This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Graphic abstract

Excitation of hematite with visible light promotes electron transfer from the dissimilatory metal-reducing species *Geobacter sulfurreducens* to hematite surface.
Light-driven microbial dissimilatory electron transfer to hematite†

Dao-Bo Li, Yuan-Yuan Cheng, Ling-Li Li, Wen-Wei Li, Yu-Xi Huang, Dan-Ni Pei,
Zhong-Hua Tong, Yang Mu, Han-Qing Yu*

Department of Chemistry, University of Science & Technology of China, Hefei,
230026, China

Corresponding author: Fax: +86-551-63607592, E-mail: hqyu@ustc.edu.cn

† Electronic supplementary information is available.
Abstract

The ability of dissimilatory metal-reducing microorganisms (DMRM) to conduct extracellular electron transfer with conductive cellular components grants them a great potential for bioenergy and environmental applications. Crystalline Fe(III) oxides, a type of widespread electron acceptor for DMRM in nature, can be excited by light for photocatalysis and microbial culture-mediated photocurrent production. However, the feasibility of direct electron transfer from living cells to light-excited Fe(III) oxides has not been well documented and the cellular physiology in this process has not been clarified. To resolve these problems, an electrochemical system composed with Geobacter sulfurreducens and hematite (α-Fe$_2$O$_3$) was constructed, and direct electron transfer from G. sulfurreducens cells to the light-excited α-Fe$_2$O$_3$ in the absence of soluble electron shuttles was observed. Further studies evidenced the efficient excitation of α-Fe$_2$O$_3$ and the dependence of photocurrent production on the biocatalytic activity. Light-induced electron transfer on the cell-α-Fe$_2$O$_3$ interface correlated linearly with the rates of microbial respiration and substrate consumption. In addition, the G. sulfurreducens cells were found to survive on the light-excited α-Fe$_2$O$_3$. These results prove a direct mechanism behind the DMRM respiration driven by photo-induced charge separation in semiconductive acceptors and also imply new opportunities to design photo-bioelectronic devices with living cells as a catalyst.
This study reports a light-driven electron transfer from dissimilatory metal-reducing microorganisms (DMRM) to crystalline Fe(III) oxides. Both photochemistry and the dissimilatory metal reduction phenomenon have been recognized for many years, but the connection between the light-excited charges on semiconductors and the energy metabolism of DMRM species has received little attention. In this work, we demonstrate that light illumination substantially accelerated the electron transfer from \textit{Geobacter sulfurreducens} to α-Fe$_2$O$_3$. The microbial cells on the α-Fe$_2$O$_3$ surface are not damaged by the photo-generated holes. Such a light-driven electron transfer from DMRM cells to Fe(III) oxides suggests a unique way of energy communication between the organic lives and the inorganic minerals in nature. These findings broaden our understanding about the microbial respiration and potential bioenergy applications.
Introduction

Exploiting the capability of microorganisms in extracellular electron transfer has drawn great interests in recent years for bioenergy and environmental remediation applications. Many dissimilatory metal-reducing microorganisms (DMRM) are able to utilize extracellular solid-state electron acceptors such as carbon materials and metal oxides, in which processes extracellular electron transfer plays a central role. A set of sophisticated complexes consisting of conductive pili and associated c-type cytochromes (cyt. c) is found to stretch from the cellular membrane of DMRM directly to the solid surface, breaking the physical barrier caused by insulating phospholipid bilayer.

Crystalline Fe(III) oxides are one of the most common natural electron acceptors for DMRB. Electron transfer from microbial cells to these oxides is of fundamental importance for several processes. Fe(III) oxide-based bioanode significantly improved the electricity generation in bioelectrochemical systems, probably because of the specific affinity between the oxide surface and cyt. c on the cell membrane as well as the increased contact area. Besides, biogeochemical reduction of Fe(III) to Fe(II) in subsurface and aquatic sediments can be driven by the respiration of DMRM, accompanied with oxidative degradation of organic contaminants such as aromatic compounds.
Crystalline Fe(III) oxides can be excited by light irradiation, generating electron-hole pairs in the lattices. The light-excited electron-hole pairs improve both internal conductivity for enlarged charge density and oxidation kinetics on the surface for hole accumulation11,12, which is beneficial for interfacial electron transfer. Thus, a gated electron transfer process from microbial enzymes to crystalline Fe(III) oxides might be possible in the presence of light. Similarly, photocurrent production catalyzed by microbial cultures (\textit{Shewanella} spp.)10,13,14 or peroxidase15 on hematite has been demonstrated to be feasible for exploiting energy devices. However, since electron transfer from \textit{Shewanella} spp. to acceptors is mainly mediated by flavins16,17, the role of \textit{Shewanella} cells in the photocurrent production and the cellular physiology on α:Fe$_2$O$_3$ surface are not clear yet13,14. Direct electron transfer from microbial cells to light-excited semiconductors is an important scientific issue in the fields of microbiology and bioenergy, and is also a challenge because of the potential cytotoxicity caused by the light-generated charges18,19. Furthermore, microbial metabolism on such a high-energy surface of the light-excited semiconductor in the photocurrent production is another issue that has not been explored by now.

