Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

1	Multifunctional Tin Dioxide Materials: Advances in Preparation
2	Strategies, Microstructure, and Performance
3	Zhiwen Chen, ^{*abc} Minghong Wu, ^{*ab} Chan-Hung Shek, ^{*c} C. M. Lawrence Wu, ^c and Joseph K. L.
4	Lai ^c
5	^a Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, People's Republic of
6	China
7	^b School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444,
8	People's Republic of China
9	^c Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue,
10	Kowloon Tong, Hong Kong
11	
12	
13	
14	
15	

^{*a*} Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, People's Republic of China. E-mail: *zwchen@shu.edu.cn. Tel.*: +86 21 66137503; Fax: +86 21 66137787.

^b School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China. E-mail: mhwu@staff.shu.edu.cn.

^c Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong. E-mail: apchshek@cityu.edu.hk

16 Abstract

17 Tin oxide materials are a class of unique semiconductor materials with widespread technological 18 applications because of their valuable semiconducting, gas sensing, electrical and optical properties in 19 the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts 20 toward understanding the synthetic strategies and formation mechanisms of the micro/nanostructures of 21 various tin dioxide thin films prepared by pulsed laser ablation, highlighting contributions from our 22 laboratory. First, we present the preparation and formation processes of tetragonal-phase tin dioxide 23 thin films with interesting fractal clusters. In addition, the quantum-dot formation and dynamic scaling 24 behavior in tetragonal-phase tin dioxide thin films induced by pulsed delivery will be discussed 25 experimentally and theoretically. Finally, we emphasize the fabrication, properties and formation 26 mechanism of orthorhombic-phase tin dioxide thin films by using pulsed laser deposition. This 27 research may provide a novel approach to modulate their competent performance and promote rational 28 design of micro/nanodevices. Once mastered, tin dioxide thin films with a variety of fascinating 29 micro/nanostructures will offer vast and unforeseen opportunities in semiconductor industry as well as 30 in other fields of science and technology.

31

32 Keywords: Tin Oxides; Thin Films; Preparation Strategies; Microstructure; Performance

- 33
- 34
- 35
- 36

37

38 1. Introduction

39 The key scientific issues of semiconductor micro/nanodevices and optoelectronics components in application and development have been driven scientists to explore in depth the design, preparation, 40 micro/nanostructure and performance of semiconductor materials.¹⁻⁵ Semiconductor oxides are 41 42 fundamental to the development of smart and functional materials, devices, and systems. Tin oxide materials have two unique structural features: mixed cation valences and an adjustable oxygen 43 44 deficiency, which are the bases for creating and tuning many novel material properties, from chemical 45 to physical. Tin oxide micro/nanostructures have garnered considerable attention in recent years for their potential to facilitate both the fundamental research and practical applications through their 46 advantageous chemical and physical properties.⁶⁻⁸ An integrated device for semiconductor industry is 47 highly desirable for versatile advanced applications.⁹⁻¹¹ The prospect of using pulsed laser deposition 48 49 processes to fabricate semiconductor oxide thin films continues to drive research towards improving 50 the performance of the semiconducting materials utilized in these devices. Since the properties of 51 materials strongly depend on its micro/nanostructures, which all result from the fabrication processes, 52 the influence of micro/nanostructural evolution on material properties is especially remarkable for materials science and engineering.^{12,13} However, challenges remain to further improve the material 53 fabrication processes for various advanced applications. This optimization requires a clear 54 understanding of the relationship between micro/nanostructures and thin film morphologies.^{14,15} 55

Tin oxide micro/nanostructures provide a versatile, multifaceted platform for a broad range of advanced applications.¹⁶ Recent studies have validated their use in many fields of science and technology that integrate the areas of chemistry, physics, materials science and nanotechnology. For example, they can function as semiconductors for a number of applications in microelectronic devices, optoelectronic components, and solar-thermal converter, they can serve as gas-sensors for the detection and forecasting of a variety of combustible gases, environmental pollution gases, industrial emissions

ChemComm Accepted Manuscript

and hazardous gases, they can used as electrodes for melting optical glass and electrolytic aluminum
 industry, they can act as catalysts for the active phase of many heterogeneous catalysis in hydrocarbon
 oxidation, they can also serve as varistor for the arrester used in power systems, and so on.

65 Tin dioxide (SnO₂) thin films are essential components of several modern technologies. For instance, SnO₂ thin films represent an unsurpassed material in the design of metal oxide gas-sensors,^{17,18} and the 66 microelectronic revolution would have not been the same without the excellent properties of SnO₂ thin 67 68 films. However, SnO₂ thin films with fascinating micro/nanostructures are often used in many sundry 69 devices and systems. For example, it is used as the lithium-ion battery anode materials, gas-sensing 70 materials, negative temperature coefficient thermistor materials, doped SnO₂ varistor materials, 71 resistance-type humidity-sensing materials, catalyst materials, optical and electrical materials, etc. the 72 possibility to growth micro/nanostructures is therefore essential to improve the performance of SnO₂ thin films.¹⁹ Several synthetic strategies have been developed to grow the SnO₂ thin films and study 73 their chemistry.^{20,21} In fact, significant advances have been done in the understanding of the 74 micro/nanostructural evolution of SnO₂ thin films.^{22,23} However, it is only in the past few years that it 75 76 became evident that besides SnO₂ thin films that closely resemble the corresponding bulk materials, 77 also new systems exist, sometimes with unexpected properties either related to the morphologies of 78 SnO₂ thin films or to their micro/nanostructural flexibility. Presumably, the most exciting developments are related to the possibility to modify in a desired manner the chemical properties of 79 molecules or deposited SnO₂ thin films with fascinating micro/nanostructures.^{24,25} Most of above 80 81 applications are based upon the novel micro/nanostructures known as derived from different synthetic strategies and processing.²⁶⁻²⁸ Pulsed laser deposition (PLD) technique is considered to be one of the 82 effective methods for the preparation of SnO₂ thin films with fascinating micro/nanostructures. 83

