ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Communication

Synthesis of 2-phenylnaphthalenes from styryl-2-methoxybenzenes^{†‡}

Ramesh Mudududdla,^{ab} Rohit Sharma,^{ab} Sheenu Abbat,^c Prasad V. Bharatam,^c Ram A. Vishwakarma,^{ab}* Sandip B. Bharate,^{ab}*

45

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A new simple and efficient method for the synthesis of 2phenylnaphthalenes from electron-rich 1-styryl-2methoxybenzenes has been described. The reaction proceeds via TFA catalyzed C-C bond cleavage followed by ¹⁰ intermolecular [4+2]-Diels-Alder cycloaddition of *in situ* formed styrenyl trifluoroacetate intermediate. The quantum chemical calculations identified the transition state for the cycloaddition reaction and helped in tracing reaction mechanism. The method has been efficiently utilized for ¹⁵ synthesis of phenanthrene skeleton and a naphthalene-based

potent and selective ER-β agonist.

The naphthalene scaffold has a great utility in synthetic, medicinal and material chemistry.¹ Several natural products (e.g. rifampicin/ rifamycin, gossypol, etc.) which possess a ²⁰ naphthalene core in their structures exhibit promising biological activities.² The 2-phenylnaphthalenes have been reported to

- exhibit potent estrogen receptor (ER-β) agonistic activity.^{1d, 1e, 3} There exist several methods for the preparation of naphthalene core including [4+2] Diels-Alder cycloaddition, benzannulations, ²⁵ metal-mediated cyclizations, rearrangement of strained rings, and
- Lewis acid-catalyzed intramolecular cyclization reactions.⁴ For synthesis of the 2-phenylnaphthalene scaffold, most of the reports involve use of a naphthalene core as a starting material. This includes metal-catalyzed cross-coupling of aryl boron
- ³⁰ compounds,⁵ aryl Grignard reagents⁶ and aryl halides with existing naphthalene core structures.^{2, 7} However, very few methods are reported for the direct construction of 2phenylnaphthalenes from non-naphthalene starting materials (Figure 1).^{4b, 4f, 4g, 4i-k, 8} These methods are metal-catalyzed
- ³⁵ reactions and involve substrates which require either multiple steps to prepare or a metal-catalyst for their synthesis. In this communication, we report a new method for direct synthesis of biologically important 2-phenylnaphthalenes from electron-rich 1-styryl-2-methoxybenzenes (Scheme of Table 1). The substrates,

40 1-styryl-2-methoxybenzenes, can be easily synthesized in one-

^aMedicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

^bAcademy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India. ^cDepartments of Pharmacoinformatics and Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER),

SAS Nagar, Punjab-160062, India.

- [†]IIIM Publication number IIIM/1694/2014
- *Fax:* +91-191-2569333; *Tel:* +91-191-2569111

*Electronic supplementary information (ESI) available: NMR spectra of all compounds. See DOI: 10.1039/xxxx

step from corresponding commercially available aldehydes and phosphine salts. The method is simple and efficient with widesubstrate scope, excellent yields and does not require any metal catalyst.

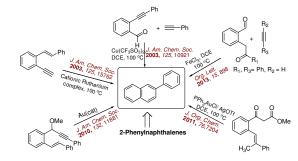


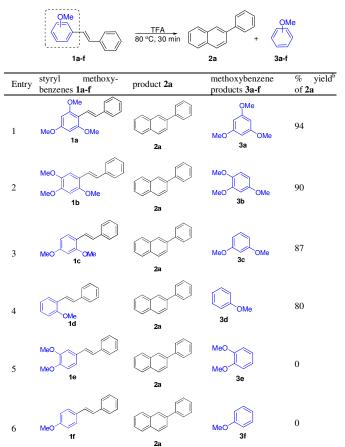
Figure 1. Methods for preparation of 2-phenylnaphthalene scaffold