In this work, an environmentally ubiquitous DMRM strain, \textit{G. sulfurreducens}, was interfaced on α:Fe$_2$O$_3$ surface to construct an electrochemical system to explore the above problems. \textit{Geobacter sulfurreducens} was chosen because of its characteristics of direct electron transfer for respiration without the involvement of mediators, excellent surface adhesion and cell aggregation20, and a much higher
efficiency for electron recovery in substrate oxidation, compared with other DMRM21.

α-Fe$_2$O$_3$ is one of the main natural Fe(III) oxides widespread in the environment7,22 and also commonly used in electrochemical devices for photocatalysis11,18. In our electrochemical system, α-Fe$_2$O$_3$ was deposited on optically transparent tin-doped In$_2$O$_3$ (ITO) (Fig. 1a) as the electrode for electron collection and electrochemical characterizations. \textit{G. sulfurreducens} cells grew on the α-Fe$_2$O$_3$ surface and were verified to be electrochemically active. With this system, we aim to explore: 1) whether the light-generated holes on α-Fe$_2$O$_3$ surface could drive direct electron transfer from \textit{G. sulfurreducens} cells to α-Fe$_2$O$_3$; 2) how the light-excitation of α-Fe$_2$O$_3$ would correlate with the microbial respiration and metabolism; and 3) what conditions were required to achieve such a charge transfer between α-Fe$_2$O$_3$ and \textit{G. sulfurreducens} cells.

Results

Direct electron transfer from \textit{G. sulfurreducens} cells to α-Fe$_2$O$_3$ in dark

\textit{G. sulfurreducens} is able to use solid electrode as the electron acceptor for respiration21. At a potential of +0.2 V vs. SHE, active \textit{G. sulfurreducens} cells colonized and proliferated on the α-Fe$_2$O$_3$ or ITO electrode surface, forming a layer of compact cell matrix (i.e., biofilm) with a thickness of approximately 30 µm (Fig. 1b and d, Supplementary Fig. S1). The α-Fe$_2$O$_3$ layer was prepared by electrophoretic
deposition of α-Fe$_2$O$_3$ nanoparticles (~30 nm) onto the ITO surface. This α-Fe$_2$O$_3$
layer, with an average thickness of 2.1 μm, formed sandwich structure with cells and
the ITO electrode (Fig. 1c). The α-Fe$_2$O$_3$ nanoparticles were used here in order to
improve the charge separation efficiency12. Light was applied on the ITO side to
directly illuminate the α-Fe$_2$O$_3$ layer, while minimize light absorption by G
sulfurreducens cells and the electrolyte. In order to mimic the natural conditions, fully
visible light irradiation was adopted. In the microbial respiration, electrons from
acetate metabolism were transferred to the α-Fe$_2$O$_3$ surface (Fig. 1b), driven by the
redox gradient across the biofilm23. The electrons were then further delivered to the
ITO electrode through α-Fe$_2$O$_3$, instead of reductively dissolved α-Fe$_2$O$_3$, to form
Fe$^{3+}$/Fe$^{2+}$ couple in the electrochemical system (Supplementary Fig. S2). Thus, an
interface for direct electron transfer from the cells to α-Fe$_2$O$_3$ was successfully
constructed and maintained during the tests.

