This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Protonation induced shifting of electron-accepting center in intramolecular charge transfer chromophores and theoretical study†

Tao Tang, Hong Chi, Tingting Lin, FuKe Wang,* and Chaobin He,* a,b

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A new series of chameleonic molecules containing azulene and benzothiadiazole (BT) were designed and synthesized. In the neutral state, BT functions as electron accepting center, while under protonation, the electron accepting center shifts to azulene moieties, leading to a remarkable extension of absorption to NIR region, i.e. up to 2.5 um. The interchange between donor and acceptor characters upon protonation was confirmed by UV-vis-NIR spectra studies and supported by DFT calculation. Furthermore, HOMO-LUMO level of ICT chromophores could be finely tailored by different arrangement of azulenes and BTs in the molecules. The interchange between donor and acceptor characters upon protonation provides an alternative and yet effective approach to tune optical and electronic properties of NIR chromophores.

Introduction

Organic chromophores with narrow band gap have found many applications in near infrared (NIR) fluorophores, photovoltaics, NIR photo-detectors/optoelectronics, and space telecommunications. Several approaches have been devised to narrow the band gap of chromophores, such as increasing the conjugation length, using electron donors (D) and acceptors (A), and reducing the bond-length alternation of the conjugated backbones. Among these strategies, the incorporation of D/A moieties to conjugated system is by far the most effective to tailor the optoelectronic properties of organic chromophores, since the combination of an electron-rich donor and an electron-deficient acceptor results in a comparable degrees of charge separation in the electronic ground state, and the intramolecular charge transfer (ICT) excited state reduce the excitation energy. In this way, the optical and electric properties can be tailored by judicious design of the donor and acceptor structures. For instance, molecules with triarylamines are most often used as electron donors. Electron withdrawing groups/units such as cyanoacrylic acid and rhodanine-3-acetic acid, tetracyanoethene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) with several cyano groups are widely used as electron acceptors. However, most of the electron acceptors in the reported ICT system are weak or moderate electron withdrawing groups/units, which limit their abilities to extend absorption spectra to above 1 µm. Recently, we showed that azulene was a powerful electron-acceptor upon protonation, and a series of azulene containing polymers with tunable NIR absorption up to 2.5 um upon protonation have been reported. In our previous work, we surprisingly found that the coupling of either electron donating moieties such as benzothiadiazole (BT) with azulene lead to similar ICT effect. The expected hypsochromic effect induced by the strong electron-accepting BT was not observed.

Scheme 1 Chemical structures of the azulene-containing conjugated compounds.

To gain insight into the ICT effect in BT-azulene system, and to find a new way to fine tuning the HOMO-LUMO band gap of the ICT chromophores, we herein report the design and synthesis of a new series of ICT systems which contain both azulene and BT as shown in Scheme 1. In neutral state of azulene and BT based systems, BT functions as electron-acceptor due to the existence of heteroatom interaction and azulene acts as electron-donor. Therefore, electron drift occurs from azulenes to BTs in the azulene-BT conjugated molecules. However, when azulene was protonated and became azulenylium ion, the electron-accepting center moves to the protonated azulene, leading a new
ICT system. The shifting of electron accepting center induced by protonation explains the hypsochromic shift for BT-azulene containing polymer. Due to the extreme strong electron accepting characteristic of azulenylium ion, the main absorption could be extended to the telecommunications region, i.e. between 1300 nm to 2000 nm, which allows the chromophores to be used in NIR switching and space communications. Furthermore, it provides an alternative and effective approach to tune optical and electronic properties of chromophores. Generally, the functions of donor and acceptor for most reported NIR organic chromophores are fixed and not interchangeable. In our approach, we showed a simple way to build organic chromophore with chameleonic properties. That is, its optical properties can change with the environment characteristics. The protonation can shift its electron accepting center and thus lead to a remarkable optical properties change. Therefore, the systematic experimental and theoretical study of the optical properties of BT-azulene systems open a new way to build chameleonic molecules, as well as a better understanding of the ICT effect.

