ChemComm

ChemComm

Selective oxidations of activated alcohols in water at room temperature

Journal:	ChemComm		
Manuscript ID:	CC-COM-07-2014-005163.R1		
Article Type:	Communication		
Date Submitted by the Author:	30-Jul-2014		
Complete List of Authors:	Lipshutz, Bruce; University of California, Department of Chemistry Hageman, Matthew; UCSB, Chemistry & Biochemistry Fennewald, James; UCSB, Chemistry & Biochemistry Slack, Eric; UCSB, Chemistry & Biochemistry Voigtritter, Karl; UCSB, Chemistry & Biochemistry Linstadt, Roscoe; UCSB, Chemistry & Biochemistry		

SCHOLARONE[™] Manuscripts

ChemComm

Journal Name

ARTICLE

Selective oxidations of activated alcohols in water at room temperature

Cite this: DOI: 10.1039/x0xx00000x

B. H. Lipshutz, ^{*} M. Hageman, J. C. Fennewald, R. Linstadt, E. Slack, and K. Voigtritter

Accepted 00th January 2012 DOI: 10.1039/x0xx00000x

Received 00th January 2012,

www.rsc.org/

Allylic and benzylic alcohols can be selectively oxidized to their corresponding aldehydes or ketones in water containing nanoreactors composed of the designer surfactant TPGS-750-M. The oxidation relies on catalytic amounts of CuBr, bpy, and TEMPO, with N-methylimidazole; air is the stoichiometric oxidant.

Mild and selective methods for the oxidation of alcohols to aldehydes and ketones are among the most valuable processes in organic chemistry. While many feature use of catalytic quantities of metal-based reagents, catalysis alone may not be sufficient to anticipate widespread use, especially on an industrial scale. Indeed, today there is an increasing level of concern as to the environmental impact of such methodologies, most notably from the standpoint of the stoichiometric oxidant, which ideally is air. But even when a process is tailored to involve catalysis and a benign oxidizing agent, these together can be overshadowed by a single parameter that represents the main contributor to organic waste: solvent.^[1] Hence, an oxidation that relies not only on the virtues of a catalysis/air combination, but also that further adheres to the 12 Principles of Green Chemistry^[2] should enhance the appeal from the environmental perspective of such a process.

Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, USA

* Corresponding author: <u>lipshutz@chem.ucsb.edu</u>.

[†] Electronic Supplementary Information (ESI) available: Experimental procedures and details, copies of ¹H and ¹³C NMR characterization data for all new compounds: See DOI: 10.1039/b000000x/

In this report, we describe an oxidation protocol for activated alcohols that uses catalytic amounts of a base metal (Principle 9), involves air as the stoichiometric oxidant (Principle 7), relies on an innocuous and recyclable reaction medium (Principle 5), and offers conditions leading to a very low E Factor^[3] based on solvent usage (Principle 3) indicative of the level of greenness associated with this new technology (Scheme 1).

The overarching concept behind the oxidation developed herein is the far greater dissolution properties of gases, such as oxygen, in organic solvents rather than in water.^[4] Thus, when air is presented with the option in an aqueous micellar medium as to where to localize, the concentration of oxygen within the hydrophobic inner core of a nanomicelle is expected to be much higher than in the surrounding water.^[5] When taken together with the much higher concentrations of reactants and catalysts typically found within these nanoreactors,^[6] the major parameters are well positioned to potentially arrive at a relatively environmentally benign oxidation.

We opted to focus on a base metal such as copper, rather than palladium or other transition metals^[7] that have also been used for similar oxidations. There are several published procedures that utilize copper salts in the presence of catalytic amounts of TEMPO, as summarized in Table 1. Among those that can be utilized at ambient temperature, we were led to investigate the application of Stahl's conditions: [Cu(MeCN)₄]X where X = TfO⁻, BF₄⁻, or PF₆⁻, catalytic TEMPO (5 mol %), air, *N*-methylimidazole (NMI), and 2,2'bipyridine (bpy) as ligand.^[8] Screening both copper salts

Journal Name

 $[Cu(MeCN)_4]OTf$ and $[Cu(OTf)_2]$ •PhMe^[9] in water containing two weight percent TPGS-750-M did afford the desired product aldehyde based on *p*-methoxybenzyl alcohol as educt, albeit in modest yields (Table 2). Far better results were achieved with CuBr, affording the targeted benzaldehyde in virtually quantitative yield within four hours at room temperature. Other sources of copper (*e.g.*, CuCl, copper metal) gave lower levels of conversion, although CuBr₂ led to roughly comparable results.

