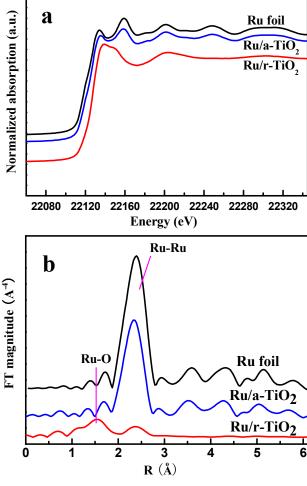


Fig. 2 HAADF-STEM images of supported Ru catalysts with high magnification $% \mathcal{F}(\mathcal{A})$


(a, c) Ru/a-TiO₂; (b, d) Ru/r-TiO₂

3.2 X-ray absorption analysis of Ru catalysts

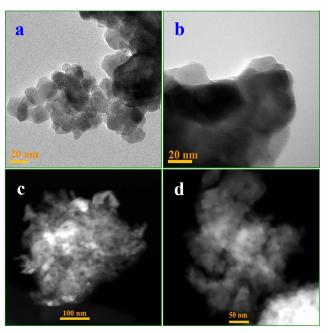
The normalized X-ray absorption near-edge structure (XANES) spectra at the Ru K-edge of the Ru/r-TiO₂, Ru/a-TiO₂ catalysts, as well as the Ru foil, are shown in Fig. 3a. The XANES spectrum

⁵ of the Ru/a-TiO₂ sample was very similar to that of the Ru foil, which indicated that the Ru species were reduced to metallic state. However, the "white line" of the Ru/r-TiO₂ sample was much higher than that of the Ru foil, which suggested that the Ru supported on rutile phase remained at oxidative state.

¹⁰ The nonphase-corrected, k^3 -weighted extended X-ray absorption fine structure (EXAFS) spectra at the Ru K-edge for the Ru/r-TiO₂ and Ru/a-TiO₂ catalysts are shown in Fig. 3b. Consistent with the XANES results, the EXAFS spectra of Ru/a-TiO₂ sample indicates little difference from that of Ru foil. The most ¹⁵ intense feature is Ru-Ru bond and it can be fit to the nearest

Fig. 3 (a) The normalized XANES spectra at the Ru K-edge and **(b)** Corresponding Fourier transform k³-weighted EXAFS spectra (without phase correction) of Ru foil, Ru/r-TiO₂ and Ru/a-TiO₂.

neighbor Ru at a distance of 2.67 Å. The best fit indicates 9.8 nearest other Ru neighbors surrounding the Ru (Table 1). The theoretical particle size of Ru, obtained from the coordination numbers, ^[17] was about 3~4 nm, which is in good consistent with ²⁰ the HRTEM results. However, for the Ru/r-TiO₂ as shown in Fig.


Table 1 EXAFS data fitting results of of Ru foil and Ru catalysts at the Ru K-edge.

Samples	Shell	CN ^a	R(Å) ^b	$\sigma^2 \times 10^3 (\text{\AA}^2)^{\text{c}}$	$\Delta E_0 (eV)^d$	R-factor (%)	$\Delta k (\text{\AA}^{-1})^{e}$	$\Delta R (Å)^{f}$
Ru foil	Ru-Ru	12	2.68	3.8	3.2	0.99	3.2-14.0	1.3-2.7
Ru/r-TiO ₂	Ru-O	4.9	2.00	7.2	-2.8	0.40	3.0-12.1	1.2-2.8
	Ru-Ru	2.2	2.69	8.5	-2.8			
Ru/a-TiO ₂	Ru-Ru	9.8	2.67	4.4	-7.1	0.89	3.2-14.0	1.5-2.7
^a The coordination number. ^b The average absorber-backscatterer distance. ^c The Debye–Waller factor.								
^d The inner potential correction.								
^e The data range used for data fitting in k-space.								
^f The data range used for data fitting in R-space.								

bond decreased dramatically and meanwhile Ru-O bond occurred. These features 25 described in Table 1 were fitted to only 2.2 nearest Ru other neighbors surrounding the Ru at a distance of 2.69 Å, and 4.9 30 nearest O neighbors at a distance of 2.00 Å also surrounding the Ru. The appearance of the Ru-O bond implies to some extent 35 that the existence of adjacent interaction between RuO₂

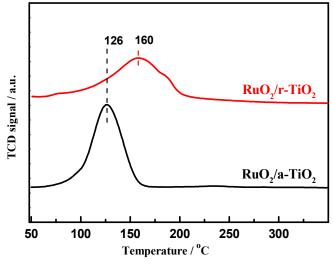
3b, the feature of Ru-Ru

Page 4 of 7

Fig. 4 (a, b) TEM images of the Ru precursor after dried at 80 °C for 12h and **(c. d)** their HAADF-STEM images after calcined in air 300 °C for 4h.

