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We developed a double–quantum mechanical/molecular mechanical (d-QM/MM) method for investigation of full outer–sphere

electron transfer (ET) processes between donor and acceptor (DA) in condensed matter. In the d-QM/MM method, which

employs the novel concept of multiple QM regions, one can easily specify number of electrons, spin states and appropriate

exchange–correlation treatment in each QM region, which is especially important in cases of ET involving transition metal sites.

We investigated Fe2+/3+ self-exchange and Fe3+ + Ru2+ → Fe2+ + Ru3+ in aqueous solution as model reactions, and demon-

strated that the d-QM/MM method gives reasonable accuracy for the redox potential, reorganization free energy and electronic

coupling. In particular, the DA distance dependencies of those quantities are clearly shown at the density functional theory hy-

brid functional level. The present d-QM/MM method allows us to explore the intermediate DA distance region, important for

long–range ET phenomena observed in electrochemistry (on the solid–liquid interfaces) and biochemistry, which cannot be dealt

by the half–reaction scheme with the conventional QM/MM.

1 Introduction

Redox processes – that is, electron transfer (ET) processes –

play crucial roles in diverse topics related to energy, environ-

mental and biological issues; catalysis; development of bat-

teries, fuel cells, and solar cells; corrosion; and respiration

and photosynthesis. The ET processes involve donor and ac-

ceptor (DA) components in condensed–matter systems such

as solutions, solid-liquid interfaces, or a group of biologi-

cal molecules. Typically, transition metal atoms are present

as the DA centers. Although many macroscopic applications

employing redox processes have been developed, the under-

standing of ET processes at the atomic and electronic scales

remains an issue of great importance. The microscopic im-

plications enable us to design more efficient systems and thus

computational methods that can deal with them quantitatively
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are desirable. Here, the DA distance dependencies of the re-

dox free energy and the reorganization free energy are the key

issues of interest.

As a theory of ET processes, in particular for the outer–

sphere ET, Marcus developed the parabolic free–energy con-

cept under the linear–response approximation with respect to

the collective solvent response around the DA sites1,2. This al-

lows us to calculate the redox and reorganization free energies,

which predict the free energy barrier and thus the reaction rate

of the ET process. The theory predicted the presence of an

inverted region of ET reactions, which was later observed in

experiments3. The formulation was extended to more general

”energy gap” reaction coordinate2,4 and a number of pioneer-

ing classical molecular dynamics (MD) studies5–8 on the ET

between aqueous metal ions have been carried out based on

Marcus’ theoretical concept. However, the accuracy of such

calculations largely depends on the quality of the force–field

potential and its parameters9–12. The empirical potential is al-

ways a bottleneck for quantitative calculations, and a quantum

mechanical description of at least DA centers is desirable.

To overcome the parametrization problem and increase the

accuracy of calculations, density functional theory (DFT) to-

gether with MD sampling techniques was used to calculate

the redox and reorganization free energies of different ET re-

actions13–16. These works are based on the half–reaction com-

putational scheme, in which the donor and acceptor, in contact

with the hypothetical electron reservoir, are treated separately.

However, this approach is applicable only to dilute limit stud-
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ies, and different charges of calculated systems (D vs. D+ and

A vs. A−) require careful treatment of energy that should be

aligned to a common reference.

Recently, several DFT–based approaches dealing with full–

ET reaction in one simulation box have been developed17–20.

In these approaches, a constraint of the electronic Hamilto-

nian was introduced to deal with charge redistribution in the

initial (DA) and final (D+A−) states of the ET reaction. Yet,

these calculations are limited by the high demands of the DFT

treatment, and adjustment of the constraint still involves some

ambiguities. For the latter issue, methods with intrinsic frag-

mentation of the system may be an appropriate alternative21.

As an alternative to the very demanding DFT treatment of

the whole system, a combined quantum mechanical/molecular

mechanical (QM/MM) technique keeping an accurate quan-

tum mechanical description of DA sites was proposed22,23.