Experimental

Materials

Azulene (99%), 3-bromothiophene (97%), tri(o-toly)phosphine and magnesium turnings were purchased from Alfa Aesar. Pd(dpdpf)Cl$_2$, N-Bromosuccinimide (97%), 1-bromododecane (97%), 2,1,3-Benzothiadiazole (98%), bis(pinacolato)diboron (99%) and potassium acetate (99%) were purchased form Aldrich. Ni(dpdpf)Cl$_2$ and n-BuLi were purchased from Acros Organics. Compounds such as 3-alkyl-thiophene, 3-alkyl-2-bromothiophene, 1,3-Bis[2-(3-n-dodecylthiophenyl)]azulene, 1,3-Dibromo-[2-(3-dodecylthienyl)]azulene and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaboralanyl-2-yl)-2,1,3-benzothiadiazole were prepared as depicted in the literatures with minor modifications. Tetrahydrofuran (THF) was distilled from sodium benzenophene ketyl solution. Other commercially available solvents and reagents were used as received.

Computer Simulations

All calculations were performed with the Gaussian 09 program employing the Becke Three Parameter Hybrid Functionals Lee–Yang–Parl (B3LYP) in conjunction with the 6-31G(d) basis set. Full geometry optimizations without symmetry constraints were carried out in the gas phase for the singlet ground states (S$_0$). The energies of highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and other frontier orbitals were calculated at the optimized structure. The first fifty singlet–singlet transition energies and oscillation strengths for BTAszs were computed at the optimized S$_0$ geometries by using the time-dependent DFT (TD-DFT) methodology. The excited states were calculated at the optimized ground state geometry using TD-DFT and at the same level of theory as ground state geometry optimization.

Synthesis of compounds

Scheme 2. The synthesis of the conjugated compounds.

1,3-bis(phenyl)[1,2,5]thiadiazol-4-yl)azulene (BTAz-1). To a two necked 50 ml RBF was added 1,3-dibromoazulene (1, 0.172 g, 0.6 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaboralanyl-2-yl)-2,1,3-benzothiadiazole (2, 0.33 g, 1.26 mmol), 8 ml of toluene, 4 ml of Na$_2$CO$_3$ solution (2 M), and 1 drop of Aliquat 336 under argon protection. The mixture was then vacuum degassed through several freeze-pump-thaw cycles for half hour. Catalytic amount of Pd(PPh$_3$)$_2$ (3.6 mg, 0.00312 mmol) was added and one more freeze-pump-thaw degas cycle was applied. The mixture was then transferred to an oil bath and stirred and refluxed at 100 °C for 24 hours. After cooling, the reaction mixture was extracted with toluene and the organic layers were collected, washed with water (three times) and dried over magnesium sulfate. After filtration, the volatile toluene was removed through rotary evaporator. The crude product was chromatographed on silica gel using hexane/DCM (4/1, v/v) as eluent followed by recrystallization from DCM to afford the title compound (64%) as brown powders. 1H-NMR (δ, CDCl$_3$): 8.89 (s, 1 H), 8.63 (d, 2 H), 8.04 (d, 2 H), 7.85 (d, 2 H), 7.79 (t, 2 H), 7.73 (t, 1 H), 7.30 (t, 2 H). 13C NMR: δ 156.1, 155.2, 141.3, 139.8, 138.9, 136.8, 130.7, 130.1, 129.8, 126.2, 125.3, 120.1. HRMS(APCI): calcd for C$_{32}$H$_{26}$N$_2$S$_6$, m/z 397.0537; found, m/z 397.0576.

