Cross polarization from 1H to quadrupolar 6Li nuclei for dissolution DNP

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Physical Chemistry Chemical Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>CP-ART-08-2014-003592.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>23-Sep-2014</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Perez Linde, Angel Joaquin; EPFL, LRMB Bornet, Aurélien; ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Institut des Sciences et Ingénierie Chimique Milani, Jonas; ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Institut des Sciences et Ingénierie Chimique Vuichoud, Basile; ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Institut des Sciences et Ingénierie Chimique Melzi, Roberto; Bruker Italia, Jannin, Sami; ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Institut des Sciences et Ingénierie Chimique; Bruker Biospin AG, Industriestrasse 26 Bodenhausen, Geoffrey; EPFL, Chemistry; ENS, ; Sorbonne Universités, INSA, ; CNRS UMR ,</td>
</tr>
</tbody>
</table>
Cross polarization from 1H to quadrupolar 6Li nuclei for dissolution DNP

Angel J. Perez Linde, Aurélien Bornet, Jonas Milani, Basile Vuichoud, Roberto Melzi, Sami Jannin and Geoffrey Bodenhausen

[1] Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
[3] Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
[4] Ecole Normale Supérieure-PSL Research University, Département de Chimie, 24 rue Lhomond, 75005 Paris, France
[5] Sorbonne Universités, UPMC Univ. Paris 06, LBM, 4 place Jussieu, F-75005, Paris, France
[6] CNRS UMR 7203 LBM, F-75005, Paris, France

to be submitted to PCCP

Cross polarization from protons to quadrupolar 6Li nuclei is combined with dynamic nuclear polarization of protons at 1.2 K and 6.7 T using TEMPOL as polarizing agent and followed by rapid dissolution. Compared to direct 6Li DNP without cross-polarization, a higher nuclear spin polarization $P(^6$Li) can be obtained in a shorter time. A double resonance 1H-6Li probe was designed that is equipped for Longitudinally Detected Electron Spin Resonance.

Keywords:

Hyperpolarization, Dissolution Dynamic Nuclear Polarization, Cross Polarization, Lithium-6, LODESR
Introduction. Dynamic Nuclear Polarization (DNP) combined with rapid dissolution (D-DNP) [1] usually focuses on nuclear spins like 13C or 15N that have long longitudinal relaxation times T_1 in moderate magnetic fields $B_0 > 1$ T. Rather surprisingly, some quadrupolar nuclei such as 6Li can also have sufficiently long relaxation times $T_1(^6$Li) in solution [1, 2]. Hyperpolarization of 6Li could provide new insights in clinical studies, bearing in mind that lithium salts are used to treat bipolar and depressive disorders [3]. In particle physics, DNP has been used to enhance the 6Li polarization of targets [4]. Polarizations as high as $P(^6$Li) = 71% have been obtained in small 6LiD crystals at very low temperatures (a few hundreds of mK), although the polarization build-up times τ_{DNP} can be several hours in $B_0 = 2.5$ T. High energy irradiation can be used to produce paramagnetic defects that act as polarizing agents in such crystals. It was also demonstrated [2] that 6Li could be polarized in a glassy matrix using the free radical TEMPO as polarizing agent in D-DNP experiments in much shorter build-up time $\tau_{DNP} = 7.5$ minutes at $T = 1.2$ K and $B_0 = 3.35$ T, although the polarization $P(^6$Li) = 7% was much lower than reported in 6LiD crystals. For carbon-13 spins, we have shown that high polarization levels can be obtained rapidly by first polarizing protons and using cross polarization (CP) in the manner of Hartmann and Hahn to transfer the polarization from protons to carbon-13 [5-10]. At $T = 1.2$ K and $B_0 = 6.7$ T we obtained $P(^{13}$C) = 71% in 20 min with a horizontal solenoidal coil that precludes rapid dissolution [6], and $P(^{13}$C) = 45% with vertical coils that are compatible with rapid dissolution [10].

In this Communication, we show how cross-polarization (CP) can also be used to obtain a high polarization $P(^6$Li) in a short time by using a suitable double resonance probe with two radio-frequency saddle coils in quadrature and an audio-frequency Helmholtz coil for Longitudinally Detected Electron Spin Resonance (LODES). DNP was originally predicted by Albert Overhauser and demonstrated on 7Li [11, 12]. Various mechanisms of the transfer of polarization can be considered in solids, both in static samples [13-22] and in samples undergoing magic angle spinning (MAS) [23, 24]. In DNP with 50 mM TEMPOL at 6.7 T and $1.2 < T < 4.2$ K, a combination of three mechanisms appears to be involved: the solid effect, the cross effect and thermal mixing [25]. The combination of CP [26] with DNP can enhance the hyperpolarization of low gamma nuclei [27], including some quadrupolar nuclei [28].

