This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Energy level alignment in TiO$_2$/metal sulfide/polymer interfaces for solar cell applications

Rebecka Lindblad,a Ute Cappel,b Flannan T. F. O’Mahony,b Hans Siegbahn,a Erik M. J. Johansson,c Saif A. Haque,$^b,^*$ and Håkan Rensmo$^a,^*$

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

Semiconductor sensitized solar cell interfaces have been studied with photoelectron spectroscopy to understand the interfacial electronic structures. In particular, the experimental energy level alignment has been determined for complete TiO$_2$/metal sulfide/polymer interfaces. For the metal sulfides CdS, Sb$_2$S$_3$ and Bi$_2$S$_3$ deposited from single source metal xanthate precursors, it was shown that both driving forces for electron injection into TiO$_2$ and hole transfer to the polymer decrease for narrower bandgaps. The energy level alignment results was used in the discussion of the function of solar cells with the same metal sulfides as light absorbers. For example Sb$_2$S$_3$ showed the most favourable energy level alignment with 0.3 eV driving force for electron injection and 0.4 eV driving force for hole transfer and also the most efficient solar cells due to high photocurrent generation. The energy level alignment of the TiO$_2$/Bi$_2$S$_3$ interface on the other hand showed no driving force for electron injection to TiO$_2$, and the performance of the corresponding solar cell was very low.

1 Introduction

Semiconductor sensitized solar cells are promising devices for conversion of solar energy to electricity 1. These solar cells derive their architecture from dye-sensitized solar cells 2,3 but use a small bandgap semiconductor to sensitize a substrate of a mesoporous semiconductor (TiO$_2$), instead of dye molecules typically employed in dye-sensitized solar cells. The small bandgap semiconductor absorbs visible light and the charge separation occurs at the interfaces between the TiO$_2$, the absorber and a hole conductor.

Solution-processable nanocrystalline metal chalcogenides are candidates as light absorbers in this type of solar cell, for example Sb$_2$S$_3$ 4–7, CdS 8 and PbS 9,10 of which Sb$_2$S$_3$ has been the most successful. Sb$_2$S$_3$ has been used in combination with different solid state hole conductors, and record power conversion efficiencies of 5% and 7.5% have been achieved when using the polymers poly-3-hexylthiophene (P3HT) 5 and (poly(2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)) (PCPDTBT) 11, respectively.

Understanding of the interfacial electronic and chemical structures are important for the design of efficient solar cells. For example, to facilitate charge separation and to obtain an efficiently working solar cell, a favourable energy level alignment at the different interfaces is required. Valence band edges extracted from various types of measurements can be found in the literature; UV photoelectron spectroscopy (UPS), flat band potential measurements and cyclic voltammetry are some examples 3,12–14. Typically, the valence band edge of the bulk materials are used when comparing the energy levels at interfaces 15,16. Valence band edges measured with different methods are sometimes also compared 17,18. To study the different materials in similar conditions using one method has advantages for a reliable energy level alignment. Ideally, the materials should even be studied simultaneously, in particular material combinations, since it is probable that the energy level alignment is affected when two materials are brought in contact to each other 19.

Even though UPS is a common method to study valence band offsets of various metal sulfides, semiconductors and polymers 15,20, the surface sensitivity of UPS excludes measurements of a buried material. When using higher photon energies (as in X-ray based photoelectron spectroscopy, PES, or hard X-ray photoelectron spectroscopy, HAXPES) it becomes possible to study a complete interface and in this way directly relate the energy levels in the substrate and the adsorbed material 21–23. Here, we show that the complete semiconductor/light-absorber/hole conductor interface can be measured with soft X-ray photoelectron spectroscopy. In a single experiment, it is therefore possible to relate energy lev-
els in both a light-absorber and a polymer to energy levels in the substrate. We compare measurements of the electronic core levels with the valence hands and relate the position of the valence band edges of the different materials. The results obtained from the photoelectron spectroscopy measurements are then related to the function of solar cells based on the same metal sulfides. The same method can be applied to other active interfaces such as those found in hybrid solar cells and dye-sensitized solar cells, where the interface structure is highly related to the function of the device.

