This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
**ChemComm**

**COMMUNICATION**

**Bronze, silver and gold: functionalized group 11 organotin sulfide clusters**

Jens P. Eußner and Stefanie Dehnen*

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

**www.rsc.org/**

**Synthesis, properties and reactivity of group 11 organotin sulfide clusters** [(R')Sn2(SnCl)2(MPPPh3)2S6] (M = Cu, Ag), [(R2Sn)10Ag10S20], and [(R13Sn3(AuPPh3)3S6) with covalently bound, carbonyl or hydrazine-terminated ligands R3 = CH2C(Me)S or R3 = CMe2CH2C(Me)NNH2 are reported.

The last decades afforded a large variety of ligand-protected chalcogenide clusters of group 11 metals.1 Also ternary complexes and clusters were reported,2 which often combined structural and physical properties of the binary components.3 Additionally, with regard to further reactivity, the introduction of functionalized phosphines was achieved.4 Consequently, the combination of functional organic ligand shells with finely tunable (ternary or multinary) inorganic cores, providing even more diversity, is thus of interest for diverse purposes, such as for optoelectronics or solar cell development.5 To address according functional materials, the synthesis and directed derivatization of clusters with covalently attached group 11 metal clusters is currently investigated in detail for polyoxometalates6 as well as for group 14/16 compounds.7 For instance, the organic groups on the periphery of organogermainium and organotin sulfide complexes of the general type [(R3Tn)7] (T = C4H8S, C4H8COH; T = Ge, Sn; x/y = 4/6, 6/10) are reactive towards hydrazine derivatives, which allowed further derivatizations of the organic ligand shell.8 Hereby, an extension of the ligand shell towards ligands such as R3 = CMe2CH2C(Me)NNH2, R4 = {CMe4C(Me)S}Me2NCH2CO, or R5 = CMe4CH2C(Me)NNC(2-py)2 was achieved. Reactions with transition metal compounds additionally enabled the extension of the inorganic core to form the organofunctionalized ternary clusters [(R3T)2(CuPR3)6]5, [(R3Sn)6(O-Me)C2U-Sn], [(R3Ge)10Pd12], and [(R2S2][Sn(Sn-Me)2Cu–(PPh3)Me])1.0 Bispyridine-decorated clusters [(R3Sn)2(ZnX)2] (X = Cl, Br, I) were obtained by slow diffusion of zinc halide solutions into solutions of the organotin sulfide cluster [(R3T)2Sn]1.1

Further structurally characterized ternary group 11 metal/organotin sulfide clusters have so far been surrounded by unreactive organic groups, as in [(PhSn)2(CuPPh3)2Me]2Sn1.12 [(PhSn)2Cu–(PET3)Ph3Sn]1.13 and the mixed-valence compound [(CH2)2SnVCl6] (CuPPh3)3SnV–CuI3.14 Ternary complexes containing Ag/Sn or Au/Sn/S cores have not been characterized yet by X-ray diffraction. Recently we reported new functional organotin sulfide complexes of the type [(R'1Sn)6S2Cl] that exhibit defect heterocubane scaffolds with carbonyl and hydrazine groups.15 Herein, we show that these turned out to be suitable precursor complexes, as well. [(R'1Sn)6S2Cl] (A) reacts with the group 11 metal complexes [Cu(PPh3)3Cl], [Ag(PPh3)3Cl] and [Au(PPh3)3Cl] in CH2Cl2 with (Me3Sn)S, in the cases of Ag and Au complexes with subsequent in situ derivatization by hydrazine hydrate (Scheme 1), to yield single crystals of the following compounds comprising ternary clusters [(R'2Sn)4(SnCl2)2(CuPPh3)3S2] (1–4 CH2Cl2), [(R'1Sn)6S2Cl] (hereafter denoted as 2), [(R'2Sn)4(SnCl2)2(CuPPh3)3S2] ([R'1Sn]6S2 (3)] (R'2Sn)6S2), [(R'2Sn)6S2Cl] (4) 3CH2Cl2 (4-3CH2Cl2), [(R'2Sn(S-S)12)(AuPPh3)(μ-S)]2] (5), and [(R'2Sn(S-S)12)(AuPPh3)(μ-S)]2] 5CH2Cl2 (6-5CH2Cl2). The clusters exhibit different topologies and compositions and comprise reactive substituents with either carbonyl or hydrazine groups. In addition we report the single crystal X-ray diffraction analysis of (Me3Sn)2S (see ESI).