The global respiration rate of G sulfurreducens cells on the α-Fe$_2$O$_3$ or ITO
surface was monitored in terms of the generated current. The cells without direct
contacting with the α-Fe$_2$O$_3$ or ITO surface could also pump electrons to these
electrodes through an extracellular conductive network24. Accompanied with the
biofilm development, the current initially exhibited an exponential increase and
eventually leveled off on both the α-Fe$_2$O$_3$ and ITO (Fig. 1b). G sulfurreducens cells
on the α-Fe$_2$O$_3$ surface produced 6 times higher current than that on the ITO surface
(230.2 μA cm$^{-2}$ vs. 38.1 μA cm$^{-2}$), possibly owing to a larger specific surface area and
higher affinity of the α-Fe$_2$O$_3$ layer to the cells. The steady-state current contributed
by the cells (scanning at 1 mV/s) was dependent on the polarization potential (Fig. 1e,
1 mV/s). The onset potential for cellular respiration was at -0.299 V, and the
maximum microbial respiration rate was achieved at -0.043 V, both are consistent
with previous reports.25 Reversible oxidation and reduction peaks were observed in a
fast scanning (100 mV/s), and the peak potentials coincided with the maximum
respiration rate and the onset point respectively. These observations provide clear
evidence for a direct electron transfer from *G. sulfurreducens* cells to the electrode by
extracellular cyt. c.26,27 The potential of the cell/α-Fe$_2$O$_3$ system declined rapidly to
below -0.25 V upon circuit interruption. The amperometric i:t tests showed a potential
gradient across the α-Fe$_2$O$_3$ layer, which provided driving force for electron transport
through the α-Fe$_2$O$_3$ (Fig. 1f and Supplementary Fig. S3).

Photocurrent produced by the excitation of the cell-α-Fe$_2$O$_3$ system

Electron transport through α-Fe$_2$O$_3$ in the dark is thought to occur in the
conduction band composed of Fe(3d) orbitals, while the charges in the valence band
(O(2p) orbitals) are not free-flowing unless excited by light or heat.28 Visible light
with a wavelength below 564.7 nm can excite electrons into the conduction band and
leave positive charges (holes) in the valence band. The holes diffuse to the
cell-α-Fe$_2$O$_3$ interface and cause a sharp current promotion (photocurrent) (Fig. 2a),
switching on the light-excited electron transfer at the cell-α-Fe$_2$O$_3$ interface.
Reproducible response to each illumination with an average photocurrent density of 50.0 µA cm\(^{-2}\) was observed, implying a role of the excited α-Fe\(_2\)O\(_3\) in the electron transfer at the cell-α-Fe\(_2\)O\(_3\) interface.

A certain potential difference across α-Fe\(_2\)O\(_3\) is required to retard the recombination and produce free-flowing charges. The effect of electrode potential on the photocurrent production was examined in the cell/α-Fe\(_2\)O\(_3\) system to verify the light-excitation of α-Fe\(_2\)O\(_3\) and its interplay with the interfacial electron transfer (Fig. 2b). The current at low potentials (Regions I) under illumination exhibited a similar pattern to that in the dark and was light-insensitive. The photocurrent at the cell-α-Fe\(_2\)O\(_3\) interface appeared at around -0.25 V and increased gradually as the potential increased until +0.071 V (Region II). At potentials higher than +0.071 V (Region III), the photocurrent production was limited by the rate of biocatalytic reactions, as was shown at high potentials in CV (Fig. 1e). The photocurrent eventually leveled off at 74.54 µA cm\(^{-2}\) and exhibited a 40.6% increase in electron conduction efficiency compared to that in the dark. Promotion of conductivity in the cell-α-Fe\(_2\)O\(_3\) system was also evidenced by the photoelectrochemical impedance spectroscopy analysis (Fig. 2c), which shows a much smaller circle at the low frequency region under illumination than that in the dark. These observations indicate that the photocurrent was produced by exciting the cell-α-Fe\(_2\)O\(_3\) system and governed by the bias.
Coupled electron-hole separation in α-Fe$_2$O$_3$ with microbial respiration

The relevance of photocurrent generation to cellular respiration was first explored by measuring the transient photodynamics of electron transfer in the electrochemical system. I-V tests were conducted under intermittent illumination with the α-Fe$_2$O$_3$ or cell/α-Fe$_2$O$_3$ system. In order to minimize the potential change within each dark-light cycle, a low scan rate of 0.5 mV/s was used in each test. In the absence of $G. sulfurreducens$ cells, only a weak anodic photocurrent was generated at above -0.18 V, and the current decayed over time (Fig. 3a). Such a current decay should be ascribed to the capacitive current and temporary trapping of holes at the interface29. In contrast, in the presence of active cells on the α-Fe$_2$O$_3$ surface, an immediate photocurrent was yielded on illumination in the same voltage range. The photocurrent enlarged until reaching the limiting rate of microbial respiration at potentials above +0.06 V and maintained at 57.2 μA cm$^{-2}$ at even higher potentials. When blocking the electron transfer by selectively inhibiting the electrochemical activity of cyt. c with carbon monoxide, the photocurrent was substantially declined (Supplementary Fig. S4).