Zeng et al.23 developed a QM/MM MD method with a frac-

tional number of electrons and demonstrated its feasibility for

the ET process between Fe2+ and Ru3+ cations in aqueous so-

lution. However, this QM/MM approach is basically limited

to the half–reaction computational scheme because the QM

region is usually defined as donor in one simulation box and

acceptor in another. While the reorganization free energy is

simply sum of the donor and acceptor contribution in the di-

lute limit, their mutual interaction becomes important in the

intermediate DA distance region. To investigate this impor-

tant region directly by simulation, the full–reaction scheme is

necessary. Although some attempts were made to partition

the system into more than one QM region surrounded by a

MM environment24–26, these methods were never applied to

ET processes.

In this article, we present a double–QM/MM (d-QM/MM)

method with independent QM parts that is designed for in-

vestigation of intermediate–distance region of outer–sphere

donor–acceptor ET reactions in condensed matter using a

full–reaction scheme. Note that there are two regimes on

the ET processes; the inner–sphere ET with donor–acceptor

binding where wavefunction is delocalized over DA and the

outer–sphere ET described by Marcus theory, and we focus

on the latter in this work. The d-QM/MM method allows

us to easily specify the number of electrons in the donor

and acceptor regions, clearly define their spin states, and

choose the most proper exchange–correlation treatment for

their charge densities. The donor–acceptor distance dependen-

cies of all ET quantities such as the redox potential, reorgani-

zation free energy, and electronic coupling can be evaluated

at the first principles level with d-QM/MM. Then, we demon-

strate the accuracy and performance of the d-QM/MM method

on Fe2+/3+ cations self–exchange and ET between Fe2+ and

Ru3+ cations in aqueous solution, two well known model re-

actions6,17,23,27–29. On the basis of these results, we suggest

that the d-QM/MM method can be an efficient and reasonably

accurate approach for investigation of distance–dependent ET

processes such as reactions at solid–liquid interfaces, which

are important in heterogeneous catalysis.

2 Theory

In this section we provide brief description of the QM/MM

method and introduce its generalization for system partition-

ing with more than one separated QM part, which we call

multiple–QM/MM (m-QM/MM). We briefly review Marcus

theory of electron transfer in the linear–response approxi-

mation together with the energy gap reaction coordinate ap-

proach, which provides useful formulas for calculating the re-

dox free energy and reorganization free energy by MD sam-

pling techniques. Finally, we describe calculation of elec-

tronic coupling under the two–state approximation since the

coupling value is used here to estimate the ET rate constant.

2.1 Hybrid QM/MM Computational Technique

Quantitatively accurate description of ET processes requires

treating donor and acceptor at the QM level of theory. How-

ever, QM calculations are very demanding, and therefore the

combined QM/MM method30 provides an alternative that can

be used to reduce computational cost while keeping reason-

able accuracy. This is achieved by spatial partitioning of a

computational model into an inner part (also often called the

QM region, Fig. 1a) and an outer part parametrized by a MM

force field. The total QM/MM energy of such a divided sys-

tem can be formally written as the sum of contributions from

both parts and their mutual interaction:

EQM/MM(S) = EMM(O)+EQM(I)+EQM−MM(S). (1)

where we denote the inner part as I, the outer part as O, and

the whole system as S = I +O. The last term in Eq. 1 repre-

sents coupling between the parts of the system, and its correct

description is crucial for the QM/MM method. However, the

total energy can also be reformulated in the so–called subtrac-

tive energy scheme:

EQM/MM(S) = EMM(S)+EQM(I)−EMM(I). (2)

where the coupling of the inner and outer parts is implicitly in-

volved in subtraction of the MM energy of the inner part from

the total MM energy of the whole system31. This definition

does not require detailed knowledge about the construction of

the MM potential, and so it provides a convenient way for cou-

pling external QM and MM program codes. For this reason,

we use the subtractive energy formula in the rest of the paper.

