This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
We describe the design, synthesis and \textit{in vitro} evaluation of a multimodal and multimeric contrast agent. The agent consists of three macrocyclic Gd(III) chelates conjugated to a fluorophore and possesses high relaxivity, water solubility, and is nontoxic. The modular synthesis is amenable for the incorporation of a variety of fluorophores to generate molecular constructs for a number of applications.

The advent of a number of highly sensitive, tomographic imaging modalities has enabled scientists and clinicians to acquire \textit{in vivo} images of animals without the need for sacrifice.\cite{1-3} Each modality possesses unique strengths where the combination of two or more imaging modalities continues to impact our understanding of complex biological processes and drug development.\cite{4} Techniques for \textit{in vivo} imaging include positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance (MR).\cite{5} Although each modality provides high resolution \textit{in vivo} tomographic information, MR imaging is well suited for longitudinal assessment of \textit{in vivo} processes because it does not require ionizing radiation (CT) or the use of radioactive tracers (PET and SPECT). For example, MRI has been used to fate map cells in developing embryos where the descendants of individual precursors were labeled with a stable, nontoxic, lineage tracer (MRI contrast agent) which allowed researchers to determine the cell location and migration responsible for embryonic development.\cite{6} However, the low probe sensitivity and limited spatial resolution of MRI preclude the observation of molecular events.

Optical imaging is a modality that provides high resolution and probe sensitivity to detect subcellular localization and molecular

![Scheme 1. Synthetic route to fluorescein-conjugated contrast agent 1. 2 was designed for orthogonal modification through isothiocyanate conjugation to the primary amine. For complete synthetic details, see Figures S1-S3 ESI.](image-url)
interactions. The integration of optical and MR imaging is therefore an appealing approach to facilitate applications such as fate mapping transplanted stem cells, early detection of cancer, tracking gene expression, and importantly, histological validation of MR signal.

There have been an increasing number of reports of multimodal MR-optical contrast agents using a wide variety of nanocjugates and fluorophores. However, the intrinsic variability of nanoparticles can be an obstacle for some applications. In order to address this issue researchers have developed small molecule MR-optical contrast agents consisting of a Gd(III)-based chelate conjugated to near-IR dyes, rhodamine, cyanine7, and fluorescein. Typically, these agents have been shown to have relatively low relaxivities and limited water solubility. Further, conjugating agents to dendrimer scaffolds has been shown to increase relaxivity, but the resultant agents were polydisperse and difficult to characterize.

To overcome these limitations we report the synthesis, characterization and in vitro evaluation of a high relaxivity, multimeric and multimodal MR-optical contrast agent. The design is based upon our previously reported agent where three Gd(III) chelates are conjugated to a phenolic core. We modified this design to allow conjugation of fluorescein to generate a highly water-soluble MR-optical agent which labels cells with high efficiency and generates significant MR contrast enhancement at clinical (1.4 T) and research (7 T) magnetic field strengths.

Table 1. Relaxivities of 1 and 2 in 10 mM PBS buffer (pH 7.4) at 1.41 T (37°C) and 7 T (25°C).

<table>
<thead>
<tr>
<th></th>
<th>Ionic (mM⁻¹ s⁻¹)</th>
<th>Molecular (mM⁻¹ s⁻¹)</th>
<th>Ionic (mM⁻¹ s⁻¹)</th>
<th>Molecular (mM⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L41 T (60 MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17.0 ± 0.5</td>
<td>51.0 ± 1.5</td>
<td>4.7 ± 0.3</td>
<td>14.1 ± 0.9</td>
</tr>
<tr>
<td>2</td>
<td>14.9 ± 0.5</td>
<td>45.0 ± 1.5</td>
<td>5.2 ± 0.3</td>
<td>15.9 ± 0.9</td>
</tr>
<tr>
<td>7 T (300 MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The complexes were further characterized by quantum yield and octanol-water partition coefficients (logP) measurements. The quantum yield of 1 was determined to be 0.56. The logP values of 1 and 2 were -2.0 and -1.9 respectively. These negative log P values are characteristic of high water solubility, indicating that conjugation of fluorescein to the contrast agent scaffold did not significantly impact solubility. As a result, incubation concentrations for in vitro studies can be made in the mM range which is important for maximizing intracellular agent concentration.