Adiabatic cross-polarization (ACP) [29, 30] is highly suitable for D-DNP experiments since it suffices to use low rf amplitudes to minimize arcing [5-10]. Like other CP schemes [31-33], the final nuclear spin polarization must be aligned with the magnetic field prior to dissolution. CP contacts can be achieved by applying simultaneous pairs of adiabatic inversion pulses using frequency sweeps with so-called ‘Wurst’ amplitude profiles [34]. The magnetization vectors follow the effective fields so that they end up aligned with the magnetic field. After an even number of contacts, the magnetization vectors are parallel rather than antiparallel with respect to the magnetic field. Pairs of pulses can be...

Figure 1. Pulse sequence used for cross-polarization (CP) in solids at low temperatures [5-7]. Both protons and 6Li nuclei are initially saturated by a series of 90° pulses (typically $n = 20$) spaced by 10 ms. Two nested loops (q inside m) are used, the inner loop to measure the polarization of 6Li with small 5° flip angles, and the outer loop (typically $m = 18$ with intervals of 10 s for samples at 4.2 K or 30 s at 1.2 K) to establish cross polarization contacts by simultaneously applying pairs of frequency-modulated inversion pulses. The EPR transitions are saturated throughout the experiment to induce DNP.
applied periodically to achieve a cumulative enhancement of the ^6Li polarization (Figure 1).

Experimental. The experiments were performed using a home-built polarizer operating at $B_0 = 6.7 \, \text{T}$ and $T = 1.2 \, \text{K}$ [8]. A dedicated probe was built with a 188 GHz wave-guide and an rf circuit for cross polarization from ^1H to ^6Li that is compatible with rapid dissolution.

The probe comprises two orthogonal saddle coils made of copper wire and immersed in liquid helium (see (1) in Figure 2b.) The 6 mm inner diameter saddle coil for ^6Li can be tuned and partly matched using a cryogenic trimmer capacitor with an extended shaft (2), in combination with American Technical Ceramics (ATC) chip capacitors. The trimmer capacitor shaft can be rotated from the outside with a rod (3) passing through a brass nut with a vacuum-tight O-ring (4). The nut was tightened at room temperature once the circuit was tuned. The ^6Li channel has a bandwidth of ca. 10 MHz, centred on the ^6Li resonance frequency of 41.97 MHz. The ^6Li coil...
presents two turns per wing of 0.4 mm diameter enamelled copper wire placed around a coil former of 6 mm diameter made of PTFE (5). The saddle coil for protons presents the same inner diameter and a length of 12 mm with one turn per wing made of 0.22 mm diameter enamelled copper wire. Partial matching was achieved with a 10 pF capacitor in series with this coil. The PTFE coil former (6) supports a coil for longitudinally detected electron spin resonance (LODESR) [35-37]. Lateral holes on this coil former (7) allowed the waveguide (8) to reach the central region where the NMR coils are placed (1). The Helmholtz coil (9) for LODESR [35] was made of 400 turns per wing of 0.10 mm diameter enamelled copper wire, placed on the LODESR coil former, and attached by means of a PTFE nut (10) to the NMR coil former. A brass platform (11) with a central hole (12) to accept the sample holder (13) and outer holes for the waveguide (8), wires (14), and holding screws (15) was used to support the NMR coil former. Spacers (16) were placed at regular distances along the vertical axis of the probe, to maintain the structure, to receive the Vetronite tube (17), cables (18, 19) and the waveguide, and to allow the tuning rod to rotate freely. The NMR, and LODESR coils were placed in a brass cavity to confine the microwave irradiation (20). The sample volume is 50 µl.

The tuning and matching box (21) was connected to the room-temperature end of the 1H cable (19) which is part of the tuning and matching system [38, 39]. The cable for 6Li (18) was connected directly to the filters before the preamplifier of a Bruker Avance II spectrometer. The isolation between the channels was -23 dB from 1H to 6Li, and -50 dB from 6Li to 1H. The flange at the top of the probe (22) was made of brass and held to the cryostat with a nut (23). Vacuum was made possible by compressing the waveguide, cables and rod with a nut against a flange (24) with O-rings. The sample was loaded from the top through the Vetronite tube [8]. The sample holder, which has a cylindrical symmetry and is made of PEEK, has inner and outer diameters of 3 and 5 mm respectively.