In studying outer–sphere ET processes with well–separated

donor and acceptor, it is desirable to partition the system into

two inner parts, one for the donor and one for the acceptor,
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Fig. 1 Schematic illustration of QM/MM partitioning: (a) conven-

tional QM/MM where the whole system S is divided into QM inner

part (I) and MM outer part (O), (b) double–QM/MM method with

two inner parts surrounded by common outer part. The charge layers

(CL) used for electrostatic embedding are shown as green regions.

surrounded by the common outer part. Therefore we general-

ized Eq. 2 to m-QM/MM with N inner parts:

EQM/MM(S) = EMM(S)+
N

∑
i=1

[EQM(Ii)−EMM(Ii)] . (3)

Here we assume that the individual inner parts are not interact-

ing covalently with each other; however, all nonbonding inter-

actions between the inner parts are taken into account. Forces

acting on each atom in system S, which are needed for geom-

etry optimization or MD, can be obtained by differentiation of

total energy (3) with respect to the space coordinates:

FQM/MM(S) =−∇EMM(S)+

+
N

∑
i=1

[∇EMM(Ii)−∇EQM(Ii)] ·Ji

(4)

The Jacobian matrix Ji in Eq. 4 transforms the forces from the

i-th inner part into the coordinate system of the whole model

S. This matrix is trivial if there is no chemical bond crossing

the boundary between the inner and outer parts.

While the short–range van der Waals interaction is usually

described sufficiently well by the MM force field, there are

basically two ways to treat the long–range electrostatic in-

teraction. One way, called mechanical embedding, evaluates

the Coulombic contribution as a pair interaction between the

MM point charges that are assigned to all atoms in the sys-

tem. This approach requires assigning charges to all atoms in

the QM parts. The charge densities of these regions are ef-

fectively calculated in a vacuum on geometries extracted from

the QM/MM model. To provide a more realistic description,

electrostatic embedding can be used where the Coulombic in-

teraction between the inner and outer parts is evaluated at the

QM level by inserting MM atomic charges into the QM Hamil-

tonian,

Ĥe.embd.
QM = ĤQM +

N

∑
i=1

∫

Ziρ(r)

r
dr. (5)

The resulting charge densities now reflect their electrostatic

environment and are appropriately polarized. The m-QM/MM

method with both mechanical and electrostatic embedding

AR AP

λ

λ

∆A

∆A‡

ξR ξT ξP ξ

F
re
e
en
er
gy

Fig. 2 Marcus parabolic free energy surfaces of reactant (AR) and

product (AP) with indicated redox free energy ∆A, reorganization free

energy λ and the free energy barrier ∆A‡ of outer–sphere ET reaction.

was implemented in our new software, called QMS (see Sup-

porting Information for details).

2.2 Electron Transfer Theory

Marcus theory provides the basic theoretical description of

electron transfer reactions in the linear–response approxima-

tion. The free energy surfaces of the donor and acceptor are

assumed to have parabolic shapes with the same curvatures

(schematically shown in Fig. 2). The redox free energy, or

driving force, of an ET reaction (∆A) is the free energy differ-

ence between the reactants and products of the reaction,

∆A = AP(ξP)−AR(ξR). (6)

The curvature of the parabolas, i.e., the steepness of the free

energy surface around minima, is described by the reorganiza-

tion free energy λ , which is the energy needed for relaxation

of the system when nonadiabatic Frank–Condon ET transition

between two surfaces occurs:

λ = AP(ξR)−AP(ξP) = AR(ξP)−AR(ξR). (7)

This relatively simple description leads to the well–known

Marcus formula for activation free energy

∆A‡ =
(∆A+λ )2

4λ
. (8)

From a computational viewpoint, it is convenient to define

the reaction coordinate of the system as an energy gap between

the initial and final states, ξ = ∆E(RN) = EP(R
N)−ER(R

N),
as first introduced by Warshel4. ER and EP might be the re-

duced state and oxidized state, respectively, of a species in the

half–reaction formalism, or DA and D+A− pairs in the full re-

action approach. The gap is evaluated on identical structure

coordinates RN and the free energy changes can be obtained

by thermodynamic integration.16 Within linear–response the-

ory this integration can be easily evaluated by trapezoidal rule
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that leads to following formulas for the redox and reorganiza-

tion free energies:14

∆A(RN) =
1

2
(〈∆E(RN)〉R + 〈∆E(RN)〉P), (9)

λ (RN) =
1

2
(〈∆E(RN)〉R −〈∆E(RN)〉P), (10)

where 〈X〉s notation means statistical average of variable X on

potential surface s.