PLD is a useful growth tool in which photonic energy is coupled to the bulk starting material via electronic processes.^{29,30} Laser ablation for thin film growth has many advantages: (i) energy source

Page 5 of 32

ChemComm

86 (laser) is outside the vacuum chamber, in contrast to vacuum-installed devices, which provides a much 87 greater degree of flexibility in materials used and geometrical arrangements; (ii) almost any condensed 88 matter material can be ablated; (iii) pulsed nature means that thin film growth rates may be finely 89 controlled; (iv) amount of evaporated source material is localized only to that area defined by the laser 90 focus; (v) under optimal conditions, the ratios of the elemental components of the bulk and thin films 91 are the same, even for chemically complex systems; (vi) kinetic energies of the ablated species lie 92 mainly in a range that promotes surface mobility while avoiding bulk displacements; and (vii) ability to 93 produce species with electronic states far from chemical equilibrium opens up the potential to produce 94 novel or metastable materials that would be unattainable under thermal conditions. Above growth 95 processes may be supplemented by an inert or reactive gas or ion source, which may affect the ablation 96 plume species in the gas phase or surface reaction. The diversity of thin films grown by using PLD is 97 enormous and perhaps recommends its flexibility more persuasively than anything else.

98 During the past ten years or so, we and our collaborators have actively devoted in the investigations 99 of the micro/nanostructures of tin oxide thin films that related to the synthesis methods, technological 100 improvements, characterizations, properties and applications. This review only covers some of the most 101 recent studies, with a focus on their synthetic strategies and formation mechanisms. We start with a detailed investigation of the preparation and formation processes of tetragonal-phase SnO2 thin films 102 103 with interesting fractal clusters. We then describe experimentally and theoretically the quantum dot 104 formation and dynamic scaling behavior in tetragonal-phase SnO₂ thin films induced by pulsed 105 delivery. Finally, we elaborate on the fabrication, properties and formation mechanism of 106 orthorhombic-phase SnO₂ thin films. Fig. 1 shows schematic illustrating the morphological changes 107 involved in the tetragonal SnO₂ fractal thin films, tetragonal SnO₂ quantum dots and orthorhombic 108 SnO₂ thin films prepared by laser ablation.

109

Fig. 1 Schematic illustrating the morphological changes involved in the tetragonal SnO₂ fractal thin
films, tetragonal SnO₂ quantum dots and orthorhombic SnO₂ thin films prepared by laser ablation.

112

113 **2. Tin dioxide fractal thin films**

With the advent of advanced thin film technology more cost-effective, reproducible devices can be constructed with a reduction in device size and a concomitant increase in the response speed by using SnO₂ thin films. Since gas sensing is based on adsorption mechanism on the SnO₂ grain surface, a small grain size is desirable in order to achieve a high specific area for high sensitivity.^{31,32} Structural properties, such as grain size, grain geometry as well as specific surface area, can significantly affect the gas sensing properties of SnO₂ thin films. In order to control these structural characteristics, the micro/nanostructural evolution of SnO₂ thin films should be understood. Micro/nanostructural

Page 7 of 32

ChemComm

121 variations should inevitably change their chemical and physical properties. Thus, the study of the 122 micro/nanostructures of SnO_2 grains can help us to reveal some peculiar micro/nanoscale features and 123 to explain the corresponding experimental results.

124 Fractal theory is a potentially powerful technique to characterize micro/nanostructures. We and our collaborators have successfully applied this technique to the fractal assessment of SnO₂ thin films.^{33,34} 125 126 Besides showing some examples of geometric structures of SnO₂ thin films, here we will discuss the 127 applicability and relevance of fractal theory to studying the micro/nanostructure and formation 128 mechanism of SnO₂ thin films. Fig. 2 shows the scanning electron microscopy (SEM) images of SnO₂ 129 thin films prepared on Si (100) substrate at temperatures of (A) 300, (B) 350, (C) 400, and (D) 450°C, 130 respectively. SEM observation indicated that all thin films produced under different substrate 131 temperatures exhibited self-similar fractal patterns. It can be seen that the fractal patterns are open and 132 loose structure with increasing substrate temperature. The average size and fractal dimension (D) of the 133 fractal clusters for four thin films were estimated by measurement on the fractal regions and using conventional box-counting method,³⁵⁻³⁷ respectively, which were decided to be about 0.307 µm (Fig. 134 135 3A) with D = 1.896, 0.906 µm (Fig. 3B) with D = 1.884, 1.202 µm (Fig. 3C) with D = 1.865, and 1.608 136 μ m (Fig. 3D) with D = 1.818. It was found that the average size of the fractal clusters increased and the 137 fractal dimension decreased with increasing substrate temperature. The smaller fractal dimension 138 means that the SnO₂ thin films are composed of the open and loose fractal structure with finer branches. 139 This fractal structure may lead to improvement in the design of gas sensors for the monitoring of 140 environmental pollutants.