We have included the three metal sulfides, CdS, Sb$_2$S$_3$ and Bi$_2$S$_3$ in this study, in order to compare two materials which work in solar cells (CdS and Sb$_2$S$_3$) to a material, which has not been successfully used to sensitize TiO$_2$ (Bi$_2$S$_3$). For Sb$_2$S$_3$, we compare the energy alignment to P3HT and PCPDTBT, the two most successful hole conductors so far (see figure 1 for molecular structures).

To find useful deposition techniques is important for manufacturing of solar cells. In this investigation the metal sulfides were deposited on the TiO$_2$ surface from single source metal xanthate precursors (chemical structures are found in figure 1), which were converted to metal sulfides through annealing under nitrogen. Xanthate precursors have recently been used to make hybrid solar cells with blends of sulfides and polymers as active layers and to deposit mesoporous films of antimony sulfide where the sulfide acts as both light absorber and electron transporting material. The method can be adapted to deposit different sulfides on mesoporous TiO$_2$ surfaces without the need for lengthy optimization, which may be required in more conventional deposition methods such as chemical bath deposition and successive ionic layer deposition.

![Molecular structures](image)

Fig. 1 Molecular structures of (a) Cd xanthate (b) Sb and Bi xanthate (where M is Sb or Bi) (c) P3HT and (d) PCPDTBT.

2 Experimental section

Both solar cell samples and PES samples were fabricated on ITO substrates. For solar cells, a dense TiO$_2$ was deposited by spincoating a solution of titanium isopropoxide (97%, Sigma Aldrich) and ethanolamine in 2-methoxyethanol. Following this, a mesoporous TiO$_2$ layer was fabricated by spinning a TiO$_2$ paste (Dyesol, 18NRT), which had been diluted with terpineol in a 1:2 ratio. For PES samples, this paste was spun directly onto the ITO substrates. All films were then sintered at 450°C for 30 minutes with resulting film thicknesses of approximately 250 nm. A titanium tetrachloride treatment was then carried out by immersing the films in a 20 mM solution of titanium(IV) chloride tetrahydrofuran (Aldrich) in water at 70°C for 30 minutes. Films were rinsed in water and isopropanol following this treatment and then sintered again at 450°C. Cadmium, antimony and bismuth xanthate were synthesised as described in literature. The concentration and spincoating speed can be varied to obtain thicknesses that allow for PES analysis as well as solar cell function. For PES samples 400 mg/ml solutions in chlorobenzene of all three xanthates were prepared and deposited on top of the TiO$_2$ films by spincoating either at 2000 rpm (Sb$_2$S$_3$) or 5000 rpm (CdS and Bi$_2$S$_3$). For solar cells, 300 mg/ml solutions of bismuth and cadmium xanthate were used and all precursors were spun at 2000 rpm. Sulfide formation was induced by annealing at 160°C for cadmium and bismuth and at 300°C for antimony in a nitrogen filled glove box.

Where applicable for PES samples, regioregular P3HT (Mn 54,000-75,000, Plextronics) or PCPDTBT (average Mw 7,000-20,000, Aldrich) were deposited by spincoating from a 12.5 mg/ml solution in chlorobenzene at 10000 rpm (P3HT) or at 4000 rpm (PCPDTBT). P3HT was spun at 2000 rpm from a 12.5 mg/ml solution for solar cells and device fabrication was completed by evaporating a 100 nm thick silver back contact. PCPDTBT was deposited from a 15 mg/ml solution with 2000 rpm for a TiO$_2$/Sb$_2$S$_3$ solar cell.