Table 1. Previous work on air/oxygen-based benzylic oxidations.												
		R	Y	ОН	cat. T	EMPO		R	C	HO		
author		year	cataly	st system		ligand		solvent		atr	n t	emp. (°C)
Semmelh Knochel ^{[7} Sheldon Falk ^[13] Ragauska Repo ^[15a] Sekar ^[16] Repo ^[15b] Stahl ^[8] Ding ^[17] Zhang ^[18] this work	ack ^[10] 11] [12] as ^[14] 	1984 2002 2003 2005 2006 2007 2007 2009 2011 2013 2013 2014	CuCl CuBr CuBr Cu°/N Cu(C CuSC DABC CuSC CuSC [Cu(M Cul/t-I Cu(O/ CuBr/	SMe ₂ //-BuOK aOH IO ₄) ₂ D ₄ /NaOH O-CuCI/K; 4/K ₂ CO ₃ eCN) ₄]OT BuOK Ac) ₂ •H ₂ O/N	₂CO₃ f/NMI √la₂CO₃	1 bpy bpy TMDP phen 2 bpy L-prolin 3 bpy	e	$\begin{array}{c} DMF \\ C_8F_{17}Br \\ MeCN/H \\ MeCN/H \\ DMSO \\ H_2O \\ PhMe \\ H_2O \\ MeCN \\ DMF \\ H_2O \\ TPGS-7 \end{array}$	/PhCI 1 ₂ O 1 ₂ O 50-M,	O air O 2 (10 O air air air air air air air air air air	2 2 2 2 2 9 atm) 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rt 90 rt 100 100 80 100 rt rt 100 rt
C ₈ F ₁₇ (I	H₂C)₄ ∖							2 wt. %				
C ₈ F ₁₇ (I	H₂C)₄́	Ú	v	Ň) I	Ĺ	Ň	F	.		3
	1			bpy	TMD	Р	phe	en	2	3	pytl-β–	CD
Table 2. Screening of copper salts for the oxidation.												
MeO		OI	⊣ 2	at. CuBr, wt. % TP	cat. T PGS-7	EMPO, 50-M, a	bp ir, r	y, NMI ⁺t, 4 h	Me	0		СНО
	Ent	iry		Condit	ions ^a			Conve	ersion (%) ^b	_	
	1			[Cu(Cl	H₃CN),	₄]OTf			64			
	2			[Cu(O	ſf) <u>}</u> ●F	'nMe			58			

3 CuĈl 63 Cu⁰ powder 35 4 5 CuBr₂ 97 6 CuBr 100(98) 7 CuBr^d 43 CuBr^e 8 84

 a Alcohol (0.5 mmol), copper source (0.025 mmol), TEMPO (0.025 mmol), bpy(0.025 mmol), NMI (0.05 mmol), TPGS-750-M (1.0 mL). b Determined by GC analysis. c Isolated yield. d Reaction concentration 2.0 M. e Reaction run "on water".

The role of the surfactant was studied using several alternatives to TPGS-750-M (Table 3). As noted in previous work,^[19] particle size can play a significant role in determining the extent and quality of a given reaction, and here again, the amphiphile engineered to provide particles in the 50-60 nm range was the surfactant of choice.^[20] That the reactions are mainly happening within the nanomicellar core is evident from the competing "on water" ^[21] background reaction, which, as noted previously,^[22] oftentimes does not lead to synthetically useful results (Scheme 2).

