
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

ChemComm

www.rsc.org/chemcomm

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Journal Name RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2014, 00, 1‐3 | 1 

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

A Phenacrylate Scaffold for Tunable Thiol Activation 
and Release 
Rathinam K. Sankar,‡,a Rohan S. Kumbhare,‡,a Allimuthu T. Dharmarajaa and 
Harinath Chakrapani*,a 

 

A thiol-selective 2-methyl-3-phenacrylate scaffold with 
spatiotemporal control over delivery of a cargo is reported. 
The half-lives of decomposition could be tuned from 30 min 
to 1 day and the scaffold’s utility in thiol-inducible 
fluorophore release in cell-free as well as within cells is 
demonstrated. 

Selective and covalent modification of thiols has numerous 

applications in biochemistry, imaging and medicine.1-3 Thiols in 

proteins or peptides can be conjugated to a small molecule4-5 or a 

macromolecule and is useful for interrogating cellular events, 

studying enzyme function and in drug discovery.6-10 Cancers, for 

example, have elevated thiol levels in comparison with their normal 

paired tissue.3, 11-13 Hence, this property can be exploited for directed 

delivery of drugs or fluorophores (for imaging) inside cells.3, 11-12, 14 

Here, a bioactive molecule or fluorophore is conjugated to a scaffold 

which is stable in buffer. Upon selective reaction with a thiol the 

active drug molecule or fluorophore is released.15-16 The relative 

abundance of thiols in cancers might facilitate site-specific 

localization of the biomolecule. Among the methods available for 

thiol-mediated activation and release, the disulfide-based scaffold, 

which is cleaved by glutathione to initiate a rearrangement leading 

to drug or fluorophore release, is widely used for drug delivery and 

imaging.2, 17-19 However, disulfides are susceptible to cleavage not 

just by glutathione but also by reductases20 and this scaffold does not 

have any structural handle for controlling rate of release of the 

bioactive small molecule. Hence, this method might not be suitable 

for slow release of drugs, for example. Finn and coworkers reported 

an oxanorbornadiene-based methodology for thiol activation and 

release21-22 where the rate of drug release could be tuned by 

structural modifications to the scaffold and is well suited for release 

of a fluorophore, possibly for imaging. For applications in drug 

release, however, this scaffold may have limited utility as the drug is 

still conjugated to a furan. Here, we report results of our design, 

synthesis and evaluation of a novel scaffold whose reaction rates 

with a biological thiol can be modulated by simple structural 

modifications.  

 A 2-methyl-3-phenacrylate-based scaffold was considered for 

tunable reactivity with thiols (Scheme 1). The core consists of a 2-

methylene-3-arylacrylate functionality connected with a phenol-

based self-immolative linker, which can be attached to a drug or 

fluorophore that is to be released. Michael addition23 of a thiol 

produces an enol(ate), which can rearrange to produce a self-

immolative phenolate; rearrangement of this intermediate would 

result in the release a leaving group, LG. -Halo acetamides have 

been frequently used for labeling thiols in biomolecules24-25 

supporting a direct SN2 attack on the ethereal carbon, which 

produces a phenolate and subsequent rearrangement can release 

the bioactive molecule LG. The carbonyl group is distant from the 

reaction centre but remains in conjugation while the aryl group 

communicates with the ether carbon and together these groups 

might help tuning of reaction rates. The pKa of the phenol and hence 

leaving group ability of the linker can also be modulated by changing 

substituent X to attain the desired reaction rate and hence 

spatiotemporally controlled release 

 
Scheme  1.  Proposed  2‐methyl‐3‐phenacrylate  scaffold  for  tunable  thiol 

activation. LG = leaving group 

 In order to synthesize this scaffold, bromide 2a was prepared 

from the corresponding alcohol 1a by a PBr3-mediated bromination 

reaction (Table 1, entry 1).26-27 The alcohol 1a was in turn prepared by 

a Baylis-Hillman reaction of benzaldehyde and methyl acrylate.28-29 
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supporting localization of this fluorophore within cells (Figure 4d). 