Efficient cell penetration is crucial for the use of imaging probes to investigate biological mechanisms such as fate mapping cells. Cellular localization of 1 was determined using confocal laser scanning microscopy where micrographs showed intracellular accumulation of the probe (Figure 1, see ESI for z-stacks and images of unlabeled cells). Larger cell populations were examined with analytical flow cytometry to determine the efficiency of cell labeling. Specifically, HeLa cells were incubated with 21 to 170 µM of 1 and showed increasing accumulation of fluorescein with increasing incubation concentration (Figure S25 ESI). Labeling efficiency of 100% was attained at each concentration examined.

Cellular uptake of Gd(III) was investigated by incubating HeLa, B16-F10, or MDA-MB-231-mcherry cells with concentrations of 1 ranging from 27 to 260 µM (Figure 2). Cells were washed and pelleted prior to analysis to reduce non-specific binding. The cell lines were chosen to address variability in labeling arising from differences in tissue of origin (cervix, breast, and skin), species of origin (human and mouse), cell size (12-20 µm diameter) and cell growth rate (20-38 hr doubling times). Cell uptake increased with cell volume with the highest labeling achieved in HeLa cells (6.8 fmol Gd(III) per cell), followed by B16-F10 cells (2.9 fmol Gd(III) per cell), and MDA-MB-213-mcherry cells (2.2 fmol Gd(III) per cell). In all cell lines, uptake plateaued indicating that cells were saturated with 1. These values represent a 10-fold increase in cell uptake compared to ProHance® (Figure S27 ESI).
This journal is © The Royal Society of Chemistry 2012

Figure 2. Concentration-dependent cell uptake was determined by incubating HeLa, B16-F10, or MDA-MB-231-mcherry cells with varying concentrations of I for 24 hours. In all cell lines, uptake reached a plateau indicating that cells were saturated with probe. Error bars represent ± standard deviation, the mean of triplicate experiments.

To demonstrate that cell labeling of I is sufficient to produce T_1-weighted contrast enhancement of cell populations, MR images of cell pellets were acquired at 7 T at cell densities that approximate tumor densities in vivo (Figure 3). HeLa cells were incubated with 250 μM equalized Gd(III) of I, 2, or ProHance® (the concentration of ProHance® is 3x higher than I or 2). The most significant contrast enhancement was observed in cells labeled with I with a 64% reduction in T_1 compared to untreated cells, followed by ProHance® (20% reduction in T_1), and 2 (8% reduction in T_1).

Figure 3. T_1-weighted cell pellet images of HeLa cells incubated with I, 2, and ProHance® acquired at 7 T (11 ms, TR = 500 ms, MTX = 256 x 256, and slice thickness is 1.0 mm). Scale bars represent 1 mm. Error represents ± standard deviation of the mean of 4 slices. These images show that at incubation concentrations of 250 μM Gd(III), i.e. 83 μM I and 2 and 250 μM ProHance® I produces the greatest image contrast.

In conclusion, we have developed a new multimeric and multimodal contrast agent that contains three Gd(III) chelates conjugated to a fluorophore. The agent has high relaxivity at both low (1.4 T) and high magnetic fields (7 T), is highly water soluble, cell-permeable, and possesses excellent cell labeling capabilities. The agent shows significantly increased labeling and image contrast at 7 T compared to clinically available ProHance®. Further, the molecular architecture described can accommodate a large variety of fluorophores to generate additional molecular constructs for enhanced multimodal imaging.

This work was supported by the National Institutes of Health (NIH grant R01EB005866) and by a National Science Foundation Graduate Research Fellowship (C.C.). Imaging was performed at the Northwestern University Center for Advanced Molecular Imaging generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive Cancer Center.

Notes and references