Table 3. Impact of surfactant on a benzylic oxidation.							
		OH CuBr (5 mo bpy (5 m	H CuBr (5 mol %), TEMPO (5 mol%), bpy (5 mol%), NMI (10 mol%)				
	N	2 wt. % TF O ₂	²GS-750-M, air, rt, 24 h	↓ NO₂ 7			
	run	surfactant ^{a,b}	particle size (nm) ^c	conversion (%) ^a			
	1	Brij 30	110	58			
	2	TPGS-750-M	53	100			
	3	Cremophor EL	9	83			
	4	SDS	17	46			
	5	CTAB	10	34			

^a See SI for structures of surfactants. ^b Used as a 2 wt. % solution in water. ^c Determined by Dynamic Light Scattering. ^d Determined by GC.

Scheme 2 Comparison between an oxidation 'on water' vs. under micellar conditions.

Several primary, benzylic alcohols could be smoothly oxidized to the corresponding aldehydes in water at room temperature (Table 4). Most reactions reached completion in 5 to 20 hours, and tend to be very clean, with the associated isolated yields uniformly high. There appears to be no obvious relationship between the nature of the substituents on the aromatic ring and the time required for each oxidation. Heteroatoms also seem to be well tolerated, including cases where a sulfide and primary amine substituents are present (compounds **12** and **14**, and **10**, respectively). Since the pH of the reaction mixtures is 6, these conditions do not interfere with a TMS-protected alkyne (**11**).

Secondary benzylic alcohols can also be oxidized under the aqueous micellar conditions, although they are slower than the corresponding primary cases and therefore required mild heating to 40-45 °C. Three representative examples are shown in Scheme 3. These observed differences in rate, as noted by Stahl,^[8] allow for the selective oxidation of a primary over secondary benzylic alcohol, as illustrated by the conversion of **22** into **23** (Scheme 4).

Heteroaromatic primary alcohols could also be readily oxidized under our standard room temperature conditions. The examples in Table 5, including a formylated indole 24, a substituted furfural 25, an acetylenic thiophene 26, and a ferrocenyl derivative 27 suggest that functional group tolerance extends to this class of educts.

Primary, aliphatic alcohols undergo oxidation to the desired aldehydes very slowly, even when mild heating (40-45 °C) is applied. This allows for selective oxidations of activated over unactivated polyols (e.g., Scheme 5).

Page 3 of 4

Journal Name

Conditions: Alcohol (0.5 mmol), CuBr (5 mol%), TEMPO (5 mol%), bpy (5 mol%), NMI (10 mol%), 2 wt. % TPGS-750-W/H₂O, 0.5 M

Scheme 4. Selective oxidation of a 1° over 2° benzylic alcohol (conditions as in Scheme 3).

In addition to benzylic and benzylic-like substrates, primary allylic alcohols are also amenable to oxidation. Representative examples (**30-32**) are illustrated in Figure 1. Secondary allylic alcohols were essentially unreactive under these conditions, thereby allowing for selective oxidation of **33** over the secondary analog **34**, with both educts in the pot (Scheme 6).

Recycling of the aqueous reaction mixture could be smoothly achieved using educt **4** as a model case (Scheme 8). With an "in-flask" workup, **5** was obtained with very low E Factors,^[23] suggestive of an overall environmentally attractive process, unlike literature methods to date, although flow chem-

Table 5. Oxidations of heteroaromatic benzylic-like alcohols to their corresponding aldehydes.

istry is becoming increasingly competitive in this regard.^[24]

Conclusions

In summary, methodology for selective oxidation of activated alcohols to aldehydes has been developed that relies on the greater solubility of gases, specifically oxygen, inside the hydrophobic pockets associated with aqueous nanomicelles. This allows for air to function as the stoichiometric oxidant, rather than traditional oxidizing agents.

Acknowledgements

Financial support provided by the NSF (CHE 0948479) is warmly acknowledged with thanks.

References

 P.Dunn, R. Henderson, I.Mergelsberg, A. Wells "Collaboration to Deliver a Solvent Selection Guide for the Pharmaceutical Industry Moving Towards Greener Solvents for Pharmaceutical Manufacturing—An Industry Perspective", College Park, MD.

a Added CuBr (5 mol %) to run 3

Scheme 7. Potential for recycling of the aqueous reaction mixture, and determination of E Factors

ACS Green Chemistry Institute Pharmaceutical. June 23–25, 2009.