These results indicate that the electrons for photocurrent production directly came from the respiration of the active cells on the α-Fe$_2$O$_3$, and imply that the cells could adjust their respiration to pump out more electrons to the α-Fe$_2$O$_3$ under illumination.

The relationship between the light-induced charge separation in the α-Fe$_2$O$_3$ and the dissimilatory respiration of $G. sulfurreducens$ was examined by analyzing the dynamics of acetate consumption (change of acetate in molar, Δacetate) and the
production of charge under steady cellular respiration conditions. The cells on the electrode surface can pump electrons steadily over time at +0.2 V, accompanied by a proportional consumption of acetate (Supplementary Fig. S5). In the 36-h tests, a positive correlation between the Δacetate and the produced charge was observed, both under illumination and in the dark (Fig. 3b and Supplementary Fig. S6). The fitting curves give the adjusted correlative coefficient R^2 values of 0.9721 and 0.9561, respectively, confirming that the charges were originated from the acetate oxidation by *G. sulfurreducens* cells on the α-Fe$_2$O$_3$ surface. In addition, the cells exhibited a similar level of substrate-electricity conversion efficiency regardless the illumination (49.59 % if the consumed acetate was completely oxidized in microbial metabolism). These results indicate that microbial respiration could be driven by the process of light-induced electron transfer at the cell-α-Fe$_2$O$_3$ interface, at the same energy efficiency as in dissimilatory respiration in the dark.

Correlation between the light-induced electron transfer and the respiration rate of cells was further examined by monitoring the photocurrent profiles during the biofilm development process at +0.0 V, +0.2 V and +0.6 V, respectively, with periodic illumination. At different biofilm growth stages, the generated photocurrent was plotted to the dark current to characterize the promotion of light-excitation to the microbial respiration rate (Fig. 4a). The anodic photocurrent appeared immediately after the adhesion of *G. sulfurreducens* biofilm onto the α-Fe$_2$O$_3$ surface (Fig. 4a and Supplementary Fig. S7). After 100 min of colonization on the α-Fe$_2$O$_3$, the cells
produced a respiratory current of 0.5 µA in the dark and a photocurrent of 1.4 µA under illumination. The photocurrent increased to 9.4 µA after 40 h, while the dark current was 24.6 µA. The photocurrent correlated linearly with the dark current at different growth stages of biofilms, regardless of the polarization potentials (Fig. 4b-d). The fitting slopes at these three potentials exhibited an average sensitizing efficiency for microbial respiration (the ratio of the photocurrent to the dark current) of 39.6%. Such a photocurrent dependency on the dark current conclusively couples the light-induced charge separation in the α-Fe₂O₃ with the microbial respiration and electron transfer at the *G. sulfurreducens* cell-α-Fe₂O₃ interface.

Physiological activity of *G. sulfurreducens* cells on the light-excited α-Fe₂O₃

G. sulfurreducens can conserve energy to support microbial growth and their physiological activities from the extracellular electron transfer. However, one main concern of using light-induced electron transfer of semiconductors for respiration is their biotoxicity, as the generation of light-excited holes and radicals may damage the attached cells and make the light-induced charge transfer unsustainable. To examine this possibility, the impact of light-exciting α-Fe₂O₃ on the vitality of cells was investigated by measuring the accumulated reducing power in the biofilm under illumination. The global redox state of cyt. c was used as an indicator of accumulated reducing power within healthy cells. The UV-visible spectrum of cyt. c exhibits three characteristic absorption peaks at 419, 522, and 552 nm (Fig. 5a and Supplementary
Fig. S8). The results show that the peaks area at 522 and 552 nm had no distinct change before and after the illumination, implying that the cellular activity was not affected by the light-induced holes on the α-Fe₂O₃ surface. To confirm this, the spatial configuration of cellular activities in the biofilm was further examined by measuring the fluorescence counts of the reduced enzymes labeled with a fluorogenic redox sensor. The dye yielded green fluorescence after being reduced by bacterial reductases, which are mostly located as the electron transport complexes in the respiration system. Thus, the fluorescence intensity is proportional to the amount and reductive activity of healthy cells. Consistent with the results on the global redox state, the fluorescence analysis confirms that the biofilm on the α-Fe₂O₃ retained a high activity despite of illumination (Fig. 5b and c). Interestingly, the cells in the middle layers of the biofilm exhibited the highest activity (Fig. 5b and Supplementary Fig. S9), while those near the α-Fe₂O₃ surface had a relatively lower activity, indicating a spatial and functional heterogeneity of the active cells on the α-Fe₂O₃ surface. The weaker fluorescence at the bottom layer of biofilm was possibly attributed to the less availability of acetate and more efficient electron transfer in this region.