(a), RuCl_x/a-TiO₂; (b), RuCl_x/r-TiO₂;
(c), RuO₂/a-TiO₂; (d) RuO₂/r-TiO₂.

and r-TiO₂, by forming Ru-O-Ti bond as reported previously ^[18] which possibly stabilized the ruthenium from sintering during the process of calcination in air.


3.3 Transformation of the Ru species during the preparation 5 process

In order to figure out how the dispersion difference happened and ascertain when the aggregation of Ru species started, we observed the Ru/a-TiO₂ and Ru/r-TiO₂ samples just dried (Fig. 4a and 4b) and those samples after calcination (Fig. 4c and 4d) by ¹⁰ using TEM and HAADF-STEM techniques, respectively. For the just dried samples, there were no distinct Ru species observed on both of them, indicating that the Ru species were highly dispersed on both r-TiO₂ and a-TiO₂ supports and the Ru sintering did not

happen at this step. The aggregation of Ru species on a-TiO₂ most 15 likely occurred during the calcination at 300 °C. As expected, the HAADF-STEM images indicated severe aggregation of Ru species on a-TiO₂ support, and some of them were larger than 10 nm in the shape of stretched bright spot (Fig. 4c). However, RuO₂

species were still highly dispersed on the r-TiO₂ support without ²⁰ sintering (Fig. 4d). The possible reason is that the RuO₂, as a rutile-type oxide, had a high degree of lattice matching with r-TiO₂ (a=b=4.49 Å, c=3.11 Å for RuO₂, a=b=4.59 Å, c=2.96 Å for r-TiO₂), which led to a strong interfacial interaction by forming the Ru-O-Ti bond between RuO₂ and r-TiO₂.

To confirm this point, we characterized the calcined samples by using H₂-TPR (Fig. 5). The RuO₂ species started to be reduced at 126 °C on the a-TiO₂ support, but delayed to 160 °C on the r-TiO₂, although the RuO₂ particle size was even much smaller in the latter sample. The most likely explanation is the strong

Fig. 5 The H₂-TPR profiles of the calcined RuO₂ samples (a) RuO₂/r-TiO₂ and (b) RuO₂/a-TiO₂.

³⁰ interaction between RuO₂ and r-TiO₂, which hindered the reduction of RuO₂. Moreover, we also calculated the amount of H₂ consumption (Table S1) and found that there was less hydrogen consumed on the RuO₂/r-TiO₂ (15.4 mL_{H2} g_{cat⁻¹}) than that on the RuO₂/a-TiO₂ (16.8 mL_{H2} g_{cat⁻¹}). This result is ³⁵ consistent with the EXAFS data, indicating that the RuO₂ species were more difficult to be reduced due to the chemical bonding between RuO₂ and r-TiO₂.

It has been reported that RuO₂ nanoparticles are easily aggregated in oxidative atmosphere ^[19] due to the volatility of ⁴⁰ oxidized ruthenium. This is the case observed in the RuO₂/a-TiO₂. However, an intimate interaction occurs between RuO₂ and r-TiO₂ structure due to their high degree of lattice matching, which in turn stabilizes the RuO₂ under oxidation conditions and maintains its high dispersion.

$_{\rm 45}$ 3.4 The activities of the Ru/TiO_2 catalysts for CO_2 methanation

The CO₂ conversions as a function of reaction temperature over the Ru/r-TiO₂ and Ru/a-TiO₂ catalysts were displayed in Fig. 6a. ₅₀ The Ru/r-TiO₂ catalyst exhibited a much higher activity in CO₂ methanation than the Ru/a-TiO₂. At the temperature of 300 °C, about 65% CO2 in the feed gas was converted to CH4 on the Ru/r-TiO₂ catalysts, but the CO₂ conversion was only 34% on the Ru/a-TiO₂ catalysts. Moreover, it is worth to note that we did not 55 detect any CO and other by-products besides CH4, indicating that the selectivity to CH₄ on the Ru/r-TiO₂ catalysts was very high. We calculated the specific rates of the investigated catalysts at 225 °C showed in Fig. 6b. The reaction rate on the Ru/r-TiO₂ was 2.85 mol_{CO2} g_{Ru}^{-1} h⁻¹, 2.4 times higher than that on the Ru/a-TiO2 (1.19 mol_{CO2} g_{Ru}^{-1} h⁻¹), indicating that the rutile-type TiO₂ is a superior support to load Ru for CO₂ hydrogenation to CH₄. The considerable difference in CO₂ methanation activity is considered from their different particle sizes. The presence of Ru-O-Ti bond, as confirmed by EXAFS, indicated a strong interaction between $_{\rm 65}$ Ru and r-TiO_2 support, which contributed to a higher dispersion of Ru.