141

Fig. 2 SEM images of SnO_2 thin films prepared on Si (100) substrate at temperatures of (A) 300; (B) 350; (C) 400; and (D) $450^{\circ}C.^{33}$

144

145 On the basis of experimental observation, the formation process of SnO₂ nanocrystals and fractal clusters could be reasonably described by a novel model proposed by us.³³ It was separated into eight 146 147 steps, which illustrated in detail in Fig. 3: (i) operation of the KrF excimer laser at a repetition rate of 10 Hz at an incident angle of 45° to the polished sintered cassiterite SnO₂ target rotating at a rate of 15 148 149 rpm to avoid drilling; (ii) production of the high-temperature and high-pressure SnO₂ plasma at the solid-liquid interface quickly after the interaction between the pulsed laser and SnO₂ target; (iii) 150 151 subsequent expansion of the high-temperature and high-pressure SnO₂ plasma leading to cooling of the SnO₂ plumes.^{38,39} In this case, the interval between two successive pulses is much longer than the life 152

8

ChemComm Accepted Manuscript

Page 9 of 32

ChemComm

153 of the plasma. Therefore, the next laser pulse had no interaction with the former plasma; (iv) deposition 154 of the SnO₂ plume on Si (100) substrate after the disappearance of the plasma, inducing the initial nucleation of SnO₂ nanocrystals; (v) grain rotation culminating in a low-energy configuration. This 155 156 process is directly related to the reduction of surface energy, aimed at minimizing the area of highenergy interfaces;⁴⁰ (vi) possible formation of a coherent boundary between grains due to grain rotation, 157 158 with the consequence of removing the common grain boundary and culminating in a single larger SnO_2 159 nanocrystal. This is the coalescence process; (vii) growth of SnO₂ nanocrystals along preferred 160 crystallographic directions which could be predicted by an analysis of the surface energy in several 161 crystallographic orientations; (viii) formation of the fractal structure as SnO₂ crystallizes and nucleates 162 at high energy interfaces such as grains boundaries. According to the fractal theory, the heat released by crystallization leads to a local temperature rise in surrounding area and this temperature field can 163 164 propagate quickly and stimulate new nuclei appearing randomly in nearby regions. The stimulated 165 nuclei of the next generation can also cause a local temperature rise and repeat the above process many times until SnO₂ fractal patterns are formed.^{41,42} Based on the above proposed formation mechanism, 166 167 we characterized the formation processes of SnO_2 fractal clusters as shown in Fig. 3A~I. We believe 168 that the laser ablation technique is an appropriate method to synthesize a series of fractal clusters with 169 controlled composition, morphology and nanocrystal size, which are of important in the study of the 170 sensitivity of SnO₂ thin films.

Fig. 3 The formation processes of SnO₂ nanocrystals and fractal clusters: (A) laser; (B) target; (C)
plasma; (D) plume; (E) nucleation; (F) grain rotation; (G) coalescence; (H) growth; and (I) fractal.³³

174

175 **3. Tin dioxide quantum dots**

In a variety of nonequilibrium growth processes, such as gelation, aggregation, coagulation, and condensation, the formation of size-distributed clusters is a very commonly encountered phenomenon. Therefore, understanding the related dynamics is a problem of considerable interest. Many studies on

Page 11 of 32

ChemComm

179 this subject have revealed the scale invariance of the cluster size distribution. Among the various 180 processes involving cluster/droplet growth and coalescence, the process of vapor deposition has been 181 most widely investigated, a few examples being the role of condensate patterns in heat transfer, breath-182 figure formation, and thin film growth. We have successfully demonstrated experimentally and 183 theoretically the quantum dot formation and dynamic scaling behavior of SnO₂ nanocrystals induced by pulsed delivery.⁴³ Fig. 4 shows a high-resolution transmission electron microscopy (HRTEM) image of 184 185 the as-deposited SnO₂ thin films prepared by PLD method. It can be seen that the clear-cut crystalline 186 features inside the SnO₂ thin films. On closer inspection, recurrent values of separation distance 187 between lattice layers were found (in particular, 0.33 nm, evidenced in the bottom left-hand corner 188 inset of Fig. 4), corresponding to lattice parameters of the rutile structure of SnO₂ cassiterite phase 189 (arising from <110> reflection). HRTEM investigation can give useful information about local 190 composition at dislocation cores. As can clearly be seen in Fig. 4, the grain cluster is composed of 191 several primary nanocrystallites without grain boundaries. This is strong evidence that the coalescence 192 occurs when two or more neighbor grains assume the same orientation, resulting in a single 193 nanocrystal. When nanocrystalline materials grow by oriented attachment at crystallographically 194 specific surfaces, there is a small misorientation at the interface. Spiral growth at two or more closely spaced screw dislocations provides a mechanism for generating complex structures.⁴⁰ When the grains 195 196 assume the same orientation, that is, a coherent grain-grain boundary, the grain boundary must migrate toward the smaller particle, resulting in a single larger nanocrystal.⁴² We suggest that these 197 198 nanocrystals are composed of isolated SnO₂ nanocrystals about from 4 to10 nm in size that are 199 besieged by amorphous phase. This structure should result in the quantum dots of SnO₂ nanocrystals. 200 The local HRTEM image revealed that individual SnO₂ nanocrystal embedded isolatedly in an 201 amorphous matrix, which confirmed that the existence of the quantum dots is due to the reduction of 202 the grain size by pulsed delivery. It is reasonable to speculate that the crystalline quantum dots may

- 203 lead to further enhancement of the energy gap due to low-dimensional confinement. This quantum dot
- 204 distribution is in agreement with previous simulations based on the kinetic Monte-Carlo model.⁴³

205

Fig. 4 HRTEM image of the as-prepared SnO_2 thin films shows the structural features of the crystalline nanophase; the bottom left-hand corner inset shows a magnification of the image of a single SnO_2 dot 5.5 nm in diameter in (110) plane with the measured lattice parameters.⁴³

209

Fig. 5 shows the kinetic Monte-Carlo simulations of pulsed-laser deposition (Fig. 5a) and molecularbeam epitaxy (MBE) (Fig. 5b) in the submonolayer regime. This model is controlled by three

