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Using an Onsager-like theory, we have investigated the relationship between the morphology of hard helical particles and the

features (pitch and handedness) of the cholesteric phase that they form. We show that right-handed helices can assemble into

right- (R) and left-handed (L) cholesterics, depending on their curliness, and that the cholesteric pitch is a non-monotonic

function of the intrinsic pitch of particles. The theory leads to the definition of a hierarchy of pseudoscalars, which quantify

the difference in the average excluded volume between pair configurations of helices having (R) and (L)-skewed axes. The

predictions of the Onsager-like theory are supported by Monte Carlo simulations of the isotropic phase of hard helices, showing

how the cholesteric organization, which develops on scales longer than hundreds of molecular sizes, is encoded in the short-range

chiral correlations between the helical axes.

1 Introduction

Recently, we have undertaken a thorough investigation of the

phase diagram of hard helices, aimed at elucidating its general

features and in particular its dependence upon the helix mor-

phology.1,2 To this purpose we are combining classical density

functional theory and numerical simulations. We have found

that the phase diagram is strongly different from that of hard

spherocylinders, to which helices are often assimilated, and

shows new phases that are special to helices. The present work

focusses on the cholesteric phase (N∗), which is a chiral ne-

matic phase where the director rotates in helical way around

a perpendicular axis. It is characterized by the pitch P , or

the corresponding wavenumber q = 2π/P . Conventionally,

these are taken as positive for a right-handed (R) helix, and

negative for a right-handed (L) helix. Typical values of the

pitch range from hundreds of nanometers for strongly chiral

molecular species to hundreds of micrometers for chiral col-

loidal systems, which are well beyond the length scale of inter-
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particle interactions.∗

The specific question that we want to address here is the

relationship between the morphology of the helical particles

and the features (handedness and pitch) of their cholesteric

phase.

That hard threaded helices can form a cholesteric phase to

optimize their packing was recognized by the early Straley

work.5 Best packing of right-handed screws is obtained for

either R or L-skewed configurations, for weakly (large p) and

tightly (small p) twisted threads, respectively. Thus, based on

simple geometry considerations, the cholesteric handedness is

expected to depend not only on the handedness of the con-

stituent helices, but also on their specific geometry features.6,7

Taking as an indicator the inclination angle ψ between the tan-

gent to helix at a given point and the normal to the helix axis

at the same point (see Fig. 1), the phase chirality is expected

to be the same as that of the constituent helices for ψ < 45◦

and the opposite for ψ > 45◦.

Another issue concerns the relationship between the geome-

try of the helical particles and the magnitude of the cholesteric

pitch. Theoretical predictions are somehow controversial,

which may also depend on the assumptions adopted to derive

expressions for the cholesteric pitch. For rigid threaded rods,

P independent of the intrinsic pitch p of particles was pre-

dicted by Straley.5 Subsequently, a more general relationship

was obtained for the same kind of particles, which for small

intrinsic pitch reduces to P ∝ p−1, in agreement with intu-

∗Unlike most literature, here ‘chiral nematic’ will not be used as a synonym

of cholesteric, since this could be ambiguous after the identification of other

chiral nematic phases such as, in the case of helical particles, the screw-like

nematic (N∗

s ). 2–4
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expressed as the following summation:21

k2 =
1

3
√
2

kBT

8π2v2
G(φ)

∑

j=0,2,4,...

(2j + 1) 〈Pj〉
∑

j′=0,2,4,...

(2j′ + 1)

√

(j′ + 1)!

(j′ − 1)!
C2(j, j′, 1; 0, 1, 1) 〈Pj′〉hj′j′

(7)

where 〈Pj〉 are the usual orientational order parameters, de-

fined as the orientational average of Legendre polynomials of

j-rank; C(. . .) are Clebsch-Gordan coefficients and hjj de-

note the integrals:

hjj =

∫

dΩ12

∫

vexcl(Ω12)

dR12 d
j
10(β12)

(X12 sinα12 − Y12 cosα12) j = 2, 4, ...