The reorganization free energy characterizes the response

of the molecular environment of the DA centers to charge

changes on these sites. This energy can be separated into two

contributions, one from molecules in the inner part and the

other from the solvent in the outer part, λ = λin +λout . As de-

rived by Marcus32,33 from the dielectric continuum model in

the linear response approximation, λout depends on the mutual

distance of the electron donor and acceptor, RDA:

λout(RDA) =

(

1

εo

− 1

εs

)(

1

2rD

+
1

2rA

− 1

RDA

)

(∆q)2. (11)

In this expression, rD and rA are the effective Born radii of

the solutes and ∆q represents the transferred charge. Solvent

properties are characterized by the Pekar factor 1/εo − 1/εs,

which is difference of its reciprocal high–frequency (optical)

dielectric constant and the reciprocal static dielectric constant.

The validity of this expression, which is important for quan-

titative studies of distance–dependent electrode reaction, has

been explored by a number of researchers34–39 and it can be

directly verified by our d-QM/MM method. From the expres-

sion (11) it follows that in dilute limit λout is the sum of the

donor and acceptor contributions, which is often exploited in

the half–reaction scheme to calculate the total reorganization

free energy.

The free energy barrier ∆A‡, which is distant dependent

through λ (RDA), is an important quantity for the kinetics of

ET reactions. The semi–classical Marcus theory in the linear–

response regime gives the following expression for the first–

order ET rate:

kET =
2π

h̄
|VDA|2

1√
4πλkBT

exp

[

−∆A‡

kBT

]

. (12)

The strength of the interaction between donor and acceptor in

their transition–state configurations, which is responsible for

the energy splitting around the intersection region of Marcus

parabolas, is measured by electronic coupling element VDA. In

this work, we use a two–state model for approximate evalua-

tion of the coupling40

VDA =
1

1−S2
DA

∣

∣

∣

∣

HDA −
1

2
SDA(HDD +HAA)

∣

∣

∣

∣

, (13)

Fig. 3 A snapshot from the trajectory of the double–component

model with a Ru–Fe separation of 10 Å. Metal cations and their first

hydration shells (shown in licorice graphical representation) are de-

fined as QM inner parts of the system. These are surrounded by MM

water, and 5 chlorine anions (green balls) are used to compensate the

positive charge of the complexes. The highlighted water molecules

represent the charge layer used for the inner–parts electronic polar-

ization in electrostatic embedding.

where SDA and HDA are matrix elements of the overlap and

Hamiltonian matrices between the highest occupied molecu-

lar orbital (HOMO) of the donor and the lowest unoccupied

molecular orbital (LUMO) of the acceptor.

2.3 Computational Details

To demonstrate the performance of the d-QM/MM method,

we investigated a model self–exchange ET reaction between

the Fe2+/3+ couple in aqueous solution and also we explored

the heterogeneous ET in the Fe2+ + Ru3+ cation pair in the

same medium. These metal ions interact relatively strongly

with nearest water molecules. Therefore we define two inner

parts of a system as these two cations and their first hydra-

tion shells. Surrounding outer part is formed by an explicit

TIP3P water box41 that includes chloride counterions com-

pensating the positive charge of the cations (see Fig. 3). The

energies of the inner parts were evaluated by a hybrid B3LYP

functional with a localized 6-31G(d) basis set and Stuttgart–

Dresden (SDD) pseudopotentials42–44 on metal centers. Un-

restricted DFT calculations were performed for high–spin–

state iron and low–spin–state ruthenium electron configura-

tions because these are energetically the most stable. Since we

are using the subtractive QM/MM energy scheme, the inner

parts were parametrized by GAFF45 with fitted RESP atomic

charges46,47. Specific parameters of computational models for

standard, single, QM/MM (s-QM/MM) and d-QM/MM calcu-

lations are described in Supporting Information.
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One of the advantages of the present outer–sphere full–

reaction approach is the capability to check the dependencies

of ∆A and λ on the DA separation distance RDA. Therefore,

we ran 30 independent sets of d-QM/MM MD calculations

to span the distance interval between 6 and 20 Å, represent-

ing the touching–part limit and the dilute limit, respectively.