Discussion

The semiconductor-based photoanodes are widely collocated with chemical redox couples such as I⁻/I³⁻ in electrolyte for charge transfer at electrode surface in solar
Recently successful photocurrent production with microbial cultures as the electrolyte and α-Fe$_2$O$_3$ as the photoanode has been demonstrated10,14. To reveal the mechanism of photocurrent production and the involvement of microbial cells in light-driven electron transfer, the direct interplay between \textit{G. sulfurreducens} cells and α-Fe$_2$O$_3$ under light-excitation was explored in this work. With the constructed direct physical interface between the cells and α-Fe$_2$O$_3$, the light-driven electron transfer across them was accomplished. The experimental results on I_{photo}-V relationship (Fig. 2b and 3a) and CO inhibition clearly show that the photocurrent was entirely originated from the microbial catalysis on the α-Fe$_2$O$_3$ surface. In addition, the substrate consumption and respiration activities of cell layer correlated with the photocurrent intensity well, demonstrating the gated dissimilatory respiration of \textit{G. sulfurreducens} driven by the light-induced electron transfer at the α-Fe$_2$O$_3$ surface. Such a direct electron transfer process from \textit{G. sulfurreducens} cells to the light-excited α-Fe$_2$O$_3$ and is different from that for \textit{S. oneidensis}, which may contribute to the photocurrent production in electrochemical systems by mediating electron transfer to the α-Fe$_2$O$_3$ mainly via extracellular flavins16,17.

Based on the above experimental results and the thermodynamic considerations, we propose a model to describe the electron transfer at the interface between \textit{G. sulfurreducens} cells and light-excited α-Fe$_2$O$_3$ (Fig. 6a). In the respiration of \textit{G. sulfurreducens}, electrons produced from acetate oxidation are transferred to the extracellular conductive components, which might be composed by pili32 and cyt. c
such as OmcZ$_{33}$, and then further injected into the Fe(3d) conduction band on the
α-Fe$_2$O$_3$ surface in the dark. The electron transfer from the reduced cellular
components to the Fe(3d) band is slower in kinetics34, compared to the intracellular
catalytic reactions. In the presence of illumination, the photo-excitation of α-Fe$_2$O$_3$
brings about much more free electrons to Fe(3d) band by transition, which improves
the intrinsic conductivity of α-Fe$_2$O$_3$, and leaves holes in the O(2p) valence band.
These holes could be drawn from the body of α-Fe$_2$O$_3$ by the internal electric field to
the cells/α-Fe$_2$O$_3$ interface, where they work as the `active vacancies’ (with a high
potential of +2.48 V, Supplementary Fig. S3) and open a new electron conduit
bridging the redox centers of conductive cellular components to these vacancies at the
cell/α-Fe$_2$O$_3$ interface. Then, the oxidized cyt. c in the electron transfer chain is
regenerated more efficiently to stimulate the cellular respiration (Figs. 3b and 5b).
From the results in this work, the ratio of the electrons flowing through the
conduction band and valence band is estimated to be 5:2 under illumination (Fig. 6a).
Moreover, the injected electrons in α-Fe$_2$O$_3$ would be further delivered to the ITO
electrode, rather than dissolving Fe(III) to Fe$^{2+}$.

Previous studies have shown that microbial cells on light-excited semiconductors
suffered from metabolic suppression due to an in-situ generation of hydroxyl radicals
on semiconductor surface19,35. However, this phenomenon was not observed at the
cell-α-Fe$_2$O$_3$ interface in our system. One possible reason is that the surface holes
generated on crystalline iron-oxides are more moderate as compared with other
semiconductors, bringing about a significant thermal barrier to hinder the hole transfer on the α-Fe₂O₃ surface. Besides, holes would rapidly combine with the electrons delivered by microbial cells before reacting with the water molecules to form radicals. As a consequence, a high activity could be maintained by the cells on the α-Fe₂O₃ surface as long as the electron output is sustained via the respiration. The light-generated holes on the α-Fe₂O₃ surface are proven to drive cellular respiration at the same energy efficiency to the dark respiration (Fig. 3b). These features gift the essential foundation for microbial dissimilatory respiration on light-excited semiconductors in natural environments and provide an application potential for photo-bioelectrochemical energy technologies.