1,3-bis(phenyl)[1,2,5]thiadiazol-4-yl)azulene (BTAz-2). To a two necked 50 ml RBF was added 1,3-Dibromo-[2-(3-dodecylthienyl)]azulene (4, 0.6 g, 0.76 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaboralanyl-2-yl)-2,1,3-benzothiadiazole (2, 0.42 g, 1.6 mmol), 8 ml of toluene, 4 ml of Na$_2$CO$_3$ solution (2 M), and 1 drop of Aliquat 336 under argon protection. The mixture was then vacuum degassed through several freeze-pump-thaw cycles for half hour. Catalytic amount of Pd(PPh$_3$)$_2$ (4.5 mg, 0.0039 mmol) was added and one more freeze-pump-thaw degas cycle was applied. The mixture was then transferred to an oil bath and stirred and refluxed at 100 °C for 24 hours. After cooling, the reaction mixture was extracted with toluene and the organic layers were collected, washed with water (three times) and dried over magnesium sulfate. After filtration, the volatile toluene was removed through rotary evaporator. The crude product was chromatographed on silica gel using hexane/DCM (8/1, v/v) as eluent followed by recrystallization from hexane to afford the title compound (76%) as dark red color. 1H-NMR (δ, CDCl$_3$):
The mixture was then vacuum degassed through rotary evaporator. The volatile CHCl₃ solution; 50 ml water (three times) and dried over magnesium sulfate. After filtration, the crude product was purified by silica gel chromatography using hexane/DCM (20/5, v/v) as eluent. This was obtained as yellow oil (65%). ¹H-NMR (δ, CDCl₃): 8.52 (d, 2 H), 8.41 (d, 2 H), 7.96 (s, 2 H), 7.68 (t, 2 H), 7.51 (s, 1 H), 7.37 (d, 2 H), 7.32 (s, 2 H), 7.23 (m, 4 H), 7.11 (d, 2 H), 4.22 (m, 4 H), 2.61 (m, 1 H), 1.25 (m, 9 H), 0.98 (t, 8 H), 0.88 (m, 16 H). ¹³C NMR: δ 144.4, 142.0, 141.1, 140.5, 139.5, 139.2, 137.2, 137.1, 136.5, 133.2, 132.8, 129.4, 127.8, 124.9, 124.4, 122.7, 121.7, 115.8, 41.1, 32.3, 31.3, 30.9, 30.1, 29.8, 29.6, 29.4, 24.3, 23.6, 23.1, 14.6, 14.5, 11.8.

HRMS(APCI): calcd for C₁₆H₁₄O₂S₂ m/z 1700.0307; found, m/z 1700.0346.

Results and discussion

The general synthetic procedure for our ICT molecules and controlling molecules is shown in Scheme 2. BTAz-1 was synthesized via Suzuki Coupling between 1,3-dibromoazulene (1) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,1,3-benzothiadiazole (2). Bromination of 1,3-alkythienyl-azulene (3) in solution of chloroform and acetic acid (1:1 v/v) gave compounds 4 and 5, controlled by the ratio of N-bromosuccinimide (NBS) to compound 3. Because compound 5 is unstable in air, the coupling reactions of 5 with 2,1,3-Benzothiadiazole-4,7-bis(boronic acid pinacol ester) (6) or 7 were carried out immediately after compound 5 was purified through flash column chromatography, giving compound BTAz-3 and BTAz-4 in good yield. Similarly, BTAz-2 was obtained from reacting 4 with 2. The chemical structures of compounds were identified by ¹H NMR, ¹³C NMR and HRMS (ESI †).

The push-pull configuration containing alternating electron-rich donor (D) and electron-deficient acceptor (A) along the conjugated backbone is an effective way to obtain narrow band gap chromophores. The incorporation of D/A units in the occurrence of dual-band absorption, and the respective long-wavelength band is attributed to the charge redistribution and low-energy charge-transfer transitions from donor to acceptor.

