This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Indanthrone dye revisited after sixty years

Kamil Kotwica\textsuperscript{a}, Piotr Bujak\textsuperscript{b}, Damian Wamil\textsuperscript{a}, Mariusz Materna\textsuperscript{a}, Lukasz Skorka\textsuperscript{a}, Piotr A. Gunka\textsuperscript{a}, Robert Nowakowski\textsuperscript{b}, Barbara Golec\textsuperscript{b}, Beata Luszczynska\textsuperscript{c}, Malgorzata Zagorska\textsuperscript{a} and Adam Pron\textsuperscript{a}

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaphtho[2,3-a:2',3'-h]phenazine (P\textsubscript{C8}), in a simple one-pot process consisting of the carbonyl group reduction with sodium dithionite followed by the substitution with solubility inducing groups under the phase transfer catalysis conditions.

An impressive development of organic electronics in the past decade was inherently associated with the elaboration of new synthetic strategies leading to low and high molecular weight organic semiconductors, mainly of fused aromatic and heterocyclic nature.\textsuperscript{1} Among many promising approaches in the synthesis of semiconductors with tunable redox, spectroscopic and electronic properties, functionalization of oligoacenes with pyridine- or pyrazine-type moieties deserves a special attention.\textsuperscript{1c} Replacement of some methine-type carbons with nitrogen radically changes the properties of the resulting semiconductors. As indicated by Winkler and Houk\textsuperscript{2} \textsuperscript{N}-substituted oligoacenes should be considered as potential n-type semiconductors because of their high electron affinity\textsuperscript{3} in contrast to oligoacenes not containing nitrogen atoms which are widely used in organic electronic devices as p-type semiconductors.\textsuperscript{1a,4} Moreover, \textsuperscript{N}-substituted oligoacenes are less sensitive to oxidative degradation or to dimerization processes as compared to their all carbon counterparts.\textsuperscript{5} Finally, by controlling the N to C ratio, as well as the positions of nitrogen atoms in the molecule, it is possible to prepare derivatives strongly differing in their physical properties, adapting them to a given application.\textsuperscript{2,6}

Initially developed methods for the preparation of \textsuperscript{N}-substituted acenes consist of the condensation reaction between \textit{o}-diaminoacenes with \textit{o}-diketones (or hydroxyketones).\textsuperscript{5a,6,7} Other synthetic strategies towards spatially expanded azaacenes involve Buchwald-type coupling between \textit{o}-diaminoacenes with \textit{o}-dichloroacenes.\textsuperscript{5b,8} More recently, a \textquotedblleft zig-zag\textquotedblright - type azaacene molecule, namely dinaphtho[2,3-a:2',3'-h]phenazine substituted with solubilizing trisopropylsilylhethynyl groups was obtained by oxidative coupling of two 2-aminioanthracene molecules.\textsuperscript{9}

Popular alizarin-type dyes such as indanthrone or flavanthrone are structurally strikingly similar to several azaacene semiconductors presently tested as components of organic electronic devices.\textsuperscript{1c,3a,10} In the past six decades the research interest in these compounds was very limited, scarce publications described liquid crystallinity of indanthrone derivatives,\textsuperscript{11} their nonlinear optical properties,\textsuperscript{12} or their possible use of as a low molecular weight Bcl2 inhibitors.\textsuperscript{13} Meanwhile several new semiconductors have been obtained by functionalization of well known dyes (including natural ones). The use of isoindigo ((E)-1H,1H-[3,3]bindolylidene-2,2-dione\textsuperscript{14} or diketopyrrolopyrrole or diketopyrrolopyrrole-derived azaacenes\textsuperscript{15} as a building block in the synthesis of solution processable organic semiconductors must be quoted here as an instructive example.

In this communication we describe the preparation and detailed characterization of a new, solution processable, electroactive conjugated molecule, namely tetraoctyloxydinaphtho[2,3-a:2',3'-h]phenazine (P\textsubscript{C8}) – tetraalkoxy-substituted indanthrene (scheme 1). This tetraoctyloxy derivative of diazaacene, containing a phenazine-type central unit was synthesized from a well known blue dye - indanthrone - commercially available, insoluble in organic solvents reagent which can be obtained from 1-aminoanthraquinone (see Supplementary Information). Indanthrone is readily transformed into P\textsubscript{C8} in a one-pot system by carrying out the carbonyl group reduction with sodium dithionite followed by the substitution reaction under the phase transfer catalysis conditions. This is a well known method, previously used for the synthesis of alkoxy derivatives of quinone moieties containing compounds,\textsuperscript{16} here modified by replacing zinc with sodium dithionite.

\textbf{Scheme 1. Synthetic route to P-C8}

\textsuperscript{1}H and \textsuperscript{13}C NMR spectra of P\textsubscript{C8} are fully consistent with the condensed zig-zag dinaphtho[2,3-a:2',3'-h]phenazine structure of C\textsubscript{2h} symmetry (see Supplementary Information). In particular two doublets can be observed in the aromatic part of the \textsuperscript{1}H NMR spectrum with the coupling constant of J = 9.5 Hz which...
unambiguously originate from four protons of the phenazine ring. The presence of the pyrazine ring was further corroborated by Field Desorption (FD⁺) and Electron Ionization (EI⁺) mass spectra which gave molecular peaks of 893,6 and 892,7, respectively (calcd for (C₈H₉NO₂)⁺ = 892,6).