Page 13 of 32

ChemComm

ChemComm Accepted Manuscript

212 parameters: the pulse intensity I, the diffusion constant D, and the average flux density of incoming 213 particles F. In particular, the control parameter of PLD is the pulse intensity I, which is the number of 214 particles deposited in one pulse per unit area, and the diffusion-to-deposition ratio D/F. The average 215 deposition rate is given by $F = I/\Delta t$, where Δt is the time interval between two pulses. The intensity is 216 measured in monolayers (ML), and D/F is dimensionless, as the lattice constant is set to unity. 217 Performing Monte-Carlo simulations, we investigated the nucleation density for various pulse 218 intensities using a system size of 400×400 square lattice and the island distance has been measured at 219 0.2 ML coverage, when the island density reaches its maximum but coalescence does not yet set in. For small intensities, we recover the well-known power law for the island distance in MBE:⁴⁴ 220

221
$$l_D \propto (D/F)^{\gamma}, \qquad (1)$$

where the exponent γ depending on the dimension of the surface, the island dimension, and the critical nucleus *i**, that is, the smallest stable island contains *i**+1 atoms. For a two-dimensional surface, compact islands and a critical nucleus of *i** = 1, one obtains $\gamma = 1/6$. Here, one should note that the islands are not compact but fractal patterns as shown in Fig. 5b. This is due to the fact that edge diffusion is not considered in the simulations. The exponent γ can be determined from simulations such that one monitors the number of nucleation events in a layer ($\propto l_D^{-2}$) as a function of *D/F*. However, for PLD with large intensities, the island distance obeys a different power law:

$$l_D \propto I^{-\nu}, \qquad (2)$$

where $v = \gamma/(1-2\gamma) = 1/(2+d_f)$, and more generally $\gamma = 1/(4+d_f)$, if they have the fractal dimension d_f . In this regime the island distance is independent of the parameter D/F, since the adatoms do not make use of their diffusion probability, as they find an island and attach to it in a much shorter time as the time they are allowed to diffuse between two depositions. Therefore, above two regimes

234 described by the formulae (1) and (2) are separated by a crossover at a certain intensity, where the 235 number of deposited atoms is of the same order of magnitude as the adatom density. As the average adatom density *n* in MBE scales as $n \propto (D/F)^{-1+2\gamma}$, the critical intensity has to show the same scaling 236 behavior: $I_c \propto (D/F)^{-1+2\gamma}$. The qualitative difference between PLD and MBE for $I > I_c$ is shown in Fig. 237 5. As can be seen, there are many nucleations at an early stage, although the effective flux of incoming 238 239 particles is the same in both cases. The scaling behavior, namely, the fractal dimension, is measured by 240 using the box-counting method. The fractal dimension values for the PLD and MBE were decided to be 241 1.28±0.03 and 1.62±0.03, respectively. The scaling exponent was found to be significantly different as 242 compared to the exponent for the same system under continuous vapor deposition such as MBE. The 243 simulations revealed that this attractive difference could be pursued to the large fraction of multiple 244 droplet coalescence under pulsed vapor delivery.

245

Fig. 5 The kinetic Monte-Carlo simulations of pulsed-laser deposition and molecular-beam epitaxy in the submonolayer regime. (a) A simulated PLD-grown surface with $D/F = 2 \times 10^8$ and I = 0.01 ML; (b) A simulated MBE-grown surface with $D/F = 2 \times 10^8$. The figure shows typical configurations after deposition of 0.05 ML.⁴³

4. Orthorhombic tin dioxide thin films

It has been known that the naturally occurring form of SnO₂ is cassiterite. Under normal conditions, 251 252 SnO₂ exists in the most important form of a crystalline phase known as cassiterite. The cassiterite has a 253 rutile tetragonal crystal structure and its optical, electrical and gas-sensing properties have been extensively studied.^{22,23} Sangaletti and co-workers have reported SnO₂ multilayer thin film grown by 254 255 the rheotaxial growth and thermal oxidation method on Al₂O₃ substrates.⁴⁵ Their results indicated that, 256 in addition to the SnO₂ cassiterite phase, a contribution from another SnO₂ phase was present, which 257 can be related to cassiterite by introducing micro-twinning effects. This SnO₂ multilayer thin film 258 showed a higher sensitivity towards CO with respect to the conventional single layer SnO₂ sensors. 259 Another form of SnO₂ with an orthorhombic structure is known to be stable only at high pressures and 260 temperatures. The formation of orthorhombic-phase SnO₂ is intimately tied to a number of important synthesis parameters such as high pressures and temperatures.⁴⁶⁻⁴⁸ Müller found an unknown epitaxial 261 interface phase of SnO₂ on α -quartz (1010), which indicated that different octahedra stacking in the 262 case of SnO₂ may give rise to different orthorhombic possibilities.⁴⁹ Several authors have claimed the 263 "discovery" of this "high-pressure" phase under low-pressure conditions.⁵⁰⁻⁵³ Arbiol and co-workers 264 265 have reported the synthesis of pure monocrystalline orthorhombic SnO₂ nanowires and pure monocrystalline orthorhombic SnO₂ nanowires decorated with cassiterite SnO₂ nanoclusters.⁵⁴ In fact, 266 when previous experiments are examined in detail, it is often difficult to rule out the possibility of the 267 268 presence of high compressive stress. Here, we highlight our experimental results of orthorhombic SnO_2 thin film under low pressure and temperature by using pulsed laser deposition technique.⁵⁵ 269

The X-ray diffraction (XRD) patterns of the as-prepared thin films (Fig. 6a-i) indicated that the major reflections can be indexed to the orthorhombic-phase SnO_2 (labeled O) referred to the International Center for Diffraction Data PDF file as shown in Fig. 6a-iii. Upon exposing the asprepared thin films to ambient air for six months, the intensity and position of the XRD patterns remain