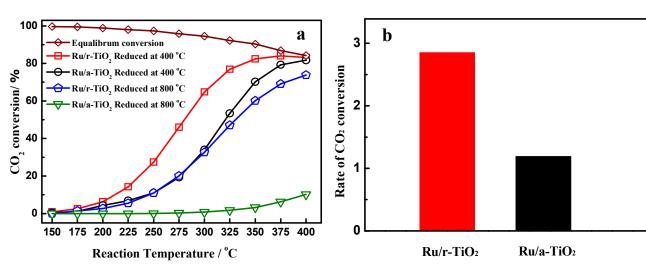


Fig. 6 (a) CO_2 conversions as a function of the reaction temperature for Ru catalysts and (b) their specific rates calculated at 225 °C.

Reaction conditions: 18 vol % CO₂ + 72 vol % H₂ + 10 vol % N₂, catalyst: Each 0.040g diluted with 0.400g SiO₂, total space velocity: 75, 000 mL g_{cat}^{-1} h⁻¹.

We also calculated the specific reaction rates of CH₄ formation related to the number of surface Ru atoms, i.e. turnover frequency (TOF) at 225 °C. An inversed correlation was obtained: the TOF over Ru/r-TiO₂ catalyst is only two thirds of that over Ru/a-TiO₂. This is consistent with previous reports that the CO₂ methanation is a structure-sensitive reaction and TOF increases with an increase of the Ru particle size ^[20, 21, 6b]. In addition, we have compared the specific reaction activity of our sample with that of Abe et al., one of the best results reported previously, where a complete conversion of CO₂ to CH₄ was achieved at 160 °C using a catalyst only with 0.8 wt% Ru ^[22]. The TOF value of our 5 wt% Ru/r-TiO₂ sample calculated at 160 °C is 6.0×10^{-3} s⁻¹, which is not much leaver them their new heir serve (0.5 $\times 10^{-3}$ s⁻¹,

which is not much lower than their result $(8.5 \times 10^{-3} \text{ s}^{-1})$ as s expected. The minor difference in TOF values between them can be explained by the different Ru particle size. It is 1.1 nm in our case but 3.4 nm in their case.

It is worth to note that the Ru/r-TiO₂ were very stable for CO_2 hydrogenation to CH_4 at 300 °C, without any decrease but with a slight increase, during the long-term test of over 20 h (Fig. S3).

 $_{20}$ The thermal stability of these two catalysts were also compared and presented in the Fig. 6. After reduction at high temperature (800 °C), the Ru/a-TiO₂ catalyst became almost inactive in CO₂ methanation. However, there was a minor influence on the Ru/r-TiO₂ catalyst, indicating a superior thermal stability of the Ru/r- $_{25}$ TiO₂.

All in all, the r-TiO₂ support appears to be a promising support for preparing a highly dispersed Ru catalyst, which exhibited high activity and well stability in CO_2 methanation.

4. Conclusions

- $_{30}$ The Ru dispersion was significantly influenced by the crystal phase structure of TiO_2 supports, r-TiO_2 appears to be a promising support for preparing a highly dispersed Ru catalyst with a narrow size distribution. There was a strong interaction between RuO_2 and r-TiO_2 during the calcination, which
- ³⁵ prohibited the aggregation of RuO₂. The Ru/r-TiO₂ exhibited a much higher activity and thermal stability in CO₂ methanation

than the Ru/a-TiO₂. Their different catalytic performances were originated from the different particle sizes of Ruthenium. The presence of Ru-O-Ti bond hindered the aggregation of Ru nano-40 particles, but its contribution to the activation of CO₂ is still

questioned. This work is still under progress in our group.

Notes and references

This work was supported by the NSFC (21103173, 21303194 and 51390474), 100 Talent Program of Dalian Institute of Chemical

