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CZTS nanoplatelets have been grown using spray pyrolysis of a mixture of copper-, zinc- and tin-

diethyldithiocarbamate as precursors. 

 

 

 

 

 

 

10 µm 

Page 1 of 5 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2012, 00, 1‐3 | 1 

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 

Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Spray pyrolysis of CZTS nanoplatelets 

S.Exarhos a, K.N.Bozhilov b,c, L.Mangolini a,c  

 

 

 

 

We demonstrate that copper-zinc-tin-sulphide nanoplatelets 
can be directly grown onto a molybdenum-coated substrate 
using spray pyrolysis starting from a mixture of metal 
thiocarbamates precursors. The structure and phase purity of 
the nanoplatelets is discussed in details.  

 Copper-zinc-tin-sulphide (CZTS) has emerged as a potential low-
cost, earth-abundant material for photovoltaic (PV) applications1-4. 
The abundance of its constituents is a clear advantage compared to 
other materials for thin film PV application, such as cadmium 
telluride (CdTe) of copper-indium-gallium-sulphide (CIGS). While 
state-of-the-art devices based on CZTS absorber layers have 
achieved a power conversion exceeding 12%5, this value is 
significantly lower than the ~30% maximum theoretical (Schokley 
Queisser6) efficiency for this material. An improved understanding 
of its properties, including their dependence on the synthesis 
approach, is needed to make this material feasible for commercial 
applications. Our contribution focuses on the direct growth of CZTS 
layers onto molybdenum-coated soda-lime glass via spray pyrolysis. 
The direct growth of CZTS thin films using this simple and scalable 
technique would be highly desirable. There are only few reports on 
the production of CZTS films using spray pyrolysis7-10, and are all 
based on nebulizing a solution containing metal salts (chlorides and 
acetates) and using thiourea as sulphur source. In these reports, the 
precursors chemically react to form the desired film and the by-
products are volatile (chemical spray pyrolysis). We have instead 
used metal thiocarbamates as precursors. These precursors thermally 
decompose into their corresponding metal sulphides upon heating to 
temperatures in the 170C-250C range11, 12. Zinc 
diethyldithiocarbamate has been used for the production of zinc 
sulphide nanoparticles via aerosol spray pyrolysis13. Our group has 
shown that a similar technique can produce copper sulphide 
nanoparticles starting from copper diethyldithiocarbamate14. In this 
work, copper, zinc and tin diethyldithiocarbamates [Cu(dedc)2, 
Zn(dedc)2 and Sn(dedc)4 respectively] are prepared following the 
recipe described by Khare et al.12. To briefly summarize, the metal 
chloride precursors are reacted with sodium diethyldithiocarbamate 
in an ethanol solution. The precipitate is then purified by filtering 

and rinsing multiple times with large amounts of water and ethanol. 
After vacuum drying, the copper, zinc and tin 
diethyldihiocarbamates are dissolved in toluene in a 2:1:1 molar 
ratio with a typical total concentration of 10 mg/ml. The solution is 
aerosolized using a one-nozzle collision nebulizer from BGI, Inc. 
Typically, 50 ml of solution are nebulized for each coating run. 
Argon as gas carrier is flown at a rate of 0.5 standard cubic feet per 
hour (SCFH). Under these conditions the nebulization rate is 2 ml 
per minute, and each coating run lasts approximately 30 minutes. 
The aerosol is aerodynamically dragged through an orifice with a 
diameter of 1/8”. The flow expands into a 2” quartz tube placed in a 
temperature controlled tube furnace. A 1” diameter substrate holder 
is placed inside the tube furnace at a distance of 12” from the orifice. 
A rotary vane vacuum pump is used to maintain a pressure of 20 kPa 
downstream of the orifice. Growth occurs in a sealed and oxygen-
free environment. Under vacuum, the system leakage rate is <5 
milliTorr/minute. The system is purged with argon before growth 
begins. A thermocouple is inserted into the substrate holder to get a 
more precise reading of the growth temperature. Typically the 
substrate temperature during the film growth is 20C below the tube 

Figure 1. SEM micrographs of samples grown on molybdenum-
coated soda lime glass at the following temperatures: (a) 
360C,(b) 400C, (c) 440C and (d) 460C. 
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400 34.8(0.8) 21.9(0.5) 8.7(0.3) 35.4(1.6) 1.13 2.5