Together our data suggests that this scaffold is capable of 

permeating cells to deliver a bioactive cargo such as a fluorophore. 

 In summary, we report a novel scaffold that is suitable for thiol-

mediated activation and release of a drug or fluorophore with a high 

degree of thiol-selectivity and half-lives ranging from 30 min to 1 

day.37-38 The most common methodology available i.e. the disulfide-

based method has no structural handle for rate control. It is 

anticipated that the method presented here will be useful for 

selective thiol modification, thiol-mediated drug release as well as 

cellular imaging.25 

Notes and references 
aIndian Institute of Science Education and Research Pune, Dr. Homi Bhabha 
Road, Pashan Pune 411 008, Maharashtra, India. Fax: 91 20 2589 9790; 
Tel: 91 20 2590 8090; E-mail: harinath@iiserpune.ac.in.  

† These authors contributed equally 

‡ Electronic Supplementary Information (ESI) available: [Compound 

characterization data, assay protocols and spectra]. See 

DOI: 10.1039/c000000x/ 

 

1. C. Yin, F. Huo, J. Zhang, R. Martinez-Manez, Y. Yang, H. Lv and S. 

Li, Chem. Soc. Rev., 2013, 42, 6032-6059. 

2. M. H. Lee, Z. Yang, C. W. Lim, Y. H. Lee, S. Dongbang, C. Kang 

and J. S. Kim, Chem. Rev., 2013, 113, 5071-5109. 

3. X. Chen, Y. Zhou, X. Peng and J. Yoon, Chem. Soc. Rev., 2010, 39, 

2120-2135. 

4. S. Krishnan, R. M. Miller, B. Tian, R. D. Mullins, M. P. Jacobson and 

J. Taunton, J. Am. Chem. Soc., 2014, 136, 12624-12630. 

5. I. M. Serafimova, M. A. Pufall, S. Krishnan, K. Duda, M. S. Cohen, 

R. L. Maglathlin, J. M. McFarland, R. M. Miller, M. Frödin and J. 

Taunton, Nat. Chem. Biol., 2012, 8, 471-476. 

6. V. Chudasama, M. E. Smith, F. F. Schumacher, G. Papaioannou D. 

Fau - Waksman, G. Waksman, J. R. Baker and S. Caddick, Chem. 

Commun., 2011, 47, 8781-8783. 

7. D. Rabuka, J. S. Rush, d. G. W, P. Wu and C. R. Bertozzi, Nat. 

Protoc., 2012, 7, 1052-1067. 

8. D. A. Shannon, R. Banerjee, E. R. Webster, D. W. Bak, C. Wang and 

E. Weerapana, J. Am. Chem. Soc., 2014, 136, 3330-3333. 

9. M. H. Potashman and M. E. Duggan, J. Med. Chem., 2009, 52, 1231-

1246. 

10. A. T. Dharmaraja, T. K. Dash, V. B. Konkimalla and H. Chakrapani, 

Med. Chem. Commun., 2012, 3, 219-224. 

11. J. A. Cook, H. I. Pass, S. N. Iype, N. Friedman, W. DeGraff, A. 

Russo and J. B. Mitchell, Cancer Res., 1991, 51, 4287-4294. 

12. A. K. Godwin, A. Meister, P. J. O'Dwyer, C. S. Huang, T. C. 

Hamilton and M. E. Anderson, Proc. Natl. Acad. Sci., 1992, 89, 

3070-3074. 

13. R. J. Holland, A. E. Maciag, V. Kumar, L. Shi, J. E. Saavedra, R. K. 

Prud'homme, H. Chakrapani and L. K. Keefer, Chem. Res. Toxicol., 

2012, 25, 2670-2677. 

14. S. R. Malwal, A. Labade, A. S. Andhalkar, K. Sengupta and H. 

Chakrapani, Chem. Commun., 2014, 50, 11533-11535. 

15. H. Chakrapani, A. E. Maciag, M. L. Citro, L. K. Keefer and J. E. 

Saavedra, Org. Lett., 2008, 10, 5155-5158. 