![Scheme 1. Synthesis of compounds 1-6 (R3 = CMe2CH2C(Me)O, R4 = CMe2CH2C(Me)NNH2).](image)

The reaction of A with 1.7 eq [Cu(PPh3)3Cl] and (Me3Sn)2S in CH2Cl2, and subsequent layering with n-hexane yielded [(R'2Sn)4(SnCl2)2(CuPPh3)3S2]-4 CH2Cl2 (1-4 CH2Cl2) as light yellow crystals. In the molecular structure of the cluster, two [(R'2Sn(S-S)(μ-S)]2 moieties are linked by two [Cu(PPh3)3SnCl)] units (see Fig. 1). The R'2Sn atoms Sn1 and Sn2 show a trigonal bipyramidal coordination environment, with the axial positions being occupied by O1, O2 and S1, whereas S2, S3 and Cl (Sn1) or S2, S4’ and C7 (Sn2) are situated in the equatorial positions. The μ-S-bridging atoms Sn1 and S4, and the μ-bridging atom S3 connect the [(R'2Sn(S-S)(μ-S)]-moieties to the central part of the cluster. Here, Cu1 is surrounded in a tetrahedral fashion by a PPh3 ligand,
S1, S4 and Sn3. The latter has a formal oxidation state of +II and exhibits a distorted pseudo-trigonal bipyramidal environment, with Cu1 and S3 in the “axial” positions (Cu1–Sn3–S3 149.75(2)°), and Cl1, S4' and the sterically active lone pair in the “equatorial” positions; further pseudo-trigonal bipyramidal coordination geometry of Sn atoms have been described by Jurkschat and co-workers.10 The mixed-valence situation in I was confirmed by DFT calculations (see below). As another peculiarity, I comprises a rare Cu–Sn bond (Cu1–Sn3 2.6054(4) Å) which was formed in situ.17 It is not possible to monitor the formation process in detail due to the fairly complex reaction mixture and due to only poor solubility of the product. However, we assume that the reduction of Rsn3 to SnI1 comes along with the oxidation of the released organic ligand as discussed for the mixed valence compounds [(R15Sn)5Se6]2[SnCl4] under similar reaction conditions;15 the oxidation of PPh3 or CuI, however, was not observed under the reaction conditions, which was clarified by NMR studies and test for CuII with NH3.

The observation of formal SnII and SnIV atoms is in agreement with natural charges, obtained by natural population analyses (NPA)18 of the DFT wave function, which was calculated by simultaneous optimization of the geometric and electronic structure using the program system TURBOMOLE.19 The formal SnIV atoms exhibit charges of +1.38 and +1.47, which are by a factor of 1.6 to 1.7 larger than the +0.88 charge calculated for the formal SnII atoms. Details of the DFT calculations are provided in the ESI.

Neither variation of the stoichiometry of the starting materials nor attempts to replace the Cl ligand have led to the isolation of further clusters until now. An analogous reaction with 1.0 eq [Cu(PPh3)2]Cl, however, yielded 1[(R15Sn)5Se6]2[SnCl4] (2). The structural parameters of the two large co-crystallizing clusters in 2 are similar to those observed in 1–4 CH2Cl2 (see ESI) and [(R15Sn)5Se6].10 Upon according reaction with [Ag(PPh3)2]Cl and (Me3Si)2S at –78 °C in CH2Cl2, and subsequent, careful warming-up to room temperature, a colorless precipitate was obtained, which was redissolved by addition of excess CH2Cl2. Layering with n-hexane afforded [(R15Sn)5Se6][Ag(PPh3)2]2[(R15Sn)5Se6]2[SnCl4] 2, as light yellow crystals. The ternary cluster is isostuctural to that in 2, hence the structural parameters are similar to those observed in 1 or 2, except the expected elongation of M–S, M–P and M–Sn bonds (Ag–Sn3 2.6803(3) Å) for M = Ag in comparison with M = Cu, and a larger Sn–M–P angle (1: 115.40(3) for M = Cu, 3: 131.23(2) for M = Ag). For selected structural parameters and NPA results see ESI.

Addition of hydrazine hydrate to the re-dissolved solution, and subsequent layering with n-hexane produced orange crystals of the hydrazine functionalized cluster ([(R15Sn)5Se6][Ag(PPh3)2]2[SnCl4] 4 (3.5 CH2Cl2). 4 consists of three [{R15Sn(µ-S)(µ-S)}4] units and two [{R15Sn(µ-S)}2(µ-S)] moieties that are linked by ten Ag atoms (see Fig. 2). All Sn atoms exhibit trigonal bipyramidal coordination, with N and S atoms in the axial positions. Four Ag atoms (Ag1, Ag5, Ag7, Ag10) are coordinated in a linear manner, while six other Ag atoms exhibit trigonal planar coordination. Closest Ag–Ag distances are in the range of 2.9353(7) Å to 3.3260(7) Å. Eight of the Ag atoms are connected this way, with a central butterfly-like arrangement and to adjacent Ag–Ag units, while one Ag–Ag unit is further apart. The cluster possesses pseudo-C3v-symmetry. The pseudo-C3-axis runs through the centers of the Ag–Ag four-ring and the separate Ag–Ag dimer. In contrast to known silver sulfide clusters,16 the cluster does not additionally contain stabilizing phosphine groups attached to the silver atoms. N–Sn coordination of the bidentate organic ligands seems to provide sufficient kinetic stabilization.

Figure 1. Molecular structure of I without H atoms (ellipsoids drawn at 50% probability); a = 1–x, y, 1–z. Selected structural parameter [Å, °]: Sn–S 2.3654(8)–2.5058(8), Sn–Cl 2.1833(3)–2.1921(3), Sn(1)–O(1,2) 2.516(2)–2.537(2), Sn3–Cl 2.4713(8), Sn3–Cu 2.6054(4), Cu–Cl1 2.5058(8), Cu–S 2.3166(8)–2.3570(8), Cu–Cu 2.9353(7)–3.3260(7); Sn–S 91.24(3)–111.23(2), Cu1–Sn3–S3 95.70(3), C–Sn–O 72.10(10)–73.71(10).