- P. T. Anastas, J. C. Warner, *Green Chemistry: Theory and Practice*. Oxford University Press: New York, 1998.
- (a) R. A. Sheldon, *Chem. Ind. (London)*, 1992, 903; (b) R. A. Sheldon, *Green Chem.*, 2007, 9, 1273; (c)
- C. L. Young, Ed. IUPAC Solubility Data Series, Vol. 5/6, Hydrogen and Deuterium, Pergamon Press, Oxford, England, 1981.
- S. Handa, J. C. Fennewald, B. H. Lipshutz, *Angew. Chem. Int. Ed.*, 2014, 53, 3432.
- D. Myers, Surfactant Science and Technology, ed. Wiley-Interscience, 2006; G. Oehme, E. Paetzold, T. Dwars, Angew. Chem., Int. Ed. 2005, 44, 7174.
- Recent advances: a) Y. Yan, X. Tong, K. Wang, X. Bai, *Catal. Comm.* 2014, **43**, 112. b) M. M. Dell'Anna, M. Mali, P. Mastrorilli, P. Cotugno, A. Monopoli, *J. Mol. Catal. A. Chem.* 2014, **386**, 114.
- 8. J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 16901.
- 9. J. M. Hoover, S. S. Stahl, Org. Synth. 2013, 90, 240.
- M. F. Semmelhack, C. R. Schmid, D. A. Cortes, C. C. Chou, J. Am. Chem. Soc. 1984, 106, 3374.
- G. Ragagnin, B. Betzemeier, S. Quici, P. Knochel, *Tetrahedron* 2002, 58, 3985.
- P. Gamez, I. W. C. E. Arends, J. Reedijk, R. A. Sheldon, *Chem. Commun.* 2003, **19**, 2414.
- D. Geiblmeir, W. G. Jary, H. Falk, Monatshefte fur Chemie Chemical Monthly 2005, 136, 1591.
- 14. N. Jiang, A. J. Ragauskas, J. Org. Chem., 2006, 71, 7087.
- (a) P. J. Figiel, M. Leskela, T. Repo, *Adv. Synth. Catal.* 2007, 349, 1173;
 (b) P. J. Figiel, A. Sibaouih, J. U. Ahmad, M. Nieger, M. T. Raisanen, M. Leskela, T. Repo, *Adv. Synth. Catal.* 2009, 351, 2625.
- S. Mannam, S. K. Alamsetti, G. Sekar, *Adv. Synth. Catal.* 2007, 349, 2253.
- G. Zhang, X. Han, Y. Luan, Y. Wang, X. Wen, L. Xu, C. Ding, Chem. Commun. 2013, 49, 7908.
- G. Zhang, X. Han, Y. Luan, Y. Wang, X. Wen, L. Xu, C. Ding, J. Gao, *RSC Adv.* 2013, 3, 19255.
- (a) N. A. Isley, S. Dobarco, B. H. Lipshutz, *Green Chem.* 2014, 16, 1480; (b) P. Klumphu, B. H. Lipshutz, *J. Org. Chem.*, 2014, 79, 888.
- B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais, A. Krasovskiy, *J. Org. Chem.* 2011, 76, 4379. See Aldrich catalog numbers 733857 and 763918.
- S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, *Angew. Chem., Int. Ed.* 44, 44, 3275.

- (a) S. H. Handa, J. C. Fennewald, B. H. Lipshutz, *Angew. Chem., Int. Ed.* 2014, **53**, 3432; (b) J. C. Fennewald, B. H. Lipshutz, *Green Chem.*, 2014, **16**, 1097.
- 23. R. A. Sheldon, I.W. C. E. Arends, U. Hanefeld, *Green Chemistry and Catalysis*, Wiley-VCH, Weinheim, 2007.
- 24. J. F. Greene, J. M. Hoover, D. S. Mannel, T. W. Root, S. S. Stahl, Org. Proc. Res. Dev. 2013, 17, 1247.