Samples studied with PES were mesoporous TiO$_2$, mesoporous TiO$_2$ covered with a metal sulfide (TiO$_2$/CdS, TiO$_2$/Sb$_2$S$_3$, TiO$_2$/Bi$_2$S$_3$) and mesoporous TiO$_2$ covered with first a metal sulfide and then a polymer (TiO$_2$/Sb$_2$S$_3$/P3HT, TiO$_2$/Sb$_2$S$_3$/PCPDTBT). Films of the polymers spin coated on ITO (ITO/P3HT and ITO/PCPDTBT) were also studied for comparison.

Photoelectron spectroscopy was performed at beamline 1411 at the MAX IV laboratory in Lund in Sweden. All spectra are binding energy calibrated versus the Fermi level at zero binding energy measured on a TiO$_2$ sample. The other samples are aligned using TiO$_2$ core levels. The experimental broadening (FWHM) is below 0.1 eV for the valence level measurements and 0.3 eV for the core level measurements. The uncertainty of the binding energy calibration is estimated.
to be smaller than 0.05 eV. The thicker polymer films deposited on ITO do not contain TiO$_2$ and therefore these measurements are compared to the TiO$_2$/metal sulfide/polymer samples by aligning the signal from the S 2p core level originating from the polymer. If not stated otherwise, the intensity of the spectra are scaled so that the most intense peaks have the same height.

Solar cells were characterised by measuring IV-curves using a 150 W Xenon lamp (ScienceTech SS150W solar simulator) equipped with an AM1.5 filter (ScienceTech) and an IR filter (Water Filter) as irradiation source and a Keithley 2400 series source meter to measure the current. IPCE spectra were measured using irradiation from a quartz halogen lamp (Bentham M300) and a Keithley 2400 series source meter.

UV-visible absorption measurements were carried out on a Shimadzu UV-2600 equipped with an integrating sphere. Both transmittance (T) and reflectance (R) were measured and the absorptance was calculated according to the formula:

$$\text{Absorptance} = 1 - T - R. \quad (1)$$

3 Results and discussion

3.1 Absorption spectra

Absorption spectra of the different sulfides deposited onto TiO$_2$ measured on a UV-visible spectrometer equipped with an integrating sphere are shown in figure 2. It can be seen that going from CdS to Sb$_2$S$_3$ increasingly large portions of the visible (and near-infrared) spectrum are being absorbed. Absorption spectra of the polymers, regioregular P3HT and PCPDTBT, which were used in this study, are also included in figure 2. The onsets of the absorbtance can be compared to the bandgap of the materials. Bandgap values found in the literature are 2.4 for CdS$_8$, 1.7–1.8 eV for Sb$_2$S$_3$$_{14,32,33}$, 1.1–1.6 eV for Bi$_2S_3$, 740 nm for Sb$_2S_3$, 950 nm for Bi$_2S_3$, 650 nm for P3HT and 840 for PCPDTBT. These calculated onsets are marked in figure 2 and are in good agreement with results from the absorption spectra. The absence of discrete absorption peaks for the metal sulfides indicates a distribution of particle sizes, or a continuous film, without quantum confinement effects$_{36}$.

3.2 Photoelectron spectroscopy characterization

3.2.1 TiO$_2$/metal sulfide interfaces. Figure 3 shows overview spectra of mesoporous TiO$_2$ before and after the introduction of the different metal sulfides. Titanium and oxygen from the TiO$_2$ substrate is visible in all samples. Some carbon is also seen in all samples, which is expected as contamination on ex situ samples. Otherwise the metal sulfide samples only contain the corresponding metal and sulfur core levels.