These MD runs, each 20 ps long, were calculated for both

Fe2+ + Ru3+ and Fe3+ + Ru2+ pairs, and the ET energy gap

was sampled every 10 fs together with the electronic cou-

pling value. Data from all windows were then collected and

used for construction of the ∆A(RDA), λ (RDA), and ∆A‡(RDA)
curves discussed below. Self–exchange ET on the Fe2+/3+

pair was checked for the touching–part limit and dilute limit

only. All calculations were performed by our own software,

called QMS, which couples the program Gaussian 0948 with

the Amber 11 MM package49 to perform QM/MM MD simu-

lations. More details about the QMS program can be found in

the Supporting Information.

In this work, we used standard TIP3P water model with-

out polarization because we would like to compare our results

with the published conventional QM/MM data23 for the same

system. It is well known that the lack of polarization leads

to overestimation of the reorganization energy50,51. Neverthe-

less, this systematic error in λ can be empirically corrected

for comparison with experimental data. The polarizable force

field can be straightforwardly applied in d-QM/MM and we

will demonstrate it in our future work.

3 Results and Discussion

Many classical MD studies of ET reactions between metal

ions in water4,6,9,52,53 have been performed; however, accu-

rate quantitative agreement has not been achieved with clas-

sical force–fields. The reorganization free energy λ for the

aqueous Fe2+/3+ self–exchange reaction was calculated to be

3.6 eV for ions 5.5 Å apart6, whereas experimentally29 (at the

slightly shorter separation of 5.32 Å), λ was found to be 2.1

eV. Several studies of ET reactions including electronic polar-

ization in classical force–field potentials have been done10,52.

However, at least donor and acceptor description at the QM

level of theory is required for realistic and quantitative cal-

culations of ET processes23. Recently, accurate results were

reached with full first–principle methods17,20,21,54. Here, we

demonstrate that the d-QM/MM method for outer–sphere full–

reaction studies of ET processes is a reasonably accurate and

efficient alternative to these methods.

Initially we show that our d-QM/MM method is consistent

with the conventional QM/MM method (s-QM/MM) in the di-

lute limit. For this purpose, we use the model of Fe3+ + Ru2+

→ Fe2+ + Ru3+ ET reaction with constrained intermetallic

distance at RDA = 20 Å. This system was previously studied

by Zeng et al.23 by s-QM/MM using the fractional electron

Fe
2+

Ru
3+

-

-

- -

-

e− e−

(a)

Fe
2+

Ru
3+

-

-

- -

-

e− e−

(b)

Fe
2+

Ru
3+

-

-

- -

-

e−

(c)

Fig. 4 Schematic illustration of three different computational

schemes applied to the Fe3+ + Ru2+ → Fe2+ + Ru3+ ET pro-

cess studied in this work. Green regions represent the charge lay-

ers used in electrostatic embedding to polarize the inner parts of the

system. (a) half–reaction scheme in s-QM/MM, (b) half–reaction

scheme simulated in d-QM/MM by charge layers analogous to those

used in s-QM/MM, (c) full–reaction scheme in d-QM/MM.

approach, and thus we can use it as a reference system. First

we use the mechanical embedding approach to calculate the

redox free energy and reorganization free energy according to

(9) and (10). In this approximation, the obtained values are

practically the same in both s-QM/MM and d-QM/MM (Ta-

ble 1). The redox free energy calculated at the B3LYP level,

-1.0 eV, is considerably overestimated compared to the ex-

pected value of -0.68 eV obtained in Ref.23, probably because

of the chosen calculation conditions of the metal centers and

their first hydration shells, as discussed below. Reorganization

free energy of 4.0 eV obtained by d-QM/MM in dilute limit is

consistent with our s-QM/MM result. The long–range elec-

trostatic interaction between donor and acceptor is completely

screened by bulk water for the dilute limit case RDA = 20 Å,

and thus the full–reaction d-QM/MM description leads to the

values consistent with the half–reaction s-QM/MM approach.