Page 17 of 32

ChemComm

274 unchanged (Fig. 6a-ii). This result revealed that the as-prepared thin films are stable and have an 275 orthorhombic SnO₂ structure. However, it seems that some reflections can also be assigned to the 276 tetragonal-phase SnO (labeled T). Above results proved that the as-prepared thin films may be a 277 mixture matrix of the orthorhombic-phase SnO₂ and tetragonal-phase SnO. Further investigation of the 278 phase purity of the as-prepared thin films is necessary. Fig. 6b shows the X-ray photoelectron spectra 279 (XPS) taken from the tin and oxygen regions. The peaks at 495.0 and 486.5 eV are attributed to the 280 $\text{Sn}3d_{3/2}$ and $\text{Sn}3d_{5/2}$, respectively, which are close to the data for Sn(3d) in SnO_2 . The gap between the $\text{Sn}3d_{3/2}$ and $\text{Sn}3d_{5/2}$ levels is 8.5 eV which is approximately the same as that in the standard spectrum 281 282 of Sn. The peak at 530.5 eV can be assigned to the O1s (the inset in Fig. 6b). Owing to the proximity of 283 the XRD patterns and XPS peaks of SnO₂ and SnO, the valence states of tin species of the as-prepared 284 thin films could not be satisfactorily determined from the XRD and XPS results. Fig. 7a represents the 285 room-temperature experimental Mössbauer spectrum for the as-prepared thin films as well as its fitting 286 curve. Clearly, only one absorbing peak appears here, with an isomer shift and a quadruple splitting being 0 and ~0.6 mm/s, respectively. From data analysis, it is concluded that the tin shows a Sn⁴⁺ 287 288 valence state. The energy-dispersive X-ray spectroscopy (EDXS) analysis revealed that the as-prepared 289 thin films are composed of 33.4 at.% Sn and 66.6 at.% O (Fig. 7b), that is, Sn:O = 1:1.994, which is in 290 good agreement with Sn:O = 1:2 of SnO_2 bulk. The above results indicated that the chemical 291 composition of the as-prepared thin films is consistent with the SnO₂ form.

ChemComm Accepted Manuscript

292

Fig. 6 (a) XRD patterns of (i) the as-prepared SnO_2 thin film (orthorhombic SnO_2 labeled O and tetragonal SnO labeled T); (ii) exposing the as-prepared SnO_2 thin film to ambient air for six months;

(iii) the standard SnO_2 bulk. (b) XPS of the as-prepared SnO_2 thin film, which was taken from the tin and oxygen regions.⁵⁵

297

298

Fig. 7 (a) Room-temperature experimental Mössbauer spectrum for the as-prepared SnO₂ thin film and its fitting curve. (b) EDXS of the as-prepared SnO₂ thin film.⁵⁵

300

ChemComm Accepted Manuscript

301 Since the applications of SnO₂ are related to surface electronic properties, we further examined the 302 electronic structure of the orthorhombic SnO₂ thin films using soft X-ray absorption near-edge 303 structure (XANES) spectroscopy. A comparison of the Sn $M_{4,5}$ -edge XANES spectrum of the 304 orthorhombic SnO₂ thin films to those of the tetragonal SnO₂ and SnO reference samples is given in 305 Fig. 8a. The Sn $M_{4,5}$ -edge spectra reflected electron transitions from Sn3d core level (spin-orbit split into $3d_{3/2}$ and $3d_{5/2}$ levels, giving rise to M_4 and M_5 edges, respectively) to unoccupied electronic states 306 307 above the Fermi level. If the core hole and electron correlation effects are ignored, such spectra 308 essentially depicted Sn-related p- and f-projected states in the conduction band. Nevertheless, it is 309 important to note that the surface electronic structure of the orthorhombic SnO₂ is more similar to that 310 of the tetragonal SnO₂ rather than the tetragonal SnO. The data in Fig. 8a show that undercoordinated 311 surface atoms in the orthorhombic SnO₂ thin films introduce additional Sn-related electronic states, 312 which are close to the conduction band minimum (~499 eV in Fig. 8a). This finding is surprising. It is 313 consistent with the Mössbauer and EDXS analysis which revealed no evidence of the tetragonal-phase 314 SnO, and rules out the existence of the tetragonal SnO in XRD. The evaluation of above all 315 experimental data indicated that the as-prepared thin films are composed of a pure orthorhombic-phase 316 SnO₂. Fig. 8b shows that the optical transmittance is measured in the wavelength range from 200-800 317 nm for the orthorhombic SnO₂ thin films and tetragonal SnO₂ reference sample at room temperature. We found that the transparency of the orthorhombic SnO₂ is superior to that of the tetragonal SnO₂. Fig. 318 319 8c shows the absorption coefficient versus the photon energy for the orthorhombic SnO_2 and tetragonal 320 SnO_2 reference sample. A linear extrapolation towards zero absorption E_g corresponds to direct allowed transitions. We obtained $E_g = 4.02$ eV for the orthorhombic SnO₂ and $E_g = 3.73$ eV for the tetragonal 321 SnO_2 reference sample in energy. By comparing E_g for the orthorhombic SnO_2 thin films with that of 322 323 the tetragonal SnO₂ reference sample, it is evident that the band-gap widening occurs and hence the 324 orthorhombic SnO₂ thin films becomes transparent.