![Fig. 2 Absorptance spectra of the different sulfides and polymers. The circles mark the estimated onsets.](image)

Figure 4(a) displays the metal core levels for the different sulfide samples. For the Sb$_2$S$_3$ sample, the Sb 3d$_{5/2}$ is overlapping with the O 1s core level from the TiO$_2$ substrate. From the Sb 3d$_{5/2}$ level it is possible to distinguish two different contributions, indicating some degree of oxidation of the sulfide$_{39}$. This is not surprising since the samples were exposed to air between preparation and the PES measurements, and Sb$_2$S$_3$ is known to oxidize easily in air$_{11,40,41}$. However, we can’t exclude an oxidation induced by the TiO$_2$ substrate. The curve fit in figure 4(a) is optimized using the Sb 3d$_{3/2}$ line, giving the sulphide contribution to Sb 3d$_{3/2}$ a binding energy of 539.5 eV. The split to the Sb3d$_{5/2}$ is fixed to 9.35 eV, consistent with earlier findings for both antimony sulfide and oxides$_{42,43}$. The intensity of the Sb 3d$_{3/2}$ is set to be two thirds of Sb 3d$_{5/2}$. The O 1s from the TiO$_2$ substrate is also used in the curve fit and is intensity scaled relative the Ti 2p core level. The resulting O 1s contribution from the antimony oxide has a reasonable intensity compared to the corresponding Sb 3d (where the O/Sb ratio is 2 when including the differences in photoionisation cross section, see below).

As seen for measurements on CdS samples in figure 4(b), the Cd 3d core level shows one symmetric peak doublet with a binding energy of the Cd 3d$_{5/2}$ peak at 405.7 eV and a spin-orbit split of 6.8 eV. No oxidation of Cd can be detected. In the Bi$_2$S$_3$ sample, the Bi 4f core level partly overlaps with the S 2p core level, as seen in figure 4(c). The binding energy of the main Bi 4f$_{7/2}$ line is 158.8 eV with a spin orbit split of 5.3 eV to the Bi 4f$_{5/2}$ line. There is also a second peak doublet at higher binding energy, which could indicate a small oxidation of bismuth$_{44}$.

This journal is © The Royal Society of Chemistry [year]
Measurements of the S 2p core level from the different metal sulfides can be seen in figure 5. TiO₂/Sb₂S₃ shows one spin-orbit doublet with narrow peaks (FWHM=0.7 eV) indicating that all sulphur atoms are chemically equivalent in Sb₂S₃. For this sulfide the S 2p₃/2 core level shows a binding energy of 161.93 eV and a spin-orbit split of 1.18 eV to the S 2p₁/2 level. The S 2p core level peaks for TiO₂/CdS are slightly broader but have similar binding energies compared to TiO₂/Sb₂S₃. The S 2p in TiO₂/Bi₂S₃ is on the other hand shifted 0.4 eV towards lower binding energy.

If comparing the intensities of the metal core levels with the S 2p core level, it is possible to estimate the stoichiometry of the sulfides. Such calculations includes the photoionisation cross section and the asymmetry parameters of the different core levels for the particular experimental configuration. The compared spectra are measured using a photon energy of 758 eV. It is noted that this photon energy induces extra uncertainty of the stoichiometry estimations, due to a rather different kinetic energy, and in turn probe depth, of the photoelectrons from the sulfur compared to the metallic core levels in some cases. For Sb₂S₃, the Sb 4d core level is used for stoichiometry estimations to avoid confusion induced by the overlapping Sb 3d and O1s core levels. The estimated stoichiometry in CdS agrees with the expected value. For Sb₂S₃ and Bi₂S₃, the oxidised contribution was removed from the calculations and for the remaining sulfide, the stoichiometry is found to be Sb₂S₂.₈ and Bi₂S₂.₄ respectively. For Sb₂S₃, this is in good agreement with the expected stoichiometry, while for Bi₂S₃, the calculation might indicate that the bismuth sulfide surface is sulphur deficient. The sulphur deficiency may be linked to the shift of the sulphur 2p level to lower binding energy.

Figure 6(a) shows the valence levels for the metal sulfide samples together with a pristine mesoporous TiO₂ electrode. All spectra in this figure are scaled in intensity using the Ti 3p core level. The different intensities of the valence spectra therefore reflect thickness variations of the metal sulfides on the TiO₂ substrate. TiO₂ has a broad feature between binding energies 3.2–7 eV and a sharper feature at 8 eV. The shape of the valence levels are different for the different sulfides, especially at the outermost levels below the TiO₂ valence band edge. Calculations for Sb₂S₃ show that the outermost valence regions are made up by interactions of S 3p and Sb 5s orbitals. The corresponding region in CdS are mainly S 3p and Cd 5p orbitals and for Bi₂S₃, the valence levels consists of S 3p and Bi 6p orbitals.