(8)

with dj10 being components of reduced Wigner matrices. The

functions under the integrals, Hjj = dj10(β12)(X12 sinα12 −
Y12 cosα12)/R12, can be rewritten as:

H22 =

√

3

2
(û1 · û2)(û1 × û2) · R̂12 (9a)

H44 =

√
5

4

[

7(û1 · û2)
3 − 3(û1 · û2)

]

(û1 × û2) · R̂12 (9b)

. . .

where û1 and û2 are unit vectors parallel to the axes of the

helical particles and R̂12 = R12/R12. It can be recognized

that the pseudoscalars Eqs. 9 correspond to a subset of the

rotational invariant functions introduced by Stone.27

Th hjj integrals represent the decomposition of the ex-

cluded volume in chiral contributions of different ranks. They

can be related to the difference in excluded volume between

configurations of pairs of helices having R- and L-skewed

long axes. For achiral particles, e.g. for cylinders, oppo-

sitely skewed configurations give equivalent contributions of

opposite sign, so the integral vanishes. However for chiral

particles, and in our specific case for helices, this symmetry

is broken and hjj 6= 0. If the two chiral molecules are re-

placed by their mirror images (enantiomers), hjj reverses its

sign. Thus, the hjj pseudoscalars can be taken as simple geo-

metric descriptors, to correlate the cholesteric pitch and hand-

edness to the structure of the constituent particles, through

their excluded volume.28,29 The lowest rank term, h22, which

generally prevails over the others, has a particularly simple

geometrical interpretation. Its integrand can be rewritten as

H22 =
√

3/8(ŵ12 · R̂12) sin(2β12), where β12 is the angle

between them and ŵ12 = û1 × û2/ |û1 × û2|. H22 van-

ishes when the two helices are parallel or perpendicular to

each other (β12 is an integer multiple of 90◦), and takes the

largest absolute values for β12 equal to odd multiples of 45◦;

it is positive for R- and and negative for L-skewed configu-

rations (see Fig. 2). After integration of H22 over the whole

excluded volume, the result is h22 > 0 if R pair configura-

tions have an excluded volume larger than L configurations;

h22 < 0 in the converse case.

3 Results

We have performed calculations for model helices made of

hard fused spheres.1,2 An example is shown in Fig. 1, where

also the geometric parameters of a helix are shown: the radius

r, the pitch p, the contour length L and the Euclidean length

Λ. All calculations were performed for right-handed helices,

using the same numerical procedure presented in ref.21: at a

given density the chiral strength k2 and the twist elastic con-

stant K22, and then the cholesteric pitch P , are calculated

in terms of the orientational order parameters, 〈Pj〉, which

are obtained by minimization of the free energy of the un-

deformed nematic phase. Results will be reported in reduced

units, with the diameter D taken as the unit of length; more-

over, scaled values of the chiral strength, k∗2 = k2/kBT , and

of the twist elastic constant, K∗

22 = K22/kBT , will be re-

ported.

Fig. 3 Helices having the same contour length, L = 10, and

different values of the radius r and pitch p. Under each helix the

inclination angle ψ is reported.

Firstly, we have performed calculations for the right-handed

helices shown in Fig. 3, whose phase diagram was investi-

gated in refs.1,2: they have constant contour length L = 10,

and different values of the radius r and pitch p. Table 1 re-

ports the hjj pseudoscalars, defined by Eq. (8), calculated for

these systems. For all helices positive h22 values are obtained.

The higher rank pseudoscalars, h44 and h66, may be positive

or negative, and the sign seems to depend on the shape details.

The simultaneous presence of contributions of opposite sign

for helices with a given handedness is not surprising, since
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analogous observations have already been reported,21,30 and

can be explained in the following way. A variety of pair con-

figurations of helices are possible and, of the R and L-skewed

with the same twist angle, in some cases the former, in some

cases the latter gives smaller excluded volume. For the major-

ity of the helices reported in Table 1, the presence of an hjj
term that is positive and much larger than the others indicates

that, altogether, R-skewed pair configurations lead to a larger

excluded volume than L-skewed configurations. We can ob-

serve that such cases correspond to inclination angles larger

than 45◦ (see Fig. 3) and intrinsic pitches p sufficiently larger

than the bead diameter D.

The wide range of h22 values reported in Table 1 indicates

that the difference in excluded volume strongly depends on

the helix morphology. As a general rule, higher differences

are obtained for helices with larger p and r values. This is

well illustrated by the cases r = 0.2, p = 2, and r = 0.4,

p = 4, which are characterized by the same inclination an-

gle: h22 increases by an order of magnitude on going from the

former to the latter. This behavior can be easily understood

considering that larger pitch and radius imply deeper grooves

and more marked deviations from a cylindrical shape.