Next we apply the electrostatic embedding approach for

treatment of the Coulombic interaction. To reach consistency

between s-QM/MM and d-QM/MM, 2 or 3 nearest counteri-

ons must be involved in charge layers around the M2+/3+ (M =

Fe, Ru) cations. In this way, the half–reaction scheme is simu-

lated in the d-QM/MM method; i.e., the electron is exchanged

between the cation and the virtual reservoir that is in thermal

equilibrium with the system. The half–reaction s-QM/MM

1–10 | 5
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computational approach is compared with d-QM/MM in the

half- and full–reaction computational schemes in Fig. 4, where

the charge layers are indicated by green boundaries. For the

half–reaction scheme is typical that the net charge of each in-

ner part and its charge layer is changed during the energy gap

∆E evaluation. This approach improves value of the redox

free energy to -0.8 eV and it leads to the reorganization en-

ergy 4.7 – 4.9 eV, consistent with 4.9 eV published in Ref.23

when we consider the total λ as a sum of inner (λin) and outer

(λout ) part contributions of both metals, λ = λ Fe
in + λ Fe

out + λ Ru
in

+ λ Ru
out .

However, the d-QM/MM method is designed for the full–

reaction scheme, in which these charge inconsistencies are

avoided by including all the counterions together with the

donor (acceptor) in the charge layers around the acceptor

(donor). The charge density of the second QM inner part is

represented simply by point charges involved in the charge

layer of the first QM inner part and vice versa. This computa-

tional scheme yields λ = 4.1 eV, which is consistent with the

mechanical embedding result, as one would expect because

the reorganization free energy reflects the behavior of the sol-

vent that is modeled by the TIP3P model in both cases. Reor-

ganization free energies of inner parts (first hydration shells of

the cations) are λ Ru
in = 0.29 eV and λ Fe

in = 0.41 eV, and these

values are consistent with 0.35 eV and 0.38 eV obtained by

Zeng et al.23. The redox free energy ∆A = -0.9 eV is slightly

improved compared to the mechanical embedding result be-

cause in electrostatic embedding the electron density of each

metal–complex is polarized by charges of the surrounding sol-

vent molecules. The effect is not large since the first hydration

shell is described at the QM level together with each cation,

and thus the electrostatic interaction between the metal cen-

ter and more–distant solvent molecules is effectively screened.

The consistency between the mechanical and electrostatic em-

bedding approaches as well as their convergence to the s-

QM/MM results for large separation distance RDA demon-

strates the good performance of the d-QM/MM method. The

convergence is also confirmed in the distance dependent pro-

files of ∆A and λ , which is further discussed below.

To gain insight into the energy decomposition of the Fe3+

Mechanical embedding Electrostatic embedding

s d s dhal f d f ull

∆A -1.08 -1.07 -0.78 -0.87 -0.91

λ 4.01 4.04 4.89 4.71 4.09

∆A‡ 0.54 0.55 0.86 0.78 0.62

Table 1 Comparison of s-QM/MM with d-QM/MM in the dilute

limit RDA = 20 Å. (a) mechanical embedding, (b) electrostatic em-

bedding where d-QM/MM was used in half–reaction (dhal f ) and full–

reaction scheme (d f ull), respectively.
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Fig. 5 Trajectory of energy–gap reaction coordinate [eV] for

Fe2+/3+ cations 6.0 Å apart (left upper part), corresponding his-

tograms fitted by Gaussian functions (right upper part) and con-

structed diabatic free energy surfaces (lower part).

+ Ru2+ → Fe2+ + Ru3+ ET process, we estimated ∆A and λ
in the dilute limit from the QM part energies only. In contrast

to the results based on the total QM/MM energy differences

and MD sampling discussed above, for simplification, the en-

ergy decomposition here was done on a representative opti-

mized structure. The calculated ionization energies are listed

in Tables S5 and S6 of the Supporting information. In me-

chanical embedding, there should be no difference between

s-QM/MM and d-QM/MM at the dilute limit because elec-

trostatic interaction with the solvent is calculated completely

at the MM level in these approaches. Indeed, there are only

small differences in the calculated values of the redox energy

and reorganization energy obtained by the two methods. The

discrepancies are attributed to the different geometries of the

optimized structures, and these discrepancies would disappear

if we applied MD sampling techniques. The QM inner part

energies in mechanical embedding directly lead to the inner

part reorganization energy mentioned above. In constrast, the

electrostatic embedding approach provides information about

the total reorganization energy even at the QM level because

the interaction with the solvent is involved. The resulting λ
= 4.1 eV is consistent with the value obtained from the total

QM/MM energies. The redox energy is practically the same

in both charge embedding approaches. From these results, it

is evident that the redox energy is fully controlled by the elec-

tronic states of the metal centers and interaction with their first

hydration shells, whereas the reorganization free energy is in-

fluenced by a larger amount of surrounding solvent.