The 6 mm thin-walled waveguide (8) made of non-magnetic steel was connected to a mirror (25) to reflect the microwaves generated by a frequency doubler (100 mW at 188 GHz) connected to an Elva source (400 mW at 94 GHz). The orthogonal coils have good rf homogeneity [40]. The probe design presented here is distinct from other probes that have been developed for cross polarization at low temperatures, either without [41, 42] or with rapid dissolution [5, 7, 9, 10].

Microwave frequency modulation with a sweep range of 50 MHz and a modulation frequency of 10 kHz was used to improve the nuclear polarization and shorten the DNP build-up times of proton [43, 44]. The centre of the frequency modulation was set to 188.270 GHz to obtain the maximum (negative) polarization $P(\text{Li})$.

The adiabatic 180° Wurst inversion pulses [7, 10, 34] had bandwidths of 100 and 30 kHz for 1H and 6Li, respectively. The rf amplitude of the proton channel was set just below arcing (9 W, corresponding to an rf field of 10 kHz.) The rf amplitude of the 6Li channel was then optimized (14 W, rf field 10 kHz.) The lengths of both inversion pulses were 1.45 ms.

Figure 3. (a) Experimental build-up of $P(\text{Li})$ observed by direct DNP without cross polarization at 6.7 T and 4.2 K (red) with mono-exponential fit (black) and experimental build-up of $P(\text{Li})$ by indirect DNP combined with CP from 1H to 6Li (blue). (b) Decay of 6Li polarization to thermal equilibrium at 4.2 K in absence of irradiation (blue) with mono-exponential fit (black). The sample consisted of 4 beads of 10 µl each of 7 M 6Li-enriched lithium chloride LiCl with 50 mM TEMPO in 40:40:20 (v:v:v) ethanol-d$_2$:D$_2$O:H$_2$O with an extra bead of 10 µl of 3 M ascorbic acid in H$_2$O to quench the radicals during dissolution.
Short 5° pulses were used to measure the polarizations $P(\text{H})$ and $P(\text{Li})$ at low temperatures without causing significant losses. The DNP build-up times $\tau_{\text{DNP}}(\text{H})$ and $\tau_{\text{DNP}}(\text{Li})$ were measured at 4.2 and 1.2 K. The decay of the polarization $P(\text{Li})$ towards thermal equilibrium due to $T_1(\text{Li})$ relaxation was measured at 4.2 K and at room temperature after dissolution.

The sample consisted of 4 beads of 10 µl each of 7 M lithium chloride LiCl enriched in ^6Li with 50 mM TEMPO in 40:40:20 (v:v:v) ethanol-d_6:D$_2$O:H$_2$O, with an extra 10 µl bead of 3 M ascorbate to quench the radicals during and after dissolution [45].

When the temperature was lowered to 1.2 K the build up was significantly slowed down to $\tau_{\text{DNP}}(\text{H}) = 215$ s and $\tau_{\text{DNP}}(\text{Li}) = 2021$ s. Figure 4 (a) shows the experimental DNP-CP build up curve of $P(\text{Li})$. In this case the interval between CP contacts was 450 s. The polarization $P(\text{Li})$ obtained with DNP and CP was again 1.7 times higher than could be obtained by direct DNP. Comparing ^6Li signal intensities at thermal equilibrium at 4.2 K (with 32 pulses with 5° nutation angles each) with the maximum polarization obtained at 1.2 K, a maximum polarization $P(\text{Li}) = 20\pm 2%$ was measured.