Fig. 8 (a) Sn $M_{4,5}$ -edge XANES spectrum of the orthorhombic SnO₂ [labeled SnO₂(O)] compared with the spectra from tetragonal SnO₂ [labeled SnO₂(T)] and SnO [labeled SnO(T)]. (b) Spectrophotometric transmittance measured in a wavelength range of 200-800 nm for the orthorhombic SnO₂ and tetragonal SnO₂. (c) Absorption coefficient vs photon energy obtained from Fig. 8b.⁵⁵

330

ChemComm Accepted Manuscript

331 Further advancement of this approach to the synthesis of orthorhombic SnO₂ thin films requires a 332 clear understanding of its formation mechanism. Fig. 9 shows the schematic diagram of the oxygen 333 exchange reaction mechanism at the grain interfaces to explain the formation of this orthorhombic 334 phase. It consisted of four different oxygen species $(O_2, O_2, O_2, O_3, O_3, O_3)$ coupled by the elementary 335 reaction steps. Since the transported oxygen species is neutral atom, the availability of neutral oxygen 336 atom at the surface of the deposition layer is a factor influencing the degree of exchange. The amount 337 of available oxygen atom depends on the rate of the dissociation of O_2 and the amount of oxygen 338 species at the surface of the deposition layer in the atmosphere of the laser ablated plume. A based 339 explanation for the formation of orthorhombic-phase in the oxygen exchange reaction may come from 340 ablated plume to deposition layer variation. Since the grain-boundary diffusion is fast, we expect 341 oxygen exchange reaction at the grain interfaces in the deposition layer. The most significant 342 development of this model is the incorporation of the neutral oxygen atoms, which can be considered to 343 be a part of the lattice in the oxidized or stoichiometric form of the deposition layer, resulting in the 344 atomic rearrangement and the formation of the orthorhombic-phase SnO₂. In this model, the capture of 345 an election depends on the thermal velocity of electrons close to the substrate temperature and the 346 density of electrons close to the surface of the deposition layer. Since the oxygen species $(O_2^- \text{ and } O^-)$ 347 continuously exchange electrons with the deposition layer and the neutral oxygen atoms may contribute 348 to the lattice of the deposition layer via the faster diffusion of the grain boundary, which result in the 349 reduction of the oxygen vacancies, the band-gap widening occurs and the orthorhombic SnO₂ thin films becomes transparent.⁵⁶ The epiaxial strain in randomly oriented polycrystalline orthorhombic SnO₂ thin 350 351 films should not attain substantial magnitude. We can speculate that the key factor for the synthesis of 352 the orthorhombic SnO₂ thin films is not compressive stress in the thin films. Above results indicated 353 that the orthorhombic SnO₂ thin films can be fabricated through processes at ambient or subambient 354 pressures.

355

Fig. 9 Schematic diagram of oxygen exchange reaction mechanism at the grain interfaces to explain the formation and optical properties of the orthorhombic phase.⁵⁵

358

359 5. Concluding Remarks

Due to increasing interest in the SnO_2 nanomaterials, we carried out a series of studies investigating their micro/nanostructural evolution and related formation mechanisms. We examined the micro/nanostructures, functions, formation processes, and physicochemical characteristics of the SnO_2 thin films. Research on SnO_2 thin films will bring the innovations to technologies, such as micro/nanostructure and morphology associated technique, micro/nanostructure and characterization coupling technique, micro/nanostructure and advanced function simulation technique, and so forth. In order to achieve optimized functional performance with the SnO_2 micro/nanostructures, however,

ChemComm Accepted Manuscript

several challenges still remain. Further investigation and additional effort are needed to tackle some
 important issues for promoting the practical applications of the SnO₂ micro/nanostructures.

369 This review has provided the synthetic strategies and formation mechanisms of the 370 micro/nanostructures of various SnO_2 thin films prepared by pulsed laser ablation. We hope this review has given the reader a sense of the great potential of SnO₂ thin films with interesting 371 372 micro/nanostructures. As we and others continue to explore this promising material, the unique 373 micro/nanostructure features of SnO₂ thin films and numerous ways in which the properties can be 374 tuned will likely lead to the development of further exciting techniques and powerful combinations of 375 existing ones. It is expected that these SnO₂ thin films with fascinating micro/nanostructures may offer 376 vast and unforeseen opportunities in oxide semiconductor devices as well as in other fields of science 377 and technology.

378

379 Acknowledgements

380 The work described in this article was financially supported by the National Natural Science 381 Foundation of China (Project Numbers: 11375111, 11428410, 11074161, 11025526, 41373098 and 382 41430644), the Research Fund for the Doctoral Program of Higher Education of China (Project 383 Number: 20133108110021), the Key Innovation Fund of Shanghai Municipal Education Commission 384 (Project Numbers: 14ZZ098 and 10ZZ64), the Science and Technology Commission of Shanghai 385 Municipality (Project Numbers: 14JC1402000 and 10JC1405400), the Shanghai Pujiang Program 386 (Project Number: 10PJ1404100), and the Program for Changjiang Scholars and Innovative Research 387 Team in University (Project Number: IRT13078). This work was also supported by a grant from the 388 Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. (RGC 389 Ref. No.), CityU 119212].

Biographical Information

391

392 **Zhiwen** Chen was born in Hefei. Anhui, China, and received his BSc degree in Chemistry from the 393 Heifei Normal University, MSc degree in Inorganic Chemistry from the University of Science and 394 Technology of China (USTC), and PhD degree in Materials Physics and Chemistry from the City 395 University of Hong Kong (CityUHK). Since 1993, he has worked at USTC as an Assistant Professor, 396 Associate Professor. He joined the Teikyo University in Japan as a Research Fellow in 1999 and the 397 CityUHK as a Research Fellow and Senior Research Fellow in 2001 and 2007 respectively, and is now 398 a Chartered Professor at the Shanghai University, China. His research interests mainly focus on the 399 controllable-synthesis, characterization and properties of advanced functional materials and oxides 400 nanomaterials. He has published over 170 papers in refereed journals. He served as a Guest Editor, the 401 member of Editorial Board, and Reviewer or Referee for many international journals, and is now 402 Editor-in-Chief of Advances Materials **Physics** Chemistry, Website: and in 403 http://www.scirp.org/journal/ampc.