Figure 2. Molecular structure of the inorganic core of 4 along the pseudo-C3-axis (ellipsoids drawn at 50% probability, bonds to organic substituents are indicated by dashed lines). Ag–Ag contacts below 3.4 Å are drawn as dashed red lines. Selected structural parameters [Å, °]: Sn–S 2.3865(16)–2.5987(17), Sn–C 2.170(6)–2.187(7), Sn–N 2.362(5)–2.456(5), Ag–S 2.3666(16)–2.9040(16), Ag–Ag 2.9353(7)–3.3260(7); S–Sn 89.57(5)–122.29(6), S–Ag–S 83.47(5)–169.97(6), Sn–S–Sn 85.13(5)–89.69(5), Ag–S–Ag 72.65(5)–146.30(6), Ag–Sn 80.15(5)–144.91(7), C–Sn–N 71.62(2)–75.8(2).

The employment of a related gold complex, [Au(PPh3)2]Cl, along with (Me3Si)2S in the reaction with A afforded single crystals of the complex [{R15Sn(µ-S)(µ-S)}2{AuPPh3(µ-S)}2] (5). Moreover, addition of hydrazine hydrate to the reaction mixture yielded the hydrazine functionalized derivative [{R15Sn(µ-S)}2{AuPPh3(µ-S)}2]5 CH2Cl2 (6 5 CH2Cl2) (see Figure 3). In the present case, the derivatization of the organic ligand did not affect the molecular structure of the complex. In 5 and 6, a central [(R15Sn(µ-S))2] unit (c.f. ref. [21]) is terminated by two {AuPPh3(µ-S)} groups. As in I–4, organodecorated Sn atoms exhibit a trigonal bipyramidal coordination environment, while all Au atoms show linear coordination. The structural parameters of the central part is similar in both complexes, but the orientation of the attached {AuPPh3(µ-S)} units is different. In 5, they point away from the central Sn3S2 ring, with a C1–Sn1–S2–Au1 trans arrangement, whereas in 6, the according atoms show a cis arrangement. While interatomic distances are similar in both complexes, the Sn1–S2–Au1 and S2–Au1–P1 angles show notable differences in both complexes, indicating the influence of the functional group included in the organic ligand.

The observation of formal SnII and SnIV atoms is in agreement with natural charges, obtained by natural population analyses (NPA)18 of the DFT wave function, which was calculated by simultaneous optimization of the geometric and electronic structure using the program system TURBOMOLE.19 The formal SnIV atoms exhibit charges of +1.38 and +1.47, which are by a factor of 1.6 to 1.7 larger than the +0.88 charge calculated for the formal SnII atoms. Details of the DFT calculations are provided in the ESI.
In summary, a series of ternary group 11 organotin sulfide clusters have been synthesized and structurally characterized. The choice of the very group 11 metal M – although added as similar complexes [M(PPh$_3$)$_3$]Cl (M=x = Cu/3, Ag/3, Au/1) – causes specific coordination environments that affect the molecular structures. Accordingly, the products exhibit different compositions and topologies. Unexpectedly, the reaction with the Cu and Ag precursor induced in situ reduction of one third of the Sn atoms under Sn–Cu and Sn–Ag bond formation. It was shown for the first time that functionalized ternary M/Sn/S complex can undergo further derivatization.

This work was supported by the Deutsche Forschungsgemeinschaft within the framework of GRK1782.

Notes and references
Philipps-Universität Marburg, Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Hans-Meerwein-Straße, D-35043 Marburg, Germany. E-mail: dehnen@chemie-uni-marburg.de; Fax: +49 6421 2825653; Tel: +49 6421 2825751.

† X-ray crystallographic data: Data collection on a STOE IPDS2 diffractometer using graphite-monochromatized Mo K$_\alpha$ radiation (λ = 0.71073 Å) at 100 K. Structure solution and refinement by direct methods and fullmatrix least-squares on F$^2$, respectively; SHELXL software. 22

Electronic Supplementary Information (ESI) available: Further details of syntheses, analyses, and crystallographic data/further figures for 1–6 and (Me$_2$Si)$_2$S (CCDC 1011096-1011102). See DOI: 10.1039/c000000x/


17. Another example for the generation of formal Sn$^\text{IV}$ precursor was reported in ref. 14 for the compound [(CH$_3$)$_2$Sn$^\text{IV}$]$_6$[CuPPh$_3$]$_6$[Sn$^\text{II}$Cu$_{12}$]. [(C$_2$H$_5$)$_3$Sn]$_6$Cu$_{12}$ also exhibits Sn$^\text{IV}$-Cu bonds, see R. E. Allman, A. Bashall, J. S. Palmer, M. McPartlin, M. E. G. Mosquera, J. M. Rawson, A. E. H. Wheatley and D. S. Wright, Chem. Commun., 1997, 1975.