It can be mentioned that the metal character of the outermost valence levels of the metal sulfides would be more easily
Fig. 4 The metal core levels on the TiO$_2$/sulfide samples measured with a photon energy of 758 eV. (a) The Sb 3d and O 1s core levels on the TiO$_2$/Sb$_2$S$_3$ and TiO$_2$ samples. The two signals are scaled in intensity relative the Ti 2p core level. The total curve fit includes all O 1s and Sb 3d peak fits. (b) The Cd 3d core level. (c) The Bi 4f and also the S 2p core levels.

Fig. 5 The S 2p core level on the TiO$_2$/sulphide samples measured with a photon energy of 758 eV.

ment for the metal sulfides, as exemplified by Sb$_2$S$_3$ in figure 6(b).

For pure TiO$_2$ there are occupied states below the valence band edge, which can be due to defects on the surface. When a sulfide is deposited onto TiO$_2$, these band gap states disappears, see figure 6(c). The same effect has earlier been observed when adsorbing dye molecules on mesoporous TiO$_2$.

3.2.1.1 Energy level alignment in TiO$_2$/metal sulfide interfaces. The driving force for electron injection from the sulfide to TiO$_2$ is determined by the energy level alignment. The inset in figure 6(a) shows a close-up of the valence band edges. The oxidation seen in antimony and bismuth samples is not expected to influence the observed structures close to the valence band edges since oxides in general have a valence band edge at higher binding energy compared to sulfides.

It is clear that TiO$_2$ has the highest binding energy of the valence band edge, followed by CdS, Sb$_2$S$_3$ and Bi$_2$S$_3$ in order of decreasing binding energy. The energy of the valence band edge is estimated by the intersection of the linearly extrapolated experimental spectra with the baseline as shown in the inset figure. Using this method, the energy difference of the valence band edges between TiO$_2$ and the sulfides are found to be 1.2 eV for CdS, 1.8 eV for Sb$_2$S$_3$ and 1.9 eV for Bi$_2$S$_3$ (where the estimated error bars are 0.1 eV). Compared to reported bulk values, the value obtained here is similar for CdS but smaller for Sb$_2$S$_3$ where a distance of 2.0 eV is reported. The energy level alignment is illustrated in figure 7 where the optical band gaps of TiO$_2$ and the metal sulfides (from figure 2) are used to draw the conduction band edges. According to this representation, CdS and Sb$_2$S$_3$ have a small driving force of about 0.4 eV for CdS and 0.3 for Sb$_2$S$_3$ for electron injection into TiO$_2$, while there is none with Bi$_2$S$_3$. Although these numbers contain the uncertainties discussed above, they give a good approximation of the energy level representation and are thus still useful for understanding device function.
3.2.2 TiO$_2$/Sb$_2$S$_3$/polymer interfaces. The overview spectra of the TiO$_2$/Sb$_2$S$_3$/polymer samples can be seen in figure 3. Carbon and sulphur is found in both polymers while nitrogen is only visible in PCPDTBT, in agreement with the molecular structures (see figure 1).