440 25.7(0.8) 25(0.7) 9.5(0.5) 39.7(1.9) 0.75 2.6

460 29.8(1) 21(0.6) 10.5(0.4) 38.7(1.6) 0.94 2 
 
The issue of thermodynamics stability and phase purity in this 
material system is well-known19-21. We have performed a detailed 
transmission electron microscopy (TEM) study on the platelets 
grown at 460C, and have found evidence of the presence of a 
copper-rich phase. TEM analysis was performed on a CM300 TEM 
equipped with EDAX Genesis EDS system. For this analysis, the 
nano-platelets have been gently removed from the surface with a 
razor blade and dispersed in methanol. The solution was then drop-
cast onto a lacey-carbon-coated nickel TEM grid. Results from this 
study are summarized in figure 4. The bright field image in figure 4a 

indicates that the platelet has a complex morphology and structure. 
The variation in contrast is due mostly to amplitude contrast 
consequence of difference in crystal orientation as well as variable 
thickness and composition of the platelets. We have performed 
elemental analysis and selected area diffraction in two different spots 
of the platelet. The spots are labelled as (1) and (2) and the 
corresponding spectra EDS and diffraction data are also shown in 
figure 4a. The EDS response was calibrated using the appropriate 
standards. The details of the calibration procedure are given in the 
Supplementary Information. Spot (1) is copper-rich and its selected 

area diffraction pattern can be indexed as [011] zone axis pattern of 
copper sulphide (Cu9S5) with digenite structure22. Weaker 
reflections, not indexed for the sake of clarity, belong to adjacent 
crystals that were selected by the diffraction aperture. They can be 
indexed with CZTS phases22. The EDS spectrum from spot (2) 
clearly indicates the presence of Zn and Sn as well. The selected area 
diffraction pattern for spot (2) can be indexed as [132] zone axis of 
CZTS with kesterite structure22. The weaker reflections indexed as 

200, 1 1 2, 02 4 and 11 2 actually are from the [021] zone axis, 
suggesting that more than one grain contributes to the pattern 
acquired for spot 2. The results from the EDS analysis for spots (1) 
and (2) are summarized in table 2, in which we also report the 
composition obtained by selecting the whole platelet shown in figure 
4a during the EDS data acquisition. The procedure used to estimate 
the uncertainty in this measurement is given in the Supplementary 
Information. 
 
Table 2: Summary of the results from the elemental analysis 
performed via TEM and shown in figure 4. The value correspond to 
atomic percentages and to their ratios (last two columns). 

Spot %Cu %Zn %Sn %S 
[Cu] 

[Zn]+[Sn]
[Zn]
[Sn]

(1) 56(3.4) 0.3(0.3) 1.3(0.5) 42.5(3.2) 34 0.2 

(2) 25(1.6) 10.3(0.8) 18.4(1.4) 46.3(3) 0.9 0.56

whole 
platelet

23.5(1.4) 10.3(0.7) 18.6(1.2) 47.5(2.8) 0.81 0.55

 
Consistent with the diffraction analysis, spot (1) is practically free of 
Zn and Sn, while spot (2) has clear signal from Zn and Sn, with an 
abundance of Sn with respect of Zn. The composition of the whole 
platelet is close to the one of spot (2), suggesting that only a 
minority of the volume is Cu-rich and Zn- and Sn-poor. This 
conclusion is supported by the elemental mapping, shown in figure 
4b. We have circled the areas showing a clear signal from Cu, 
including the one corresponding to spot (1) in figure 4a, while 
showing a negligible signal from Sn and Zn. Interestingly, the 
copper-rich regions are at the edges of the nanoplatelet. Both Raman 
and XRD data do not show the presence of copper-rich phases, likely 
because they occupy only a small fraction of the sample volume. 
In addition to these data, we would like to report the results of 
preliminary experiments that suggest that a copper-rich phase is 
necessary to obtain growth of these two-dimensional nanostructures. 
We have prepared samples using the same spray pyrolysis technique 
used for CZTS but selecting only one metal thiocarbamate precursor 
at the time. Nanostructured films without any sign of anisotropic 
growth have been obtained when Sn[dedc]4 and Zn[dedc]2 are used. 
Anisotropic growth was observed when Cu[dedc]2 was used. This 
observation, in combination with the fact that the copper-rich regions 
are localized at the edge of the platelets, suggests that copper 
sulphide might play a catalytic role in the growth of these vertically 
oriented structures. 
There is a significant difference in the composition measured by 
SEM-EDS for the 460C sample, which shows a [Zn]/[Sn] ratio of 
~2, compared to the elemental analysis performed by TEM, which 
shows a [Zn]/[Sn] ratio of ~0.5. This is likely the result of the fact 
that the sample is not homogeneous and that the first of these two 
measurements is averaged over several platelets, while the second is 
specific to one particular platelet. Control of the sample composition 
is not trivial in this system: we have performed experiments in which 
we have varied the molar ratio between the metal thiocarbamates, 
and have observed only minor changes in the average film 
composition, as measured by SEM-EDS. This indicates that the 
growth proceeds in a kinetically limited regime. A more 

Figure 4. (a) TEM of a nanoplatelet grown at 460C. EDS scans 
and selected area diffraction pattern for two spots are also shown. 
(b) Elemental mapping for the platelet in (a) showing the variation 
in the local composition. 
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sophisticated approach is going to be necessary to precisely control 
the film composition, which will be the subject of future 
investigations.  