- ⁴⁵ Physics (DICP). We thank Prof. Chung-Yuan Mou of National Taiwan University, Dr. Ting-Shan Chan and Dr. Jyh-Fu Lee of National Synchrotron Radiation Research Center (Hsinchu, Taiwan) for their invaluable assistance with the XAS experiments.
- a) D. B. Clarke, I. A. T. Bell, J. Catal., 1995, 154, 314; b) A. T. Bell,
 Science, 2003, 299, 1688.
- a) M.S. Chen, D.W. Goodman, *Catal. Today*, 2006, **111**, 22; b) W.-J.
 Shen, M. Okumura, Y. Matsumura, M. Haruta, *Appl. Catal.*, *A*, 2001, **213**, 225; c) S. Eckle, Y. Denkwitz, R.J. Behm, *J. Catal.*, 2010, **269**, 255.
- a) S. J. Tauster, S. C. Fung, R. L. Garten, J. Am. Chem. Soc., 1978, 100, 170; b) G. L. Haller, Adv. Catal., 1989, 36, 173; c) S. E. Collins, J. J. Delgado, C. Mira, J. J. Calvino, S. Bernal, D. L. Chiavassa, M. A. Baltanás, A. L. Bonivardi, J. Catal., 2012, 292, 90; d) Q. Zhang, Y.-Z. Zuo, M.-H. Han, J.-F. Wang, Y. Jin, F. Wei, Catal. Today, 2010, 150, 55.
- a) M. S. Chen, D.W. Goodman, *Catal. Today*, 2006, 111, 22; b) T. Akita, M. Okumura, K. Tanaka, M. Kohyama, M. Haruta, *Catal. Today*, 2006, 117, 62.
- a) M. Flytzani-Stephanopoulos, B. C. Gates, Annu. Rev. Chem.
 Biomol. Eng., 2012, 3, 545; b) M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science, 2013, 341, 771; c) X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc .Chem. Res., 2013, 46, 1740.
- a) W. Wang, S. Wang, X. Ma, J. Gong, *Chem. Soc. Rev.*, 2011, 40, 3703. b) J. H. Kwak, L. Kovarik, J. Szanyi, *ACS Catal.*, 2013, 3, 2449; c) W. Yu, M. D. Porosoff, J. G. Chen, *Chem. Rev.*, 2012, 112, 5780.
- 7 a) F. Solymosi, A. Erdöhelyi, M. Kocsis, J. Chem. Soc., Faraday Trans.1, 1981, 77, 1003; b) J. A. Mieth, J. A. Schwarz, J. Catal.,
 5 1989, 118, 203.
- 8 Q. Jiang, G. Deng, R. Chen, Z. Huang, Chin. J. Catal., 1997, 18, 5.

- 9 S. Sharma, Z. Hu, P. Zhang, E. W. McFarland, H. Metiu, J. Catal., 2011, 278, 297.
- 10 J. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal., 2013, 3, 2094.
- 11 M. Inoue, H. Shingen, T. Kitami,S. Akamaru, A. Taguchi, Y. Kawamoto, A. Tada, K. Ohtawa, K. Ohba, M. Matsuyama, K. Watanabe, I. Tsubone, T. Abe, *J. Phys. Chem.*, *C*, 2007, **112**, 1479.
- 12 D. Li, N. Ichikuni, S. Shimazu, T. Uematsu, *Appl. Catal.*, *A*, 1999, 180, 227.
- C. Li, S. Zhang, B. Zhang, D. Su, S. He, Y. Zhao, J. Liu, F.
 Wang, M. Wei, D. G. Evans, X. Duan, J. Mater. Chem., A, 2013, 1, 2461.
- 14 a) K. Seki, Catal. Surv. Asia, 2010, 14, 168; b) J. Pérez-Ramírez, C. Mondelli, T. Schmidt, O. Schlüter, A. Wolf, L. Mleczko, T. Dreier, Energ. Environ. Sci., 2011, 4, 4786; c) E. V. Kondratenko, A. P.
- Amrute, M.-M. Pohl, N. Steinfeldt, C. Mondelli, J. Pérez-Ramírez, *Catal. Sci. Technol.*, 2013, 3, 2555;
- 15 A. Sun, P. Guo, Z. Li, Y. Li, P. Cui, J. Alloys Compd., 2009, 481, 605.
- 16 B. Ravel, M. Newville, J. Synchrotron Radiat., 2005, 12, 537.
- 20 17 A. I. Frenkel, C. W. Hills, R. G. Nuzzo, J. Phys. Chem. B, 2001, 105, 12689.
- 18 L. Näslund, C. M. Sánchez-Sánchez, Á. S. Ingason, J. Bäckström, E. Herrero, J. Rosen, S. Holmin, J. Phys. Chem. C, 2013, 117, 6126.
- 19 Y. Zhang, X. Wang, Y. Zhu, T. Zhang, *Appl. Catal.*, *B*, 2013, **129**, 382.
- 20 a) L. Guczi, Z. Schay, K. Matusek, I. Bogyay, *Appl. Catal.*, 1986, 22, 289; b) M. Che, *Adv. Catal.*, 1989, 36, 55.
- 21 Z. Kowalczyk, K. Stołecki, W. Raróg-Pilecka, E. Miśkiewicz, E. Wilczkowska, Zbigniew Karpiński, *Appl. Catal.*, A, 2008, 342, 35.
- ³⁰ 22 T. Abe, M. Tanizawa, K. Watanabe, A. Taguchi, *Energ. Environ. Sci.*, 2009, **2**, 315.