As seen in figure 8 the sulphur in the polymers are clearly distinguishable from the sulphur in Sb$_2$S$_3$ due to a higher binding energy. The S 2p spin doublet in P3HT, originating from a thiophene unit, show a binding energy of 164.5 eV. This gives a shift of 2.6 eV to the S 2p in Sb$_2$S$_3$, similar to what has been observed for the S 2p core level in mixtures of CdS quantum dots/P3HT nanowires. Each monomer unit in the PCPDTBT polymer contains three sulphur atoms, two in thiophene units (with C-S-C bonds) and one in a benzothiadiazole unit (with N-S-N bonds). The S 2p in the thiophene units in PCPDTBT have a very similar binding energy as the corresponding sulphur in P3HT and as in earlier reported studies. The higher binding energy contribution to the sulphur signal from PCPDTBT originates from the benzothiadiazole unit. The S 2p peaks from the polymers are broader when the polymer is deposited onto Sb$_2$S$_3$ compared to ITO. This could indicate a small interaction between the polymer and the sulfide. Note that the intensity of the S 2p originating from Sb$_2$S$_3$, observed at 162 eV, is barely visible for the TiO$_2$/Sb$_2$S$_3$/P3HT sample indicating that a thick polymer film is shielding the sulfide film. The inset therefore shows this sample measured with a higher photon energy where the measurement is more bulk sensitive and the S 2p from Sb$_2$S$_3$ is more visible.

Figure 9 displays the valence levels of the TiO$_2$/Sb$_2$S$_3$, TiO$_2$/Sb$_2$S$_3$/polymer and ITO/polymer samples. The overall valence structure of the TiO$_2$/Sb$_2$S$_3$/PCPDTBT sample is similar to TiO$_2$/Sb$_2$S$_3$. The TiO$_2$/Sb$_2$S$_3$/P3HT shows on the other hand similar structure of the valence levels as ITO/P3HT. Both these findings can be explained by a thicker organic film on the TiO$_2$/Sb$_2$S$_3$/P3HT sample than on the TiO$_2$/Sb$_2$S$_3$/PCPDTBT sample. A reason for the different thicknesses of the two polymers could be the difference in molecular weight of the two polymers (see experimental). Due to the different thicknesses of the polymer over-standing layer, the spectra in figure 9 are intensity normalized to the highest peak and not via the Ti 3p core level.
Fig. 8 The S 2p core levels on the TiO2/Sb2S3, TiO2/Sb2S3/polymer and ITO/polymer samples measured with a photon energy of 454 eV. Inset shows close-up of the sulfide contribution of the TiO2/Sb2S3/P3HT sample measured with a photon energy of 758 eV.

For the ITO/polymer samples, the binding energy region between 0–4 eV shows similar structure. In P3HT the peak at a binding energy of 3.5 eV is assigned to localised π-bands and the region between 0–2.5 eV are delocalised π-bands. The highest occupied levels in PCPDTBT has also been assigned to the conjugated π-system that is delocalised over the thiopene and benzene units.

3.2.2.1 Energy level alignment in TiO$_2$/Sb$_2$S$_3$/polymer interfaces. The energy distance of the valence band edges of the metal sulfide and the polymer is the driving force for charge separation when the holes move from Sb$_2$S$_3$ to the polymer in the solar cell. The inset in figure 9 shows a close up on the edges of the TiO$_2$/Sb$_2$S$_3$ and TiO$_2$/Sb$_2$S$_3$/polymer samples. Here we can see that the valence band edges of the polymers are at lower binding energy compared to Sb$_2$S$_3$. This indicates that even though the PCPDTBT film is very thin the outermost valence levels are clearly observed. The valence band edges are separated approximately 0.4 eV between Sb$_2$S$_3$ and the polymers. This is a sufficient driving force for the charge separation process in a solar cell, see figure 7. Comparing these values to the valence band edge position found for the different metal sulfides in the inset in figure 6(a), the metal sulfide–polymer energy difference can be expected to be 1.0 eV for CdS and 0.3 eV for Bi$_2$S$_3$.

Fig. 9 The valence levels of the TiO$_2$/Sb$_2$S$_3$, TiO$_2$/Sb$_2$S$_3$/polymer and ITO/polymer samples measured with a photon energy of 150 eV. Inset shows the valence band edges of the TiO$_2$/Sb$_2$S$_3$ and TiO$_2$/Sb$_2$S$_3$/polymer samples.