ChemComm Accepted Manuscript

Minghong Wu earned her PhD from the Chinese Academy of Science in 1999. After some years of postdoctoral research in Japan, she became a Professor in 2002 at the School of Environmental and Chemical Engineering of Shanghai University in China. She was the Distinguished Young Scientist supported by the National Natural Science Foundation of China. Her main research interests include the environmental chemistry, nanostructures of sensors, and biomedical materials. So far she has authored more than 130 publications and patents.

411

412 Chan-Hung Shek got his PhD in 1994 from the Department of Mechanical Engineering at the 413 University of Hong Kong. He then joined the City University of Hong Kong (CityUHK) as an 414 Assistant Professor and became an Associate Professor in 2001. He is currently a Professor in 415 CityUHK. Since 2007, he has been appointed as Assistant Head of Department of Physics and 416 Materials Science and now is an Associate Head, he was concurrently appointed as Assistant Dean of 417 College of Science and Engineering in 2011. He major research interests are the correlation among 418 processing, microstructures and properties of materials, including nanostructured metal oxides, bulk 419 metallic glasses and conventional engineering alloys.

420

425

421 **C. M. Lawrence Wu** received his PhD from the University of Bristol, UK in 1986 and has been 422 working in City University of Hong Kong since 1987. He is currently a Professor in the Department 423 of Physics and Materials Science. Apart from working on the synthesis and characterization of 424 nanocrystals, he also works on plasmonic effects in the application of bio-sensing and solar energy.

426 Joseph K. L. Lai won an open scholarship to study Physics at Keble College, Oxford University in 427 1971 and graduated with first class honours in 1974. He joined the Central Electricity Research 428 Laboratories (CERL) in UK after graduation and was appointed Project Leader of the Remaining Life 429 Study Group in 1984. While working at CERL he studied for a PhD at the City University, London, 430 UK and was awarded the degree in 1982. He returned to Hong Kong in 1985 and has worked at 431 CityUHK ever since. He is now Chair Professor of Materials Science in the Department of Physics and 432 Materials Science. Professor Lai is a Fellow of the Hong Kong Institution of Engineers, a Chartered 433 Engineer, and a Fellow of the following UK professional institutions: Institute of Materials, Minerals 434 and Mining, Institute of Physics, and Institution of Mechanical Engineers.

435 **References**

- 436 1 M. Batzill and U. Diebold, Prog. Surf. Sci., 2005, 79, 47-154.
- 437 2 Z. W. Chen, X. P. Wang, S. Tan, S. Y. Zhang, J. G. Hou and Z. Q. Wu, *Phys. Rev. B*, 2001, 63,
 438 165413.
- 439 3 M. P. Persson, A. Lherbier, Y. M. Niquet, F. Trizon and S. Roche, *Nano Lett.*, 2008, **8**, 4146-4150.
- 440 4 P. Nguyen, H. T. Ng and M. Meyyappan, *Adv. Mater.*, 2005, **17**, 1773-1777.
- 441 5 L. J. Wang, X. J. Chen, C. Chen, Y. Y. Liu, Z. W. Chen, C. H. Shek, C. M. L. Wu and J. K. L. Lai,
- 442 J. Phys. Chem. C, 2012, **116**, 21012-21017.
- 443 6 Z. W. Chen, D. Y. Pan, Z. Li, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, *Chem. Rev.*444 2014, 114, 7442-7486.
- 445 7 L. P. Qin, J. Q. Xu, X. W. Dong, Q. Y. Pan, Z. X. Cheng, Q. Xiang and F. Li, *Nanotechnology*,
 446 2008, **19**, 185705.
- 447 8 C. Chen, L. J. Wang, Y. Y. Liu, Z. W. Chen, D. Y. Pan, Z. Li, Z. Jiao, P. F. Hu, C. H. Shek, C. M.
- 448 L. Wu, J. K. L. Lai and M. H. Wu, *Langmuir*, 2013, **29**, 4111-4118.
- 449 9 T. Tamal, N. Ichinose, S. Kawanishi, M. Nishii, T. Sasuga, I. Hashida and K. Mizuno, *Chem.*450 *Mater.*, 1997, 9, 2674-2675.
- 451 10 L. Mazeina, Y. N. Picard, J. D. Caldwell, E. R. Glaser and S. M. Prokes, *J. Cryst. Growth*, 2009,
 452 **311**, 3158-3162.
- 453 11 X. H. Ding, D. W. Zeng and C. S. Xie, Sens. Actuat. B, 2010, 149, 336-344.

- 454 12 X. Y. Xue, Z. H. Chen, C. H. Ma, L. L. Xing, Y. J. Chen, Y. G. Wang and T. H. Wang, *J. Phys.*455 *Chem. C*, 2010, **114**, 3968-3972.
- 456 13 Y. Wang, J. Y. Lee and T. C. Deivaraj, J. Phys. Chem. B, 2004, 108, 13589-13593.
- 457 14 K. Wijeratne, J. Akilavasan, M. Thelakkat and J. Bandara, *Electrochim. Acta*, 2012, **72**, 192-198.
- 458 15 J. Wang, Z. W. Chen, Y. Y. Liu, C. H. Shek, C. M. L. Wu and J. K. L. Lai, *Sol. Energy Mater. Sol.*459 *Cells*, 2014, **128**, 254-259.
- 460 16 Z. W. Chen, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K. L. Lai, *Prog. Mater. Sci.*, 2011,
 461 56, 901-1029.
- 462 17 Z. W. Pan, Z. R. Dai and Z. L. Wang, *Science*, 2001, **291**, 1947-1749.
- 463 18 Z. R. Dai, J. L. Gole, J. D. Stout and Z. L. Wang, J. Phys. Chem. B, 2002, 106, 1274-1279.
- 464 19 L. Giordano and G. Pacchioni, Acc. Chem. Res., 2011, 44, 1244-1252.
- 465 20 B. Cheng, J. M. Russell, W. S. Shi, L. Zhang and E. T. Samulski, *J. Am. Chem. Soc.*, 2004, 126,
 466 5972-5973.
- 467 21 N. Nilius, Surf. Sci. Rep., 2009, 64, 595-659.
- 468 22 H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han and M. Meyyappan, *Science*, 2003, **300**,
 469 1249.
- 470 23 Z. W. Chen, J. K. L. Lai and C. H. Shek, *Phys. Rev. B*, 2004, **70**, 165314.
- 471 24 Z. L. Wang, Adv. Mater., 2003, 15, 432-436.
- 472 25 C. H. Shek, J. K. L. Lai and G. M. Lin, J. Phys. Chem. Solids, 1999, 60, 189-193.
- 473 26 S. Shukla, S. Seal, L. Ludwing and C. Parish, Sens. Actuta. B, 2004, 97, 256-265.