16. D. Andrei, A. E. Maciag, H. Chakrapani, M. L. Citro, L. K. Keefer 

and J. E. Saavedra, J. Med. Chem., 2008, 51, 7944-7952. 

17. Z. B. Zheng, G. Zhu, H. Tak, E. Joseph, J. l. Eiseman and D. J. 

Creighton, Bioconjug. Chem., 2005, 16, 598-607. 

18. L. R. Jones, E. A. Goun, R. Shinde, J. B. Rothbard, C. H. Contag and 

P. A. Wender, J. Am. Chem. Soc., 2006, 128, 6526-6527. 

19. S. Chen, X. Zhao, J. Chen, J. Chen, L. Kuznetsova, S. S. Wong and I. 

Ojima, Bioconjug. Chem., 2010, 21, 979-987. 

20. A. Meister, J. Biol. Chem., 1988, 263, 17205-17208. 

21. V. Hong, A. A. Kislukhin and M. G. Finn, J. Am. Chem. Soc., 2009, 

131, 9986-9994. 

22. A. A. Kislukhin, C. J. Higginson, V. P. Hong and M. G. Finn, J. Am. 

Chem. Soc., 2012, 134, 6491-6497. 

23. C. Yin, F. Huo, Z. J, R. Martinez-Manez, Y. Yang, H. Lv and S. Li, 

Chem. Soc. Rev., 2013, 42, 6032-6059. 

24. L. A. Marcaurelle, M. R. Pratt and C. R. Bertozzi, ChemBioChem, 

2003, 4, 224-228. 

25. R. E. Hansen and J. R. Winther, Anal. Biochem., 2009, 394, 147-158. 

26. Y. Zulykama and P. T. Perumal, Aus. J. Chem., 2007, 60, 205-210. 

27. M. M. Sa, M. D. Ramos and L. Fernandes, Tetrahedron, 2006, 62, 

11652-11656. 

28. D. Basavaiah, A. J. Rao and T. Satyanarayana, Chem. Rev., 2003, 

103, 811-892. 

29. C. G. L. Junior, F. P. L. Silva, R. G. d. Oliveira, F. L. Subrinho, N. G. 

d. Andrade and M. L. A. A. Vasconcellos, J. Brazil. Chem. Soc., 

2011, 22, 2220-2224. 

30. A. B. Charette, B. Cote, S. Monroc and S. Prescott, J. Org. Chem., 

1995, 60, 6888-6894. 

31. M. D. Liptak, K. C. Gross, P. G. Seybold, S. Feldgus and G. C. 

Shields, J. Am. Chem. Soc., 2002, 124, 6421-6427. 

32. R. Pasceri, D. Siegel, D. Ross and C. J. Moody, J. Med. Chem., 2013, 

56, 3310-3317. 

33. F. Touzeau, A. Arrault, G. Guillaumet, E. Scalbert, B. Pfeiffer, M.-C. 

Rettori, P. Renard and J.-Y. Mérour, J. Med. Chem., 2003, 46, 1962-

1979. 

34. Y. Hori, T. Norinobu, M. Sato, K. Arita, M. Shirakawa and K. 

Kikuchi, J. Am. Chem. Soc., 2013, 135, 12360-12365. 

35. S. Karthik, B. Saha, S. K. Ghosh and N. D. Pradeep Singh, Chem. 

Commun., 2013, 49, 10471-10473. 

36. K. Tanabe, N. Hirata, H. Harada, M. Hiraoka and S.-i. Nishimoto, 

ChemBioChem, 2008, 9, 426-432. 

37. S. R. Malwal, D. Sriram, P. Yogeeswari and H. Chakrapani, Bioorg. 

Med. Chem. Lett., 2012, 22, 3603-3606. 

38. S. R. Malwal, D. Sriram, P. Yogeeswari, V. B. Konkimalla and H. 

Chakrapani, J. Med. Chem., 2012, 55, 553-557. 

Page 4 of 4ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t