Before we investigate the distance–dependent behavior of

the studied ET between iron and ruthenium, we examined the

performance of the d-QM/MM method close to the touching–

part limit. This is the short–distance region where the two

QM inner parts become interact directly one to each other
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Fig. 6 ∆A(RDA), λ (RDA) and ∆A‡(RDA) obtained from d-QM/MM

MD. Mechanical embedding (blue) and electrostatic (red) embedding

are compared. Cross marks represent values from energy–minimized

structures. Red dashed lines indicate the dilute limit with 2/3 coun-

terions in the charge layer, which is consistent with the s-QM/MM

result shown in the right part of the plot.

and in our case the touching–part limit coincide also with the

limit of Marcus outer–sphere regime. We explored the self–

exchange ET of the Fe2+–Fe3+ pair, a well known model sys-

tem, to demostrate reliability of d-QM/MM. We constructed

diabatic free energy surfaces of these two cations 6 Å apart,

the distance close to the experimentally suggested limit RDA

= 5.5 Å6,17,29. The extrapolated parabolic surfaces yielded

a reasonable free energy barrier ∆A‡ = 0.42 eV (Fig. 5), al-

though the cross–section region was not sampled. The ob-

tained barrier corresponds to the reorganization free energy λ
= 1.68 eV because in the case of self–exchange ET reactions

the barrier is simply λ/4. The obtained value of λ is sig-

nificantly lower than 2.8 eV estimated by Zeng et al.23 from

s-QM/MM data. This demonstrates the full–reaction scheme

effect that yields lower value of λ in electrostatic embedding

as was discussed above. On the other hand, the obtained value

is still rather low compared to 2.1 eV measured experimen-

tally29,55. A more accurate description could be obtained by

better sampling of the reaction coordinate around ∆E = 0.

Based on the results discussed so far, we conclude that the

d-QM/MM method can be used as a tool for investigating ET

processes in the Marcus regime.

One of the main advantages of the full–reaction computa-

tional approach, for which the d-QM/MM method is designed,

is the capability to investigate the RDA dependence of all ET

quantities. We constructed distance–dependent redox free en-

ergy ∆A(RDA) and reorganization free energy λ (RDA) curves

for the Fe3+ + Ru2+ → Fe2+ + Ru3+ ET reaction over the

whole distance range between the touching–part and dilute

limits. Both quantities, together with the resulting free energy

activation barrier ∆A‡ are shown in Fig. 6, where s-QM/MM

values are shown on the right–hand side for comparison. Be-
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Fig. 7 Decomposition of the reorganization free energy λ (RDA) to

its inner part λin(RDA) and outer part λout(RDA) contributions. λout

was fitted by Marcus expression 11 with εo = 1.0. Rescaling of λout

to εo = 1.79, reflecting the solvent polarization, is shown as well.

cause ∆A is governed by the electronic states of the metal

centers and is affected mainly by their first hydration shells,

the redox free energy remains practically constant, fluctuating

around the mean value of -0.88 eV. The average configura-

tion of the first hydration shells is kept for RDA larger than

the touching–part limit. Below this limit, deviation from the

constant value of ∆A can be expected because metallic cen-

ters become sufficiently close for direct electronic interaction

and the outer–sphere description of ET is there not appropri-

ate. However, such close contact is prevented by electrostatic

repulsion of the cations, which is balanced at longer distances

by interaction with counterions. In contrast to ∆A, λ (RDA) in-

creases from the touching–part limit (2.4 eV) as the number of

solvent molecules affected by change of the electrostatic field

increases.

In the QM/MM formalism, we can easily decompose the

total reorganization energy λ to its inner part λin and outer

part λout contributions. This decomposition of λ is shown in

Fig. 7 where the reorganization energy is plotted on a recipro-

cal distance scale. As expected, λin is practically independent

of RDA since its value results from a structural arrangement

and vibrations only of the first hydration shell of the cations.