As shown in Scheme 1, three ICT systems (BTAz-1-3) containing both BTs and azulenes (BTAzs) were designed. In these molecules, BTs function as electron acceptors while azulene functions as electron donors in neutral state. BT is widely used in various light-harvesting materials and optoelectronic devices because of its good electron-accepting capability due to its heterocyclic group and the observed low band gap in oligomers/polymer containing it. ²⁸ BT could be protonated in acid solution due to its nitrogen atom. Normally, the protonation ability of molecules can be determined by the computed pKa value. ²⁹ Here, the protonation ability of BT in different acid condition was studied by UV-vis spectrum (ESI †). The spectrum indicates BT is protonated in concentrated sulfuric acid rather than that in TFA. ³⁰ Interestingly, upon protonation, azulenes are converted to azulenylium ions, which function as new electron-
accepting center in the ICT system. This effectively shifts the electronic accepting center from BTs to azulenes. Azulene is a polar resonance-stabilized non-alternant hydrocarbon with a large dipole moment around 1 D. Electrophilic substitution at C-1 or C-3 in the 5-membered ring of azulene can occur easily to form a very stable aromatic 6π-electron azulenylium ions. Upon protonation, proton is confined in azulene unit, which makes azulene a very strong electron acceptor. Therefore, the electron accepting center shifts from BTs to azulenylium in the ICT molecules upon protonation yield lower energy band gap chromophores with absorption up to middle IR region (2500 nm).

To further confirm the ICT effect and verify the shifting of electron accepting center upon protonation, control molecule BTATB without obvious electron push-pull characteristic and compound BTAz-4 containing benzo-dithiophene (BDT) were also synthesized as comparison as shown in Scheme 1. The BDT unit, which is assumed an entirely planar and symmetrical structure with electron-donating alkoxy group, is more electron rich than donor such as fluorene, thiophene or carbazole, thus promising to be used in DOA system.

As shown in Fig. S2 (ESI †), UV-vis spectrum of compound BTAz shows a main absorption at 320 nm, which was assigned to π-π* transition of the conjugated oligomer. However, due to the ICT effect in compounds BTAzs, BTAz-1 showed a main absorption at 440 nm (Fig. 1). Compared with BTATB, there is about 120 nm red shift, although the conjugated length of BTAz-1 is obviously shorter than that of BTATB. Similar conclusion can be obtained if we compare the UV-vis spectra of BTAz-1 and BTAz-4. Substitution of BT with the strong electron donating BDT in compound BTAz-4 leads to no apparent ICT interaction, and thus a blue shift of absorption of BTAz-4 to 433 nm was observed. Interestingly, we note that BTAz-3 shows a remarkable red shift than BTAz-2. This could be attributed to different D/A arrangement. BTAz-2 has an A-D-A structure while a D-A-D structure can be found for BTAz-3. Therefore, the electron-rich thiophene-azulene moieties in BTAz-3 facilitate the charge transfer process as electron donors, and thus the D-A-D structure has a stronger charge transfer than A-D-A structure in BTAz-2 as literature reported previously.8,43

More significant phenomenon was observed when these monomers were treated with 30% TFA solution. For instance, BTAz-2 showed two newly formed absorption bands with maxima at 585 and 1344 nm upon protonation (Figure 2a). An additional shoulder at approximately 1150 nm was also observed. The newly formed long wavelength absorption band (~1300 nm) could be attributed to the low-energy transfer occurring from the ground state (S0) to a charge-separated state (CT). Meanwhile, the absorption in the range of 500 to 1000 nm can be assigned to the electron transfer (ET) in a strong D-A interaction. The excited CT states and ET can both be populated by photo-initiated process.45