3.3 Solar cell characterization

To further investigate the functional effects of differences in energy level alignments for the material combinations synthesized here, solar cell devices were built and tested using the different sulfides on TiO$_2$ and P3HT as hole transporting material. PCPDTBT is not included in the device characterization as the thin polymer layers led to short-circuiting of devices and therefore made it difficult to assess the performance of the TiO$_2$/sulfide/polymer interfaces. However, an IPCE spectrum of a TiO2/Sb2S3/PCPDTBT is included for comparison.

Figure 10(a) shows representative IV-curves under 1 sun illumination and in the dark for devices with the different metal sulfides. Parameters extracted from the measurements are found in table 1. Solar cells including Sb$_2$S$_3$ show the highest short circuit current ($J_{sc}=9.48$ mA cm$^{-2}$) and fill factor ($FF=0.52$) giving the highest efficiency in this comparison ($\eta=3.35\%$). Even though solar cells with CdS show a high open circuit voltage ($V_{oc}=0.79$V) the short circuit current is low ($J_{sc}=1.27$ mA cm$^{-2}$) resulting in a lower efficiency ($\eta=0.46\%$). Bi$_2$S$_3$ give solar cells with low current and voltage and therefore also a low efficiency ($\eta=0.02\%$). While Bi$_2$S$_3$ seems to be quite conductive in both forward and reverse bias, there is limited photocurrent generation.

In order to determine where the short-circuit current was being generated in the devices, IPCE spectra were also mea-
Fig. 10 (a) IV and dark curves of solar cells of the architecture TiO₂(bl)/TiO₂(np)/sulfide/P3HT/silver. (b) IPCE spectra of the same solar cells as in (a). The inset shows a close up of the near infrared region.

The short circuit currents predicted from the IPCE measurements are in good agreement with the IV measurements, see table 1. From the spectra, it can be seen that for CdS cells the highest IPCE is achieved through excitation of the cadmium sulfide but that some current is also generated through excitation of the P3HT. It is clear however, that the current is limited by the large bandgap of CdS.

The IPCE spectrum of the Sb₂S₃/P3HT solar cell matches the broad absorption spectrum of antimony sulfide with an IPCE onset beyond 750 nm. Whether the P3HT contributes to the photocurrent is unclear from this spectrum. However, the IPCE spectrum of a TiO₂/Sb₂S₃/PCPDTBT solar cell shows photocurrent generation beyond 750 nm, indicating a small contribution of the polymer to the photocurrent. Finally, the IPCE of the bismuth sulfide solar cell is highest where P3HT absorbs. A close-up of the near infrared region of the IPCE is displayed in the inset in figure 10(b) and reveals a very limited amount of current generation from the bismuth sulfide itself at wavelengths longer than the absorption onset of P3HT.

Table 1 IV parameters and J_{sc} predicted from IPCE measurements.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CdS</th>
<th>Sb₂S₃</th>
<th>Bi₂S₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{sc} [mA cm⁻²]</td>
<td>1.27</td>
<td>9.48</td>
<td>0.89</td>
</tr>
<tr>
<td>V_{oc} [V]</td>
<td>0.79</td>
<td>0.68</td>
<td>0.11</td>
</tr>
<tr>
<td>FF</td>
<td>0.46</td>
<td>0.52</td>
<td>0.24</td>
</tr>
<tr>
<td>η [%]</td>
<td>0.46</td>
<td>3.35</td>
<td>0.02</td>
</tr>
<tr>
<td>J_{sc} [mA cm⁻²] IPCE</td>
<td>1.59</td>
<td>9.65</td>
<td>0.33</td>
</tr>
</tbody>
</table>

3.3.1 Effects of the energy level alignment.

The solar cell characteristics described in the previous section is here related to the results from the photoelectron spectroscopy measurements. According to the energy level alignment in figure 7 both CdS and Sb₂S₃ should have sufficient driving force for electron injection into TiO₂. In addition Sb₂S₃ also has a favourable distance between the valence band edge of Sb₂S₃ and the HOMO of both P3HT and PCPDTBT giving sufficient driving force for regeneration of the metal sulfide. In this sense, Sb₂S₃ is a good choice as a light absorber in TiO₂/metal sulfide/polymer configurations as energy losses at the interface are minimized, which is also indicated by the high efficiency of Sb₂S₃ devices, both in this work and other studies.