In contrast, λout depends linearly on R−1
DA, which is consistent

with formula (11) derived by Marcus for a spherical donor

and acceptor in a continuum solvent. By fitting the calculated

data to Eq. 11 we obtained a donor (acceptor) radius of 3.83 Å

when we used optical dielectric constant εo = 1.0, correspond-

ing to a nonpolarizable solvent. For better model of aqueous

solution, we can estimate the effect of the polarization by em-

pirical scaling of the reorganization energy to a Pekar factor

for εo = 1.79 as was suggested in Ref.56. This leads to a dra-

matic reduction of λ , which is known to be overestimated in

calculations without polarization50. For instance, the total re-
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low spin–state case, -1.18 eV differs markedly from that in the

high–spin–state case, -0.88 eV, which is more consistent with

the experimental value of -0.54 eV. This ∆A value reflects the

chosen exchange–correlation treatment of the QM inner parts,

the B3LYP functional with SDD pseudopotentials in our case.

In constrast, the reorganization free energy, which is mainly a

property of solvent, remains around 4.1 eV. In the d-QM/MM

method, both QM inner part description and solvent parame-

ters can be tuned to the desired level to describe a particular

system, and therefore the d-QM/MM method can be a useful

tool for investigating various outer–sphere ET processes.

4 Conclusion

We have presented a novel multiple quantum–

mechanics/molecular–mechanics method (m-QM/MM

method) as a generalization of the conventional QM/MM

method. The m-QM/MM method enables partitioning of a

particular system into separate QM inner parts surrounded

by a MM force–field molecular environment. Here, we

demonstrated application of m-QM/MM with two QM inner

parts, double–QM/MM (d-QM/MM), on investigation of

an outer–sphere ET process between donor and acceptor.

DA spin–charge densities can be easily controlled in this

method by appropriate choice of their exchange–correlation

treatment. In contrast to the s-QM/MM approach, which is

applicable only in the half–reaction scheme, the d-QM/MM

method enables us to study outer–sphere ET reactions in

the full–reaction scheme. Thus not only the dilute limit but

also distance dependent phenomena of the ET processes can

be explored, in particularly in the intermediate DA distance

region.

We have shown the performance of the d-QM/MM method

by studying the well–known Fe2/3+ cation self–exchange and

the Fe3+ + Ru2+ → Fe2+ + Ru3+ ET reaction in explicit

aqueous solution. For these we calculated the redox free en-

ergy, reorganization free energy and electronic coupling over

the whole distance range from the touching–part limit to the

Fe low spin Fe high spin

M. Embd. E. Embd. M. Embd. E. Embd.

∆A -1.19 -1.18 -0.82 -0.70

λ 4.13 4.14 4.23 4.34

∆A‡ 0.52 0.53 0.69 0.76

Table 2 Difference in ET free energy characteristics between low

and high Fe spin state. All quantities were calculated on optimized

structures with 20 Å distance between the Ru and Fe cations. Total

d-QM/MM energies were used to evaluate of ionization potentials

and electron affinities. Both mechanical embedding and electrostatic

embedding results are shown for comparison.

dilute limit. Here, each metal cation surrounded by 6 nearest

water molecules was treated at the QM level while the solu-

tion environment was simulated by a large amount of MM wa-

ter. We showed that d-QM/MM is consistent with s-QM/MM

in the dilute limit and that it provides reasonable accuracy in

the touching–part limit as well. The redox free energy as a

property of metal center electronic states remains practically

unchanged above the touching–part limit, whereas the reorga-

nization free energy follows the Marcus formula and increases

monotonically to the dilute limit value. Effect of the solvent

electronic polarization on λ was estimated by the empirical

scaling approach. The rate constant of the studied ET process

was estimated from calculated Frank–Condon factor and ex-

ponentially decaying electronic coupling factor. On the basis

of our results, we believe that the d-QM/MM method has the

potential to be a powerful tool for investigating a large variety

of outer–sphere ET reactions, especially distance–dependent

processes at solid–solution interfaces, which are important in

electrochemistry, heterogeneous catalysis, and biochemistry.
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