Compared with BTAz-2, BTAz-1 showed less striking spectra change upon protonation. As shown in Fig. 2a, only a weak transition from S0 to CT with absorption at around 950 nm can be observed for BTAz-1 upon protonation. Two main reasons may lead to the weak long wavelength absorption. Firstly, BT is intrinsically an electronic acceptor and quite often used as acceptor in ICT molecules. When azulene was protonated to form azulenylium ion which is a strong electronic acceptor, BT would be “forced” to become a weak electron donor in protonated BTAz-1. Secondly, the weak ICT transition could also be attributed to the structure of BTAz-1, in which BTs and azulene are connected together directly without spacing. As can be seen from Scheme 1, there is no π-spacer between BTs and azulene. Upon protonation, the photoinduced changes in the dipole moment would not be significant, which leads to weak ICT interaction between BTs and azulenylium ion. This was
confirmed by our density functional theory (DFT) calculation, which showed that the dipole moment of protonated BTAz-1 (6.0) is much smaller than that of protonated BTAz-3 (25.5). When comparing the UV-vis-NIR spectra of protonated BTAz-2 and BTAz-3, it is shown that BTAz-3 exhibits a remarkable red shift and enhanced charge transfer, with maximum absorption centers around 2300 nm upon protonation. This could be attributed to the D/A function conversion and the formation of a new ICT transition. For neutral compound BTAz-3, obvious ICT transition can be observed with major absorption at 520 nm as shown in Fig. 1, which has been attributed to the D-A-D ICT structure. Upon protonation, one of the azulene was converted into azulenylium ion, forming a stronger electron acceptor. Due to the charge repulsion, it is hard to further protonate the second azulene unit in protonated BTAz-3. The un-protonated azulene will remain as electron donor as shown Scheme 3. Compared with the powerful electron-accepting azulenylium ion, previous electron-accepting BT unit now mainly functions as π-spacer /linkage in the newly formed ICT system. That is to say, electron drift only occurs from thiophenes and un-protonated azulene to azulenylium ion. Thus, the lengthening of the π-conjugated spacer between donor and acceptor, together with the strong electron donor and acceptor interactions result in a great increase in transition dipole in excited state (25.5 based on DFT simulation), leading to the bathochromic shift of the ICT absorption band of protonated BTAz-3.

To further confirm this hypothesis, a control molecule BTAz-4 as shown in Scheme 1 was designed and synthesized. In BTAz-4, benzo-dithiophene (BDT), a strong electron donor, was coupled between two azulene units by replacing BT in compound BTAz-3. Since both azulene and BDT have electron-donating properties, no obvious ICT effect was found in neutral BTAz-4 as shown Fig. 1. Upon protonation, one of azulene unit changed to a strong electron acceptor, protonated BTAz-4 became an apparent ICT system, in which both the remaining un-protonated azulene and BDT functioned as electron donors and the newly formed azulenylium ion functioned as electron acceptor. In addition, as BDT is more electron rich than azulene, the electron transfer likely occurs mainly from BDT to azulenylium ion. Therefore, charge separation in protonated BTAz-4 would be less effective than that of BTAz-3, and thus hypsochromic shift is expected for protonated BTAz-4 compared to BTAz-3. This was confirmed by our experiment as shown in Fig. 2b. A clear hypsochromic shift for protonated BTAz-4 can be observed.

Further confirmation regarding our hypothesis comes from Fig. 3 Spatial distributions of the calculated HOMOs and LUMOs of model compounds BTAz-3 at different degree of protonation: neutral and protonation.

DFT study of BTAzs, in which the spatial distributions of the HOMOs and LUMOs could be obtained (See Fig. 3 and ESI †). DFT calculations agree well with the spectral differences observed experimentally between neutral and protonated states. DFT calculation indicates that protonation process increases the dihedral angle between the thiophene and azulene ring, resulting in a transition from sp2 carbon to sp3 carbon. The HOMO in neutral BTAz-3 is delocalized on the whole conjugated molecule, while LUMO is mainly delocalized on BT moiety. Upon protonation, HOMO in protonated BTAz-3 is mainly delocalized on azulene-thiophene section, and LUMO is delocalized on the azulenylium ion. BT in protonated BTAz-3 acts as a π-conjugated spacer. This explains the large charge separation for protonated BTAz-3, and the remarkable spectra change of BTAz-3 upon protonation. Similar electron density change before and after protonation for BTAz-2 can also be found from the DFT simulation (See ESI †). For protonated BTAz-4, HOMO is mainly delocalized on BDT and azulene, while LUMO is mainly localized on the azulenylium ion. Compared with protonated BTAz-3, an obvious shorter π-conjugated spacer can be observed in protonated BTAz-4.