Table 1 Pseudoscalars of different ranks, hjj , calculated for helices

of the same contour length L = 10, and different pitch p and radius

r (see Fig. 3). Lengths are scaled with the bead diameter D.

h22 h44 h66

r = 0.2 p = 2 15.2 -9.0 -1.4

p = 4 78.5 -0.7 -5.6

p = 8 66.1 12.6 2.7

r = 0.4 p = 2 2.4 -8.4 0.8

p = 4 147.4 -29.0 -9.6

p = 8 212.3 23.4 -1.7

Table 2 shows the scaled chiral strength k∗2 and twist elastic

constant K∗

22, along with the 〈P2〉 order parameter and the

cholesteric pitch P calculated for the helices in Fig. 3. The

data refer to the density of the cholesteric-to-isotropic (N∗-

I) phase transition. We can see a clear correlation between

chiral strength and h22 values: positive k∗2 is predicted for all

helices but the one with p = 2, r = 0.4, for which a small

negative k∗2 is obtained. Also the chiral strengths cover a wide

range and, for a given pitch, comparatively higher values are

predicted for the helices with r = 0.4, which are more curled

than those with a smaller radius. This does not occur for p =
2, because in this case strong interlocking of pair of helices is

not possible, due to the small size of the helix pitch compared

to the diameter of beads.

The data reported in Table 2 show that the twist elastic con-

stants are much less sensitive than chiral strengths to changes

in the helix structure: their variation along the series of helices

under examination does not exceed 50%. Like the 〈P2〉 order

parameters (see ref.1 for the discussion of the transition prop-

erties of hard helices), they seem to be mainly determined by

the aspect ratio of particles.

Considering now the cholesteric pitch P , we can see that

all helices, with the exception of the case r = 0.4, p = 2, are

found to form L cholesteric phases. As a consequence of the

relatively small differences in K22 values, the magnitude of

the cholesteric pitch reflects the trend of k2, with the tighter P
values for the curlier helices. It is worth pointing out that the

cholesteric pitch predicted for helices with r = 0.4 and p > 2,

which is less than 100 times the molecular size, is remarkably

small. Typical experimental values for lyotropic liquid crys-

tals are at least one order of magnitude higher.15,31–33

Interestingly, we have found that in the case r = 0.4,

p = 2 the sign of the calculated cholesteric pitch changes

with density: at the N∗-I transition P is large and positive (R
cholesteric), and then increases with increasing density until,

at a certain point, it reverses. This behaviour reflects a change

in the relative contribution of the terms of various rank in Eq.

7, due to a different temperature dependence of the 〈Pj〉 order

parameters. From the physical point of view this corresponds

to a system where, as density increases, the cholesteric helix

first unwinds, and then rewinds in the opposite sense, passing

through an untwisted nematic phase. In the literature, there

are both experimental and theoretical examples of cholesteric

inversion as a function of temperature or density (a review

can be found in ref.12), which were ascribed to the competi-

tion of factors promoting twists in opposite senses: examples

of such factors are inter-particle interactions of different na-

ture or different molecular conformations. More subtle effects

have been related to a different temperature dependence of the

orientational order parameters for different molecular axes, in

the case of biaxial particles.34,35 This has an analogy with the

behavior just discussed for the hard rigid helices with r = 0.4,

p = 2.

Table 2 Scaled chiral strength k∗2 and twist elastic constant K∗

22,

〈P2〉 order parameter and cholesteric pitch P , for helices of length

L = 10 and different values of the pitch p and radius r (see Fig. 3).

Data are for state points in the N∗ phase at the the N∗-I phase

transition. Lengths are scaled with the sphere diameter D.

k∗2 · 104 K∗

22 〈P2〉 P

r = 0.2 p = 2 4.83 0.154 0.64 -2008

p = 4 41.36 0.177 0.66 -268

p = 8 29.03 0.184 0.68 -399

r = 0.4 p = 2 -3.83 0.153 0.60 2509

p = 4 98.35 0.152 0.61 -97

p = 8 110.13 0.159 0.61 -90

To analyse more systematically the relationship between

inclination angle and cholesteric handedness we have con-

sidered a set of helices having the same Euclidean length

1–9 | 5
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Fig. 6 Radial orientational correlations functions H22(R12) (solid)

and H44(R12) (dashed), as a function of the helix-helix distance

R12. Results from Monte Carlo simulations of helices with L = 10,

and r = 0.4, p = 4 (top) or r = 0.4, p = 2 (bottom). State points in

the isotropic phase were taken, at the scaled pressure P ∗ = 0.6 in

the former, and P ∗ = 1.0 in the latter case. Lengths are scaled with

the bead diameter D.

helices. Such peaks would be absent in the case of achiral

particles.

Going more into details, we can notice some differences

between the results obtained for the two kinds of helices. For

the case r = 0.4, p = 4, non-vanishing values of Hjj fall in

a range of distances shorter than the bead radius. This can be

understood considering that helices are non-convex bodies and

their center, used to define inter-particle distances, was taken

in the middle point of their axis. Therefore, values R12 < D
correspond to interlocked helices. H22 is throughout negative

and much larger than H44, which can take both positive and

negative values. So, we can infer that the long axes of pairs of

helices at the contact distances are preferentially found in L-

skewed configurations. This is in line with the results reported

in table 1 for the helices with r = 0.4, p = 4 (it may be

worth recalling that positive/negative hjj values indicate that

L/R-skewed configurations lead to smaller excluded volume).