In continuation of our work on devinylation of 2,4,6-trimethoxy vinylbenzenes,⁹ the reaction of 1-styryl-2,4,6-trimethoxybenzene 1a with TFA led to the formation of a new product 2a along with 50 1,3,5-trimethoxybenzene 3a. The spectral characterization of the new product 2a revealed it as a 2-phenylnaphthalene. The formation of product 2a with the release of 1,3,5trimethoxybenzene 3a indicated that the reaction must involve C-C bond cleavage followed by intermolecular [4+2]-Diels-Alder 55 cycloaddition. In order to optimize the reaction conditions, and to investigate the effect of using solvents (rather than only TFA) in the reaction medium, a series of experiments using 1-stvrvl-2.4.6trimethoxybenzene (1a) were carried out as shown in Table 1. A brief examination of variation in TFA amount in combination 60 with various organic solvents and water, indicated that 50% TFA in water is an optimum reaction medium producing desired product 2a in excellent yield. The HPLC analysis of reaction mixture also indicated formation of only products 2a and 3a (Section S7 of ESI). These optimized conditions (Table 1, entry 65 6) were used for further reactions.

Table 1 Optimization of reaction conditions

MeO-		\rightarrow	+	eO OMe
	1a	2a	I	3a
Entry	Reaction medium ^a	Temp	Time (h)	% yield of 2a ^{bc}
1	TFA	rt	1	70
2	TFA	80 °C	0.5	95
3	50% TFA in ACN	80 °C	1	72
4	50% TFA in DCM	60 °C	1	74
5	50% TFA in MeOH	80 °C	1	70
6 ^d	50% TFA in H ₂ O	80 °C	0.5	94
7	50% TFA in H ₂ O	80 °C	1	94

^{*}E-mail: <u>sbharate@iiim.res.in;</u> <u>ram@iiim.res.in</u>

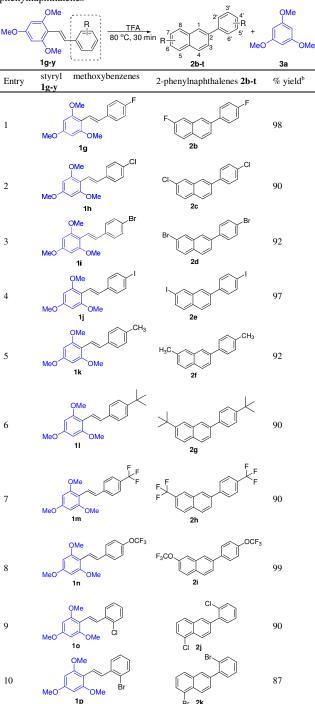

8	25% TFA in H ₂ O	80 °C	1	0	
9	25% TFA in H ₂ O	80 °C	10	50	
10	10% TFA in H ₂ O	80 °C	10	0	
11	H_2O	80 °C	6	0	
^a For	100 mg reaction.	1 mL solvent used:	^b isolated	vield: ^c viel	d_

"For 100 mg reaction, 1 mL solvent used; " isolated yield; 'yield calculation is shown in ESI (Section S8); ^doptimized reaction condition.

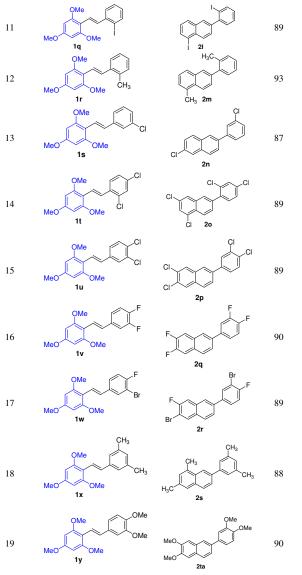
Next, the effect of variation in leaving-group moiety 5 (methoxybenzene) was studied using different 1-styrylmethoxybenzenes **1a-1f** as starting materials (Table 2). Like substrate **1a** (entry 1), under optimized reaction conditions, the 2,4,5-trimethoxy and 2,4-dimethoxy substrates **1b** and **1c** produced product **2a** in excellent yields (entries 2 and 3). ¹⁰ Similarly, the reaction of 1-styryl-2-methoxybenzene (**1d**) with TFA also led to the formation of desired product **2a**, however comparatively less yield was obtained (entry 4). Interestingly, reaction does not proceed with 1-styryl-3,4-dimethoxy and 1styryl-4-methoxybenzenes (**1e-1f**, entries 5-6), indicating that the

¹⁵ presence of an *ortho*-methoxy on the leaving group moeity is essential for the reaction to proceed. Thus, among 2methoxybenzenes, following reactivity trend was observed: 2,4,6trimethoxy > 2,4,5-trimethoxy > 2,4-dimethoxy > 2-methoxy.