Polarisation in the solid. The 90° pulse lengths were 7 µs for protons using 100 W and 6.75 µs for ^6Li using 100 W. The build-up and relaxation times at 4.2 K were $\tau_{\text{DNP}}(\text{H}) = 83$ s, $\tau_{\text{DNP}}(\text{Li}) = 543$ s and $T_1(\text{Li}) = 768$ s. In Figure 3(a) the build-up curves of $P(\text{Li})$ are compared for direct DNP and indirect CP-DNP, both at 4.2 K. A single CP contact established 180 s after presaturation provided a larger spin polarization $P(\text{Li})$ than could be achieved by direct DNP. A compromise delay of 180 s was chosen to allow the proton polarization to build up again before the next CP contact. After the third contact, the polarization $P(\text{Li})$ was 1.7 times higher than could be obtained with direct DNP. A train of 32 short 5° pulses were applied to measure thermal equilibrium with a sufficient signal-to-noise ratio at 4.2 K. Afterwards, a pair of adiabatic inversion pulses were applied to establish a CP contact, and 32 pulses were applied to determine $P(\text{Li})$. At 4.2 K, $T_1(\text{Li}) > 600$ s (10 minutes.) Dissolution does not cause significant losses of polarization $P(\text{Li})$.

Polarisation in solution. Once the sample achieved its maximum polarization $P(\text{Li})$ at 1.2 K, it was dissolved using 5 ml of overheated D$_2$O at 393 K at 1 Mpa. The transfer time was 7 s using a magnetic tunnel which extended from the polarizer to a 7 T Bruker (300 MHz) spectrometer. Measurements were started 60 s after dissolution. With short 5° pulses applied every 10 s during the decay of the polarization $P(\text{Li})$, a $T_1(\text{Li}) = 161$ s was measured in solution (Figure 4 b). By comparing the first spectrum taken after dissolution (one 5° pulse) with a spectrum taken in thermal equilibrium (64 scans with 90° pulses) at 7 T, the measured enhancement was $\varepsilon = 22000$ with respect to thermal equilibrium. The final concentration of LiCl was 56 mM.
ESR response. There are obvious advantages in monitoring the EPR response under the same conditions where DNP and CP are conducted [35-37, 46]. The two wires from the LODESR coil passed through a vacuum-sealed feed-through at the top of the probe, and were connected to a Stanford Research Systems low noise preamplifier (Model SR560). The presence of a Helmholtz coil surrounding the NMR coils did not significantly degrade the rf fields. A homemade Labview program controlled a NI USB-6211 DAQ, which was connected to the Elva microwave source for signal generation and also to the preamplifier for data acquisition [35-37]. An example of LODESR spectrum is given in Figure 5.

Figure 5. Longitudinally detected electron spin resonance (LODESR) spectrum of a sample of 12 mM DPPH in toluene, taken at 4.2 K. A TEMPOL spectrum obtained with this probe is shown in ref [34].

Conclusions. A high nuclear spin polarization $P(\text{Li})$ was obtained rapidly by combining proton DNP using adiabatic cross-polarization (ACP) from 1H to 6Li. The proton polarization prior to CP was estimated to be $P(\text{H}) = 76\%$ at 6.7 T and 1.2 K. A maximum polarization $P(\text{Li}) = 20 \pm 2\%$ was obtained at 1.2 K. Although the efficiency of CP was not ideal (a gain of 1.7 on $P(\text{Li})$ was obtained instead of the maximum which for 1H-6Li CP is 7, leaving an efficiency of $1.7/7 \times 100 = 24\%$), it was possible with a single CP contact to exceed the plateau that can be achieved by direct 6Li DNP without CP, at both 4.2 and 1.2 K in a few minutes. With direct DNP using microwave frequency modulation but no CP, a polarization $P(\text{Li}) = 11 \pm 1\%$ was achieved and 1.2 K. The relatively short $T_1(\text{Li})$ relaxation time in solution remains a limitation for clinical applications. A double resonance NMR probe has been constructed for CP at low temperatures using two NMR saddle coils in quadrature, suitable for CP, despite some rf inhomogeneity. The probe presented an rf tuning bandwidth of 10 MHz on the 6Li channel, with sufficient rf field strengths for efficient CP, i.e., 10 kHz on each channel for several ms without arcing. The cross polarization sequence using double inversion was found to be efficient for the quadrupolar 6Li nuclei. The choice of two coils in quadrature was a compromise to save space for some other features like LODESR. It has been demonstrated that despite the presence of a LODESR Helmholtz coil, an excellent proton polarization of 76% could be achieved.

Acknowledgements

The authors would like to thank Martial Rey, Bruker Biospin and the staff of the EPFL workshops André Fattet, Roger Motter and Frédéric Gümü for assistance. This work was supported by the Swiss National Science Foundation (SNSF), the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Swiss Commission for Technology and Innovation (CTI), the French CNRS, and the European Research Council (ERC) Advanced Grant 339754 “Dilute Para-Water”.

References