- 474 27 J. Wang, J. Du, C. Chen, Z. Li, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai and Z. W.
- 475 Chen, J. Phys. Chem. C, 2011, **115**, 20523-20528.
- 476 28 S. Harbeck, A. Szatvanyi, N. Barsan, U. Weimar and V. Hoffmann, *Thin Solid Films*, 2003, 436,
 477 76-83.
- 478 29 Z. W. Chen, J. K. L. Lai, C. H. Shek and H. D. Chen, *Appl. Phys. A: Mater. Sci. Proc.*, 2005, 81,
 479 959-962.
- 480 30 Z. W. Chen, J. K. L. Lai and C. H. Shek, *Phys. Lett. A*, 2005, **345**, 218-223.
- 481 31 O. Dos Santos, M. L. Weiller, D. Q. Junior and A. N. Medina, Sens. Actuta. B, 2001, 75, 83-87.
- 482 32 V. Demarne and A. Grisel, *Sens. Actuat.*, 1988, **13**, 301-313.
- 483 33 Z. W. Chen, D. Y. Pan, B. Zhao, G. J. Ding, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K.
 484 L. Lai, *ACS Nano*, 2010, 4, 1202-1208.
- 485 34 Z. W. Chen, Z. Jiao, D. Y. Pan, Z. Li, M. H. Wu, C. H. Shek, C. M. L.Wu and J. K. L. Lai, *Chem.*486 *Rev.*, 2012, **112**, 3833-3855.
- 487 35 Z. W. Chen, Q. B. Li, D. Y. Pan, Z. Li, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K. L.
 488 Lai, J. Phys. Chem. C, 2011, 115, 9871-9878.
- 36 Z. W. Chen, Q. B. Li, J. Wang, D. Y. Pan, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K. L.
 Lai, *Inorg. Chem.*, 2011, **50**, 6756-6761.
- 491 37 Z. W. Chen, Q. B. Li, D. Y. Pan, H. J. Zhang, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K.
 492 L. Lai, *Mater. Today*, 2011, 14, 106-113.
- 493 38 S. Zhu, Y. F. Lu and M. H. Hong, *Appl. Phys. Lett.*, 2001, **79**, 1396-1398.

- 494 39 D. Kim and H. Lee, J. Appl. Phys., 2001, **89**, 5703-5706.
- 495 40 R. L. Penn and J. F. Banfield, *Science*, 1998, **281**, 969-971.
- 496 41 Q. B. Li, C. Chen, Z. W. Chen, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K. L. Lai, *Inorg*.
- 497 *Chem.*, 2012, **51**, 8473-8478.
- 42 E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, A. Beltrán and J. Andrés, *Appl. Phys. Lett.*,
 2003, 83, 1566.
- 500 43 Z. W. Chen, J. K. L. Lai and C. H. Shek, *Appl. Phys. Lett.*, 2006, 88, 033115.
- 501 44 N. Combe and P. Jensen, *Phys. Rev. B*, 1998, **57**, 15553-15560.
- 502 45 L. Sangaletti, L. E. Depero, A. Dieguez, G. Marca, J. R. Morante, A. Romano-Rodriguez and G.
 503 Sberveglieri, *Sens. Actuat. B*, 1997, 44, 268-274.
- 504 46 K. Suito, N. Kawai and Y. Masuda, *Mater. Res. Bull.*, 1975, 10, 677-680.
- 505 47 J. Haines and J. M. Léger, *Phys. Rev. B*, 1997, **55**, 11144-11154.
- 506 48 L. G. Liu, Science, 1978, 199, 422-425.
- 507 49 V. E. Müller, Acta Crystallogr. B, 1984, 40, 359-363.
- 508 50 C. H. Shek, J. K. L. Lai, G. M. Lin, Y. F. Zheng and W. H. Liu, *J. Phys. Chem. Solids*, 1997, 58,
 509 13-17.
- 510 51 V. Kraševec, A. Prodan, M. Hudomalj and S. Sulčič, *Phys. Status Solidi A*, 1985, 87, 127-133.
- 511 52 L. Kaplan, A. Ben-Shalom, R. L. Boxman, S. Goldsmith, U. Rosenberg and M. Nathan, *Thin Solid*512 *Films*, 1994, **253**, 1-8.
- 513 53 F. J. Lamelas and S. A. Reid, *Phys. Rev. B*, 1999, **60**, 9347-9352.

- 514 54 J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri and J. R. Morante, *J. Cryst. Growth*, 2008, **310**,
 515 253-260.
- 516 55 Z. W. Chen, J. K. L. Lai and C. H. Shek, Appl. Phys. Lett., 2006, 89, 231902.
- 517 56 B. Stjerna, E. Olsson and C. G. Granqvist, J. Appl. Phys., 1994, 76, 3797-3817.

518

519