Table 2. Scope of the reaction for various 1-styryl-methoxybenzenes for $_{\rm 20}$ synthesis of 2-phenylnaphthalene 2a

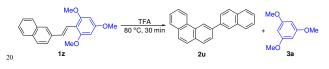


^{*a*} Reagents and conditions: styrylbenzene (100 mg), 50% TFA in water (1 mL), 80 °C, 30 min; ^{*b*} isolated yield.


Next, the scope of the reaction for various substituted styryl ²⁵ methoxybenzenes (prepared by Wittig reaction of 2,4,6-tri methoxybenzaldehyde with aryl triphenylphosphine salts)¹⁰ was investigated with variation in substitution on the styryl moiety (Table 3). First the substrates with mono-substituted styryl-2,4,6-trimethoxybenzenes **1g-1s** were investigated. The *para*-

³⁰ substituted styryl-2,4,6-trimethoxybenzenes **1g-1n** led to formation of 7,4'-disubstituted 2-phenylnaphthalenes as products (entries 1-8). The reaction of *ortho-* **1o-1r** (entries 9-12) and *meta-* **1s** (entry 13) substituted styryl-2,4,6-trimethoxybenzenes produced the desired 5,2'-disubstituted **2j-2m** and 6,3'³⁵ disubstituted **2n** 2-phenylnaphthalene products, respectively. In the later case, the formation of another possible product (8,3'- disubstituted 2-phenylnaphthalene) was not observed, which may be due to the fact that the intermolecular cycloaddition step occurs from less-hindered side.

40 **Table 3.** Scope of the reaction for synthesis of substituted 2-phenylnaphthalenes^a



ChemComm Accepted Manuscript

^{*a*} Reagents and conditions: styrylbenzene (100 mg), 50% TFA in water (1 mL), 80 °C, 0.5 h; ^{*b*} isolated yield of 2-phenylnaphthalenes.

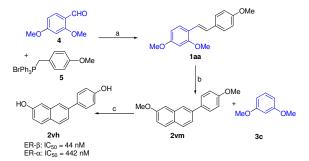

Next, reactions of disubstituted styryl-2,4,6-trimethoxybenzenes 5 viz. 2,4-, 3,4- and 3,5-disubstituted substrates 1t-1y were investigated (entries 14-19). In these reactions, 2phenvlnaphthalene products 20-2t formed were via intermolecular cycloaddition of styryl intermediates from the less hindered side. For example, in the case of 3,4-dimethoxystyryl-¹⁰ 2,4,6-trimethoxybenzene (**1y**), the product 6.7.3'.4'tetramethoxy-2-phenylnaphthalene 2ta (Table 2, entry 19) was formed. The formation of product 2ta was further confirmed by HMBC correlations (Figure S1 of ESI). Further, the scope of the established protocol was investigated for synthesis of scaffolds. 15 phenanthrene Treatment of 2-(2,4,6trimethoxystyryl)naphthalene 1z with TFA led to the formation of 3-(naphthalen-2-yl)phenanthrene 2u in 92% yield. In this reaction, the phenanthrene product 2u was formed selectively over other possible anthracene product (Figure 2).