The respiration driven by the light-induced electron transfer from DMRM to Fe(III) oxides reveals the diversity of microbial energy metabolism in the environment. Although the Fe(III) oxides are present as the predominant iron minerals in most of soils and sediments at circumneutral pH, DMRM respiration on these acceptors is practically hard because of the limited rate of heterogeneous electron transfer from bacterial cells to mineral surface. Redox potentials of crystalline Fe(III)/Fe(II) are hundreds of millivolts negative and supply very little energy to cells through the oxidative phosphorylation. Coupled with the insufficient availability of carbon sources, the DMRM species are often limited in their environmental abundance. Our study shows that light-excitation of hematite switches on a new type of electron transfer at the interface with a 40% improvement to the respiration
rate of DMRM, which may greatly favor the microbial growth and proliferation. Therefore, this strategy gives DMRM species an extraordinary competitive advantage over other co-existing bacteria in the ecosystems.

The light-driven electron transfer from \textit{G. sulfurreducens} to hematite may also exert an impact on the speciation of environmental elements. Both dissimilatory respiration and photochemistry of hematite occur in diverse anoxic sites with sufficient light irradiation8,42,43, and may release Fe2+ through injecting electrons into the surface lattices of Fe(III) oxides. The reactive electrons accumulated on α-Fe\textsubscript{2}O\textsubscript{3} could also be transferred to other acceptors as long as their reduction potentials are higher than -0.2 V, which are sufficient to drive the light-induced electron transfer when \textit{G. sulfurreducens} cells are respiring on α-Fe\textsubscript{2}O\textsubscript{3} surface (Fig. 2b). Thus, it is thermodynamically possible for the \textit{G. sulfurreducens}/α-Fe\textsubscript{2}O\textsubscript{3} system to reduce many natural acceptors (e.g., nitrate, humic substances, and oxygen)44,45, and pollutants (e.g., Cr(VI), nitroaromatic and chlorinated organics)46-48. Thus, a light-promoted remote electron transfer from DMRB cells to iron-oxides in natural environments might be associated with the microbial mineralization of organic carbon49 and reductive transformation of many natural elements (Fig. 6b).

\textbf{Methods}

\textbf{Growth medium and biofilm formation on electrodes}
G. sulfurreducens DL-1 was donated by Prof. Lovley from the University of Massachusetts (USA) and was routinely cultivated in modified DMSZ medium supplemented with 20 mM acetate and 50 mM fumarate. Development of G. sulfurreducens biofilm was accomplished in a three-electrode cell with ITO or α-Fe₂O₃/ITO electrode as the working electrode. The mineral solution of culture medium dosed with 20 mM acetate was used as the electrolyte. The electrode potential was set at +0.0 V, +0.2 V, or +0.6 V. All microbial incubation and electrochemical tests were conducted at 30 °C. The details about cell cultivation and biofilm development on the electrodes are given in Supplementary Methods.

Preparation of the α-Fe₂O₃ electrodes

The α-Fe₂O₃ electrodes were prepared through electrophoretic deposition of α-Fe₂O₃ nanoparticles (30 nm) on the ITO electrodes. Briefly, 80 mg α-Fe₂O₃ nanoparticles and 20 mg iodine were dispersed in 100 mL acetone under 30-min sonication. The mixture was stirred before electrodeposition. An external bias of -10 V was applied between two parallel ITO electrodes and kept for 2 min. The as-prepared electrodes were calcined at 673 K for 30 min. For the UV-visible spectroscopy tests, the α-Fe₂O₃ nanoparticles were electrodeposited for 30 s on ITO to improve its light transmittance.

Electrochemical and photoelectrochemical measurements
The amperometric i-t curves and cyclic voltammetry analysis during biofilm development on the electrodes were performed with a multi-potentiostat (CHI 1030A, CH Instruments Inc., China). During biofilm development, a blended fluorescent mercury lamp (250W, Yaming Lighting Co., China) was used as the light source for photocurrent tests. The lamp and electrochemical cells were placed in an incubator at 30 °C.

The open-circuit potential, current-potential curves, and photoelectrochemical impedance spectroscopy (PEIS) of the mature biofilm on the α-Fe₂O₃ electrode were recorded using an electrochemical working station (CHI 660C, CH Instruments Inc., China). A xenon lamp fitted with a cutoff filter to irradiate visible light (λ> 400 nm) was used as the light source. The power of xenon lamp was 400 W for the open-circuit potential and current-potential curves tests and 200 W for the PEIS analysis.