Conclusions 

We have demonstrated that nanostructured CZTS films can be 
grown directly on molybdenum using a standard technique such 
as spray pyrolysis and using metal diethyldithiocarbamates as 
precursors. Raman, XRD and optical characterizations confirm 
the successful growth of CZTS. In-depth TEM characterization 
confirms the presence of a copper-rich phase which may play a 
crucial role in the vertical growth of these structures. While the 
CZTS system is of great interest for thin film photovoltaic 
devices, these nanostructured  films are expected to be relevant 
for important applications such as  for photo-electrochemical 
devices and for solar-fuel production. 
This work was supported primarily by the National Science 
Foundation under Award Number 1125660. Partial support 
from the National Science Foundation under Award number 
1351386 (CAREER) is also acknowledged. Raman, XRD and 
optical characterization were performed at the Analytical 
Chemistry Instrumentation Facility (ACIF) in the Chemistry 
Department at UC Riverside. TEM characterization was 
performed at the Central Facility for Advanced Microscopy and 
Microanalysis (CFAMM) at UC Riverside.     
 
Notes and references 
a Mechanical Engineering Department, University of California 

Riverside, 900 University Avenue, Riverside CA 92521. 
b Central Facility for Advanced Microscopy and Microanalysis, 

University of California Riverside, 900 University Avenue, Riverside CA 

92521. 
c Materials Science and Engineering Program, University of California 

Riverside, 900 University Avenue, Riverside CA 92521. 

 

Electronic Supplementary Information (ESI) available: [details of any 

supplementary information available should be included here]. See 

DOI: 10.1039/c000000x/ 

 

1. Q. J. Guo, H. W. Hillhouse and R. Agrawal, J. Am. Chem. Soc., 2009, 

131, 11672-+. 

2. T. K. Todorov, K. B. Reuter and D. B. Mitzi, Adv. Mater., 2010, 22, 

E156-E159. 

3. Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. 

Hillhouse and R. Agrawal, J. Am. Chem. Soc., 2010, 132, 17384-

17386. 

4. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, Sol. 

Energy Mater. Sol. Cells, 2011, 95, 1421-1436. 

5. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, 

Y. Zhu and D. B. Mitzi, Advanced Energy Materials, 2014, 4, n/a-n/a. 

6. W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510-519. 

7. N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 2007, 515, 

5949-5952. 

8. H. Yoo and J. Kim, Sol. Energy Mater. Sol. Cells, 2011, 95, 239-244. 

9. V. G. Rajeshmon, C. S. Kartha, K. P. Vijayakumar, C. Sanjeeviraja, 

T. Abe and Y. Kashiwaba, Solar Energy, 2011, 85, 249-255. 

10. Y. B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar and V. 

Sundara Raja, Sol. Energy Mater. Sol. Cells, 2009, 93, 1230-1237. 

11. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang and Y. Lu, J. Am. 

Chem. Soc., 2008, 130, 5620-5621. 

12. A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris and E. S. 

Aydil, Chem. Commun., 2011, 47. 

13. S. Liu, H. W. Zhang and M. T. Swihart, Nanotechnology, 2009, 20. 

14. P. Davis and L. Mangolini, MRS Communications, 2013, 3, 57-60. 

15. A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S. A. Campbell and 

E. S. Aydil, Journal of Vacuum Science & Technology A, 2011, 29, 

051203. 

16. P. A. Fernandes, P. M. P. Salome and A. F. da Cunha, Journal of 

Alloys and Compounds, 2011, 509, 7600-7606. 

17. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier 

and D. Baillargeat, Advanced Functional Materials, 2012, 22, 1385-

1390. 

18. K. Tanaka, N. Moritake and H. Uchiki, Sol. Energy Mater. Sol. Cells, 

2007, 91, 1199-1201. 

19. A. Polizzotti, I. L. Repins, R. Noufi, S. H. Wei and D. B. Mitzi, 

Energy & Environmental Science, 2013, 6, 3171-3182. 

20. N. J. Carter, W. C. Yang, C. K. Miskin, C. J. Hages, E. A. Stach and 

R. Agrawal, Sol. Energy Mater. Sol. Cells, 2014, 123, 189-196. 

21. J. J. Scragg, T. Ericson, T. Kubart, M. Edoff and C. Platzer-

Bjorkman, Chem. Mat., 2011, 23, 4625-4633. 

22. V. Dimov, V. Iamakov and K. Bozhilov, Computers & Geosciences, 

1994, 20, 1267-1273. 

 

 

Page 5 of 5 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t