For helices with r = 0.4, p = 2, the non-vanishing values

of both Hjj functions are shifted towards slightly longer dis-

tances ( R12 ∼ D), because the particle morphology prevents

deep interlocking. Unlike the previous case, here we cannot

easily identify the preference for a given skewness. H22 fea-

tures both L and R contributions, comparable in magnitude,

whereasH44 is positive, indicating a preference for R-skewed

configurations. Again, we can recognize a correspondence

with the hjj values reported in Table 1 for the helix r = 0.4,

p = 2.

4 Conclusions

Using an Onsager-like theory we have investigated the rela-

tionship between the handedness and pitch of hard helices

and those of the cholesteric phase that they form. For the N∗

handedness, our numerical results are in broad agreement with

Straley arguments for threaded rods:5 taking the inclination

angle of the helical motif as a useful descriptor, we have found

that right-handed helices form L cholesterics if ψ & 40◦, and

R cholesterics if ψ . 40◦. For left-handed helices the oppo-

site would occur. This can be seen as a general behavior for

helices with hard-core interactions, provided that their pitch p
is larger than the thickness of the helical protrusions (in our

case, for p > D).

According to our calculations, helices with ψ around 40◦

belong to a gray zone, where the cholesteric handedness may

depend on details of the morphology. Anyway, they are the

less effective in twisting the director and are predicted to

lead to cholesteric phases with a long pitch, which may even

change its handedness as a function of density. As for the

magnitude of the cholesteric pitch, we have found that it is a

non-monotonic function of the inclinations angle ψ and, com-

paring helices with the same aspect ratio, which then have sim-

ilar twist elastic constant, the tightest pitches are predicted for

1–9 | 7
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ψ ∼ 65◦.

The driving force behind the formation of the cholesteric

phase by hard particles is the entropy gain deriving from the

director twist. Within the Onsager-like theory, this is traced

back to the difference in excluded volume between configu-

rations of pairs of helices having R and L-skewed axes. Our

Onsager-like approach leads to the definition of a hierarchy of

pseudoscalars (hjj), related to rotational invariant functions,27

which quantify these differences. For helices with ψ & 40◦ or

ψ . 40◦ the single lowest rank term, h22, prevails over the

others, and can be roughly related to the inverse cholesteric

pitch. On the other hand, when ψ ∼ 40◦ or p ∼ D the dif-

ferences in excluded volume between R and L pair configura-

tions are relatively small, and their net balance may be a subtle

function of density. This is reflected by hjj contributions of

different rank similar in magnitude and different in sign.

We have found that the results of the Onsager-like theory

compare very well with those extracted from Monte Carlo

simulations of hard helices in the isotropic phase. In principle,

the cholesteric pitch could be obtained from numerical simu-

lations of the N∗ phase. However this remains a challenging

task, due to the very long range of the cholesteric pitch, that

for a system of freely translating and rotating particles inter-

acting with sole hard-body interactions poses a difficulty in

selecting and then handling suitable periodic boundary condi-

tions.37–39 Simulations of the isotropic phase do not give ev-

idence of long-range chiral correlations, but we have shown

that they contain signatures of short-range chiral correlations

between the axes of helices. In the isotropic phase such cor-

relations are lost within a few molecular lengths, but liquid

crystal ordering allows them to propagate to a much longer

scale.

Interestingly, for strongly curled hard helices we predict

very tight cholesteric pitches, of the order of one hundred

of times the characteristic size of particles. There are no

evidences of such strong distortions in real systems: typi-

cal values of the cholesteric pitch for lyotropic liquid crys-

tals are at least one order of magnitude higher.12 One rea-

son is that in real systems there are also other interactions,

which can compete with steric repulsions.33,40,41 Moreover he-

lical macromolecules are generally endowed by some flexibil-

ity that, besides affecting the phase diagram,42 has the effect

of reducing the net chirality.12 The ideal systems for direct

comparison with our prediction are cholesteric suspensions of

rigid colloidal particles, as could be obtained by the synthe-

sis techniques nowadays available.43 One last point has to be

remarked: the results reported here were obtained for the hy-

potetical N∗ phase that beyond a certain packing fraction be-

comes more stable than the isotropic phase. However, under

the same conditions there might be other competing phases,

which have not been considered here. Indeed, we have found

that the width of the cholesteric range decreases with the curli-

ness of helices, and strongly curled helices undergo a direct

transition from the isotropic to the screw-like nematic phase.2

The relationship between cholesteric and screw-like order is

an open very interesting issue, which we intend to address in

future studies.
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