Vitality of biofilm

For confocal laser scanning microscopy (CLSM) imaging, the illuminated and unilluminated samples were transferred into an anaerobic glove box and immediately incubated in 50 mM phosphate buffer containing 1 % RedoxSensor™ Green reagent A (Invitrogen Co., USA) at 30 °C in the dark. After 1 h, the samples were gently rinsed with phosphate buffer to remove the unbound residual dye from the biofilm matrix. Then, the samples were covered with antifade solution and imaged with a
fluorescent microscope (FV1000, OLYMPUS Co., Japan). Z-series images were processed and analyzed with FV10-ASW at an excitation wavelength of 490 nm.

To measure the acetate consumption, the biofilm was developed on the α-Fe$_2$O$_3$ surface at +0.2 V. Then, the electrolyte was replaced with fresh medium containing 2 mM acetate. In order for the comparability of bioactivity between electrochemical cells, only the biofilms exhibited approximate dark currents were used in this experiment. The α-Fe$_2$O$_3$ layer was illuminated with the blended fluorescent mercury lamp at +0.2 V. Intermittent illuminations (dark/light, 15 min/15 min) were applied in order to prevent photochemical deterioration of the α-Fe$_2$O$_3$ layer. The acetate concentration in electrolyte was measured every 6 h. Amperometric i-t curves were integrated to calculate the coulombs of electric charge.

Scanning electron microscopy

Samples for environmental scanning electron microscopy (ESEM) were withdrawn from the electrochemical cells and crosslinked with 2.5% glutaraldehyde for 7 days at 4 °C. The samples were examined with a FEI ESEM (FEI Co., USA) at 20 kV under wet mode. The stage temperature was 280 K with a chamber pressure of 800 Pa to maintain a relative humidity of 80% for the sample. Samples for scanning electron microscopy (SEM) were crosslinked with 2.5% glutaraldehyde for 12 h at 4 °C. Then, the samples were serially dehydrated with ethanol of 30%, 50%, 70%,
80%, 95%, and 100%, each for 30 min. Finally, the samples were dried with hexamethyl disilylamine.

Conclusions

In this study, we provide evidences about the visible light-excited direct electron transfer from *G. sulfurreducens* cells to naturally-abundant Fe(III) oxide, α-Fe₂O₃, for microbial respiration and examine the physiological activity of *G. sulfurreducens* in this process. Our results suggest that light-driven, direct electronic communication between DMRM cells and the inorganic minerals is ubiquitous in the natural environment. Such an electron transfer provides a unique way of energy metabolism for DMRM species in nature, which expands our understanding about the diversity of microbial respiration and may have an important impact on the compositions and abundance of microbial populations, where dissimilatory iron reduction is feasible. In addition, the direct electron transfer from microorganisms to light-excited semiconductors suggests a great potential of utilizing photoanodes and non-phototrophic DMRM species for bioelectrochemical applications.

Acknowledgements

This work is partially supported by the Program for Changjiang Scholars and Innovative Research Team in University, China. We thank Prof. D. R. Lovley from
the University of Massachusetts for providing the bacterial strain used in this work.

Also, we thank Mr. Liuer Wu and Dr. Shijing Tan for helpful discussion.

Notes and references

Figure legends

Fig. 1 Electrochemical interface between *G. sulfurreducens* cells and α-Fe₂O₃. (a) Schematic diagram of the experimental architecture (not to scale) of the interface in our work. The electrochemical layers consisted of *G. sulfurreducens* cells, α-Fe₂O₃, and conductive ITO substrate. The arrow refers to the direction of electron flow; (b) Dynamics of anodic current during the cell layers development at poised potential +0.200 V vs. SHE; (c) The cross section of the α-Fe₂O₃/ITO electrode covered with layers of cell. Upward from the bottom: ITO glass, α-Fe₂O₃, and biofilm at the edge of electrode; (d) Mature cell layers on the α-Fe₂O₃ surface; (e) Cyclic voltammetry of active cells on an ITO electrode with acetate in the electrolyte. Different scan rates were applied to distinguish the polarized potentials-dependent catalytic currents and the reversible oxidation and reduction of cyt. c close to the ITO surface; and (f) Potentials transient decay after the cell/α-Fe₂O₃ was disconnected from the potentiostat. The tests were conducted twice and the results are identical.