Figure 2. Synthesis of phenanthrene product 2u

To understand the mechanism of TFA-mediated synthesis of 2phenylnaphthalenes from 1-styryl-2-methoxybenzenes, quantum chemical studies on the reactants, intermediates, products and the 25 important transition states of the reaction path have been carried out using B3LYP/6-311+G (d,p) methods. Figure 3 shows the reaction scheme with the enthalpy and activation energy values. The first step of the reaction involves the saturation of the double bond in the presence of trifluoroacetic acid. It is an exothermic 30 reaction (3-4 kcal/mol), leading to two products (the S-isomer is 1.37 kcal/mol more stable than the R-isomer). The next step is the proton-assisted elimination of methoxybenzene to give V (in a trans arrangement) which is an endothermic reaction requiring about 17.25 kcal/mol. This step is facilitated by the proton 35 through an intermediate IV. The dimerization step involves a concerted mechanism with a barrier of 40.58 kcal/mol and an endothermicity of 9.27 kcal/mol. The non-isolable intermediate VI is unstable due to lack of aromaticity and it quickly rearranges through a 1,3-H-shift to a more stable intermediate VII, a process 40 which is exothermic by 27.39 kcal/mol. Thus, the dimerization process can be considered to be a thermodynamically favorable process involving a concerted mechanism and immediate 1,3-Hshift. The final step of formation of the naphthalene ring with a loss of two molecules of trifluoroacetic acid is also an exothermic 45 reaction with about 22.84 kcal/mol energy release. This last step probably is the driving force, providing thermodynamical stability due to aromaticity. The overall reaction is exothermic by about 15 kcal/mol and thus very favorable even though it involves a transition state for the concerted Diels-Alder reaction 50 with a barrier of about 40.58 kcal/mol.

Further, the newly established protocol was utilized for the synthesis of 7,4'-dihydroxy-2-phenylnaphthalene **2vh** which has been reported as a potent and selective agonist of estrogen receptor- β (IC₅₀ 44 nM).^{1d} The synthetic scheme for the ⁵⁵ preparation of ER- β agonist **2vh** is depicted in Figure 4.

Figure 4. Synthesis of ER- β agonist **2vh**. Reagents and conditions: (a) n-BuLi, THF, 30 min, 80 °C, 92%; (b) 50% TFA in water, 80 °C, 0.5 h, 92%; (c) BBr₃, anhydrous DCM, rt, 3 h, 84%.

60 In conclusion, we have developed a new method for the synthesis of the 2-phenylnaphthalenes from 1-styryl-methoxybenzenes. Using quantum chemical calculations, the mechanism of the reaction has been established. The utility of the established protocol for synthesis of the phenanthrene scaffold and potent 65 naphthalene-based selective ER-β agonist has been demonstrated.

Acknowledgements

Authors thanks analytical department IIIM for analytical support. RM, RS and SA are thankful to CSIR, DST and UGC for research fellowships. The financial support from DST-SERB is 70 gratefully acknowledged (grant no. SR/FT/CS-168/2011).