In order to fully understand the occurrence of two newly appearing peaks in BTAz-2, BTAz-3 and BTAz-4, Time dependent (TD)-DFT calculation of excitation energies and oscillation strength was done (ESI †). The first 50 singlet-singlet transition energies were calculated for BTAzs under neutral and protonated states and protonated states will be discussed in details. For the excitation energy with oscillator strength (f) less than 0.0001, the possibility of related excited state is quite small and thus would not be considered. The calculated maxima absorption for neutral BTAz-2, BTAz-3 and BTAz-4 appears at 460 (+16 nm compared to the experimental data of 444 nm), 483 (-37) and 463 (+30) nm, with calculated oscillator strengths of 0.24, 0.08 and 1.60, respectively, which agree well with the experimental data (Fig. 1).

For protonated compounds, the calculation showed two main absorptions that are similar to our experimental results (Fig. 2). For example, only two main absorptions that processing high oscillator strength (f) were found for protonated BTAz-2 at 980
and 525 nm, similar to the UV-vis-NIR spectra of protonated BTAz-2 (Fig. 2). Same conclusion can be found in the simulation of protonated BTAz-3, in which two wavelengths with high oscillator strength were found at 3242 and 765 nm. For protonated BTAz-4, four new peaks with high oscillator strength were found at 4188, 2379, 1665 and 817 nm. Wavelength of 4188 nm is out of our measurement limit, while both wavelength 2379 and 1665 nm are in one experimental observed broad peak for protonated BTAz-4. Although the calculated values for protonated compounds are not matched well with experimental data as observed for neutral ones due to the difference between simplified simulation conditions and complicated real protonation process, the simulation results gave a clear conclusion. That is, two new groups of absorption bands were appeared at longer wavelength upon protonation, with the lowest energy transition mainly derived from a combination of the HOMO→LUMO, HOMO-1 → LUMO and HOMO → LUMO+1, and the new absorption in the visible range derived from HOMO-3→LUMO+1 excitation. In addition, according to the calculation, the numbers of accessible excited states for protonated BTAz-3 and BTAz-4 are much larger than that of BTAz-2. This explains why protonated BTAz-3 and BTAz-4 exhibited quite broad peaks that caused by large number of possible energy CT transitions.

Conclusions

In summary, we reported a series of chameleonic conjugated molecules containing azulenes and BTs, which showed protonation induced shifting of the electron accepting center and led to remarkable enhancement of the NIR absorption up to 2500 nm. Both the UV-vis-NIR and DFT calculation showed that BTs function as electron accepting center in the neutral molecules. However, the electron accepting center shifted to azulenylium ion upon protonation. The ICT transition was influenced by both the arrangement of the donors and acceptors, and the π-conjugated space between the donors and acceptors. This allows a facile way to fine-tune the HOMO-LUMO energy level of the ICT organic chromophores.

Acknowledgements

We acknowledge financial support of this work from the Science and Engineering Research Council (Grant 1123004024) of Agency for Science, Technology and Research of Singapore. T.T. also acknowledges scholarship support from National University of Singapore. DFT calculation was supported by the A*STAR Computational Resource Centre through the use of its high performance computing facilities.

Notes and references

1 Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576. E-mail: mshch@nus.edu.sg
2 Department of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, 117602. Tel: 65 6874 8111; E-mail: wangfj@imre.a-star.edu.sg; cb-he@imre.a-star.edu.sg
3 Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/
‡ Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.