Fig. 2 Photoelectrochemical characterization of the cell/α-Fe₂O₃ system. The mature cell layers developed on the α-Fe₂O₃ electrodes at +0.2 V were used for the tests. (a) Current profiles on illuminating the cell/α-Fe₂O₃ at +0.2 V. Repeated tests with three cell/α-Fe₂O₃ electrodes are shown; (b) I–V curves of the cell/α-Fe₂O₃ electrode under illumination and in the dark. Voltammetric tests were conducted from +0.6 V to -0.45 V at scanning rate of 0.5 mV/s. According to the redox potentials, charge transfer at the cells/α-Fe₂O₃ interface is suppressed (*Region I*), limited by the potential (*Region II*), or limited by cellular respiration (*Region III*). The differences between currents (i.e. photocurrents) vs. potentials were shown with violet dots; and (c) Photoelectrochemical impedance spectroscopy of the cell/α-Fe₂O₃ electrode under illumination and in the dark at +0.2 V. The frequency was changed from 100 kHz to 0.01 Hz with an amplitude of 10 mV. Chronoamperometry at +0.2 V was conducted before each test until reaching the steady state. This experiment was conducted with six replicates and the representative results are shown.

Fig. 3 The role of microbial catalysis in photocurrent production. (a) Current-potential curves of the biofilm/α-Fe₂O₃ electrode and α-Fe₂O₃ electrode under intermittent illumination. Voltammetry was conducted by varying the potential from -0.48 V to +0.66 V at 0.5 mV/s. The dotted line shows the dark current for the biofilm/α-Fe₂O₃ electrode. A xenon lamp, fitted with a cutoff filter to irradiate visible light (λ > 400 nm), was used as the light source. (b) Linear correlation between the acetate consumption during microbial respiration and the charge quantity passing through the cells-α-Fe₂O₃ interface. Intermittent illumination was applied in order to prevent possible photochemical deterioration of the α-Fe₂O₃ layer under long-time illumination as shown in Supplementary Fig. S6. Error bars indicate the standard error of the duplicate tests.
Fig. 4 Dependence of photocurrent on the respiration rate of *G. sulfurreducens* cells on α-Fe₂O₃ surface. (a) The photocurrent evolution profiles during biofilm development on the α-Fe₂O₃ surface at +0.200 V. Intermittent illumination was provided at 10-min irradiation and 80-min interval. A fluorescent mercury lamp was used as light source; B-D, Linear correlation of steady-state photocurrent to dark current contributed by the microbial respiration at (b) +0.000 V, n=152; (c) +0.200 V, n=122; and (d) +0.600 V, n=112. The values of dark current were collected before each illumination. 95% confidence bands are shown for each fitting.

Fig. 5 Physiological activity of *G. sulfurreducens* cells on the α-Fe₂O₃ surface under illumination. (a) UV-Vis absorbance of *G. sulfurreducens* biofilm on the α-Fe₂O₃ surface before and after illumination for 20 min. The cell/α-Fe₂O₃ system was kept in open circuit for 100 s to get fully reduced cells before each test. UV-Vis absorbance of the α-Fe₂O₃ layer and ITO had been deducted from the results; (b) Spatial configuration of cellular activities in the biofilms. The cells on the α-Fe₂O₃ surface were stained with RedoxSensor dye and the fluorescence intensity represented the (respiratory) reductases activity. The normalized fluorescence intensity at each sampling plane (parallel to the surface) was plotted to the distance from the α-Fe₂O₃ layer (Z = 0); (c) Typical 3D pattern of fluorescence intensity of cell layers on the illuminated α-Fe₂O₃ surface. The tests were repeated four times and the representative data are shown.

Fig. 6 Schematic diagram of charge transfer at the interface between cells and α-Fe₂O₃ under illumination. (a) Schematic diagram of charge transfer in the experimental set-up. Light with wavelengths below 563.4 nm is needed to effectively promote electrons into the Fe(3d) conduction band and leave holes in the O(2p) band. The *G. sulfurreducens* cells supply electrons to the both the holes on α-Fe₂O₃ surface and the Fe(3d) conduction band during acetate metabolism. The accumulated electrons in the conduction band were collected with an electrode. (b) mechanism of light-driven charge transfer in the environment with possible natural electron acceptors to collect electrons in the conduction band of α-Fe₂O₃.
Figure 1
Figure 2

- Panel a: Graph showing the change in current (µA) over time (minutes) under different lighting conditions (Dark, Light, Dark, Light).
- Panel b: Graph showing the relationship between total current (µA) and potential (E vs. SHE) under unilluminated and illuminated conditions.
- Panel c: Graph showing the impedance (Z') and Z'' (ohm) under unilluminated and illuminated conditions.

Legend:
- Unilluminated
- Illuminated
Figure 3
Figure 4
Figure 5
Figure 6

[Diagram showing the process of light-driven reduction of acetate to CO₂ with G. sulfurreducens.]