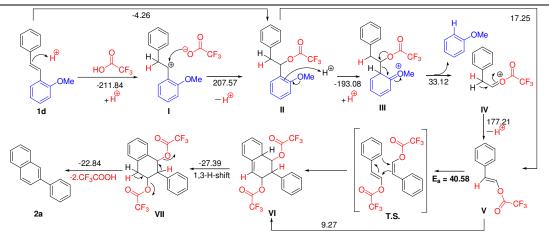


Figure 3 Reaction mechanism showing energy calculations at each step

References and notes

- For applications of naphthalene scaffold, see: (a) S. V. Bhosale, C. H. Janiab and S. J. Langford, *Chem. Soc. Rev.*, 2008, **37**, 331–342; (b) J. F. Gil, D. J. Ramh and M. Yus, *Tetrahedron*, 1993, **49**, 9535-9546; (c) S. Akutagawa, *Appl. Catal. A: Gen.*, 1995, **128**, 171-207; (d) R. E. Mewshaw, R. J. Edsall, C. Yang, E. S. Manas, Z. B. Xu, R. A. Henderson, J. C. Keith and H. A. Harris, *J. Med. Chem.*, 2005, **48**, 3953-3979; (e) S. Marchais-Oberwinkler, M. Wetzel, E. Ziegler, P. Kruchten, R. Werth, C.
- Henn, R. W. Hartmann and M. Frotscher, *J. Med. Chem.*, 2011, 54, 534–
 547.
 C. B. de Koning, A. L. Rousseau and W. A. L. van Otterlo, *Tetrahedron*,
- 2003, 59, 7-36.
 M. Frotscher, E. Ziegler, S. Marchais-Oberwinkler, P. Kruchten, A.
- Neugebauer, L. Fetzer, C. Scherer, U. Müller-Vieira, J. Messinger, H. Thole and R. W. Hartmann, *J. Med. Chem.*, 2008, **51**, 2158–2169.
- (a) N. Asao and H. Aikawa, J. Org. Chem., 2006, 71, 5249-5253; (b) N. Asao, T. Nogami, S. Lee and Y. Yamamoto, J. Am. Chem. Soc., 2003, 125, 10921-10925; (c) N. Asao, K. Sato, Menggenbateer and Y. Yamamoto, J. Org. Chem., 2005, 70, 3682-3685; (d) C. K. Bradsher, Chem. Rev., 1987, 87, 1277-1297; (e) L.-X. Shao, Y.-P. Zhang, M.-H. Qi
- 20 Chem. Rev., 1987, 87, 1277-1297; (e) L.-X. Shao, Y.-P. Zhang, M.-H. Qi and M. Shi, Org. Lett., 2007, 9, 117-120; (f) H.-C. Shen, S. Pal, J.-J. Lian and R.-S. Liu, J. Am. Chem. Soc., 2003, 125, 15762-15763; (g) C. R. Solorio-Alvarado and A. M. Echavarren, J. Am. Chem. Soc., 2010, 132, 11881–11883; (h) X. Zhang, S. Sarkar and R. C. Larock, J. Org. Chem.,
- 25 2006, 71, 236-243; (i) S. Zhu, Y. Xiao, Z. Guo and H. Jiang, Org. Lett., 2013, 15, 898-901; (j) C. Maurin, F. Bailly and P. Cotelle, *Tetrahedron*, 2005, 61, 7054–7058; (k) P. Cotelle and J.-P. Catteau, *Tetrahedron Lett.*, 1997, 38, 2969-2972.
- (a) J. L. Bolliger and C. M. Frech, Adv. Synth. Catal., 2010, 352, 1075-1080;
 (b) T. Tu, H. Mao, C. Herbert, M. Xu and K. H. Dotz, Chem. Commun., 2010, 46, 7796-7798;
 (c) Y. Yu, T. Hu, X. Chen, K. Xu, J. Zhang and J. Huang, Chem. Commun., 2011, 47, 3592-3594;
 (d) C.-W. Zhao, J.-P. Ma, Q.-K. Liu, Y. Yu, P. Wang, Y.-A. Li, K. Wang and Y.-B. Dong, Green Chem., 2013, 15, 3150-3154;
 (e) S.-Y. Ding, J. Gao, Q.
- 35 Wang, Y. Zhang, W.-G. Song, C.-Y. Su and W. Wang, J. Am. Chem. Soc., 2011, 133, 19816-19822.
- (a) E. Shirakawa, Y. Hayashi, K.-i. Itoh, R. Watabe, N. Uchiyama, W. Konagaya, S. Masui and T. Hayashi, *Angew. Chem. Int. Ed.*, 2012, 51, 218-221;
 (b) D.-G. Yu, B.-J. Li, S.-F. Zheng, B.-T. Guan, B.-Q. Wang
- 40 and Z.-J. Shi, Angew. Chem. Int. Ed., 2010, 49, 4566-4570; (c) N. Yoshikai, H. Matsuda and E. Nakamura, J. Am. Chem. Soc., 2009, 131, 9590-9599.
- (a) B.-T. Guan, Y. Wang, B.-J. Li, D.-G. Yu and Z.-J. Shi, J. Am. Chem. Soc., 2008, 130, 14468–14470; (b) P. Leowanawat, N. Zhang and V.
- Percec, J. Org. Chem. , 2012, 77, 1018–1025; (c) M. Tobisu, T. Shimasaki and N. Chatani, Angew. Chem. Int. Ed., 2008, 47 4866 –4869; (d) D.-G. Yu, B.-J. Li, S.-F. Zheng, B.-T. Guan, B.-Q. Wang and Z.-J. Shi, Angew. Chem. Int. Ed., 2010, 49, 4566 –4570.
- 8. A. R. Jagdale, J. H. Park and S. W. Youn, J. Org. Chem., 2011, 76, 7204.
- 50 9. S. B. Bharate, R. Mudududdla, R. Sharma and R. A. Vishwakarma, *Tetrahedron Lett.*, 2013, 54, 2913–2915.
- B. I. Roman, L. M. De Coen, S. T. F. C. Mortier, T. De Ryck, B. W. A. Vanhoecke, A. R. Katritzky, M. E. Bracke and C. V. Stevens, *Bioorg. Med. Chem.*, 2013, 21, 5054–5063.
- 55