The low current of devices with CdS indicates that the TiO₂/CdS/P3HT is not an optimized structure for CdS devices, as high currents and good hole transfer have been observed in blends of CdS/P3HT.

Even though Bi₂S₃ show high absorption, the current produced in the Bi₂S₃ devices mainly originates from absorption in P3HT. This could be explained by the unfavourable energy level alignment between the Bi₂S₃ and TiO₂ conduction band edges with no or very low driving force for electron injection, in agreement with an earlier study. To enhance electron injection, the conduction band edge should be shifted to lower binding energies by, for example, forming a dipole layer at the interface, using e.g. sulphur ions. Other reasons for the low performance of solar cells with Bi₂S₃ could be related to the sulphur deficiency observed in this material.

The current generation from excitations of the polymers observed in IPCE spectra could either come from electron transfer to a sulfide or directly to the TiO₂. It is clear from the energy alignment that P3HT has sufficient driving force for electron transfer to either the sulfides or to TiO₂. PCPDTBT has sufficient driving force for electron transfer to TiO₂ and is likely to have driving force for electron transfer to Sb₂S₃ also. It should however be noted that for both CdS and Sb₂S₃ charge generation from the sulfide appears more efficient than charge generation from the polymer. It is likely that charge generation from polymers is limited by exciton diffusion to a TiO₂/sulfide interface.
Finally, the devices show an increasing open-circuit voltage and decreasing dark current with increasing bandgap of the metal sulfide. As the open-circuit voltage is not directly related to the valence and conduction band positions of the sulfides but to the Fermi level in TiO$_2$ and the HOMO level of the polymer, this could reflect a suppression of the back reaction at the TiO$_2$/sulfide/polymer interface, as the sulfide band gap is increased.

4 Conclusions

We have demonstrated that photoelectron spectroscopy can be used to determine the electronic structure and energy level alignment of TiO$_2$/metal sulfide and complete TiO$_2$/Sb$_2$S$_3$/polymer interfaces. The obtained alignments correlate well with the function of solar cells including the different metal sulfides.

Devices utilising Sb$_2$S$_3$ gave the highest conversion efficiencies in this comparison which is explained by the most favourable energy level alignment for both electron injection into TiO$_2$ and hole injection into the polymer.

In contrast, Bi$_2$S$_3$ sensitised systems show unfavourable energy level alignment for electron injection into TiO$_2$. As a consequence, devices including Bi$_2$S$_3$ show low efficiency and it could be seen that the generated current comes from absorption in the polymer rather than Bi$_2$S$_3$.

Devices with CdS as light absorber show a performance in between that of Sb$_2$S$_3$ and Bi$_2$S$_3$. The generated current is expected to come both from the sulfide and the polymer, but is ultimately limited by the large bandgap of CdS.

As a method for determining energy level alignment, photoelectron spectroscopy offers the possibility for studying complete interfaces in the actual device geometry. In addition, this method reveals information about the detailed electronic structure of the materials involved, which enables detailed characterisation of the interfaces.

Acknowledgements

This work was supported by the Swedish Energy Agency, by the Göran Gustafsson Foundation, by the Carl Tryggers Foundation, by StandUp for energy, by the Swedish Research Council through the seventh European Community Framework Programme, by the Engineering and Physical Science Research Council (EPSRC) through the Supergen (EP/G031088/1) and UK–India (EP/H040218/2) programmes, by the Royal Society and by the European Community’s Seventh Framework Programme (NanoMatcell, grant agreement no. 308997). We acknowledge MAX-IV for support during measurements.

References

1 G. Hodes and D. Cahen, Accounts of Chemical Research, 2012, 45, 705–713.