P-C8 readily crystallizes in THF solutions yielding good-quality single crystals suitable for crystal structure determination. There are two almost planar molecules in the triclinic unit cell (space group: P 1) (see Figure 1). For details concerning crystal structure determination and the crystallographic parameters see Supplementary Information.

Figure 1. (a) X-Ray crystallographic structure of P-C8. (b) Crystal structure packing of P-C8 in the unit cell (a = 9.9378(14) Å, b = 15.1528(2) Å, c = 17.8125(2) Å, α = 69.7564°(13), β = 88.9555°(11), γ = 87.1772°(12)).

P-C8 shows a strong tendency to form self-assembled monolayers on surfaces of appropriate substrates as, for example, HOPG. Figure 2 shows a representative STM image of a monolayer deposited from hexane solution. The unit cell parameters determined from this image are: a = 20.5 Å, b = 18.5 Å, α = 87° yielding a nearly rectangular 2D unit cell. This shape of the unit cell is in contrast with three fold symmetry of the graphite surface and clearly indicates that adsorbate-adsorbate interactions are a dominant factor determining the supramolecular organization of P-C8 in the monolayer. Both 2D and 3D supramolecular structures are governed by mode of the substituents interdigitation. The main difference between these organizations has its origin in a different spatial orientation of the alkoxy substituents with respect to the conjugated core. In the monolayer both parts form the same plane whereas in the single crystals they are nearly orthogonal. As a consequence the 2D cell parameters are increased.

Figure 2. (a) STM image and (b) corresponding model of adsorption geometry of a monolayer of P-C8 deposited from hexane on HOPG graphite (15x15 nm², Iₐ = 1 nA, Vₛₜₐₜ = -1V).

Redox properties of P-C8 were studied by cyclic voltammetry. Its cyclic voltammogram yields two irreversible oxidation peaks and one reduction peak (see Figure S5 in Supplementary Information). The HOMO and LUMO positions, determined from

the electrochemical studies are significantly altered as compared to the case of the corresponding levels in phenazine (see Scheme 2). P-C8 can be considered as a DAD molecule with a central electroaccepting phenazine unit connected to two dialkoxynaphthalenes donors. This chemical constitution results in significant lowering of the electrochemical band gap from 2.91 in phenazine to 1.89 eV in P-C8.

Scheme 2. Comparison of HOMO and LUMO energy levels of phenazine and P-C8 (phenazine data are taken from [7g]).

It is instructive to confront the electrochemical data with the plots of frontier molecular orbitals and spin densities of the radical cation and radical anion formed, respectively, upon the oxidation and reduction P-C8, obtained from quantum chemical calculations. They were performed using Gaussian09 Revision D.01 package and employing hybrid B3LYP exchange correlation potential combined with 6-31G(d,p) basis set. The HOMO is extended over the aromatic rings avoiding the central nitrogen atoms whereas LUMO is preferentially located on the central phenazine unit. Upon the formation of a radical cation through oxidation the spin density preferentially concentrates on the dialkoxynaphthalene D segment. Reduction of P-C8 to a radical anion moves the spin density towards the central phenazine part. (see Fig. S6 in Supplementary Information). This finding supports the DAD nature of the studied compound and explains its electrochemical properties.

Figure 3. Absorption spectra of indanthrone and P-C8 solutions in chloroform together with its emission spectrum. The calculated positions and relative oscillator strengths of the electronic transitions of this compound are depicted as red bars for comparison. The inset is the photograph of P-C8 solution under UV light.

In Figure 3 absorption spectra of indanthrone and P-C8 are shown, the latter being compared with the calculated one. In the spectrum of indanthrone one unresolved band peaked at 278 nm is observed. For P-C8 three bathochromically shifted peaks at 300, 333 and 489 nm with a pronounced vibrational structure are
registered. The spectrum is similar to those reported for other azacene\textsuperscript{7,9,20} and consistent with the calculated transition. (see Figure 3 and Table S3 in Supplementary Information). The lowest energetic band (at 489 nm) is an intramolecular CT band associated with DA interactions involving charge transfer between the HOMO localized on the anthracene parts of the molecule and the LUMO located on the phenazine central part. It is worth noting that the HOMO-LUMO transition is highly privileged due to the symmetry of the molecule being restricted to the centrosymmetric (C\textsubscript{s}) point group. Since HOMO and LUMO belong to \(A_g\) and \(A_u\) irreducible representations, respectively, the transition between them is highly privileged according to the Laporte selection rule. For full analysis of the electronic transitions natural transition orbitals analysis was performed and included to Supplementary Information.

Finally, a difference of 0.41 eV between the optical and electrochemical band gaps should be pointed out. This is mainly associated with the exciton binding energy which in some organic compounds may reach values up to 0.5 eV.\textsuperscript{21}

Figure 4. Electroluminescence spectra of 1 wt.% dispersion of P-C8 in PVK+PBD matrix (red line) and pure PVK+PBD matrix (blue line). The inset shows the zoom of the P-C8 electroluminescence spectrum over narrower spectral range.

P-C8 is photoluminescent, emitting green light with a relatively low Stokes shift of 881 cm\textsuperscript{-1} (22 nm) (see Figure 3). The measured high photoluminescence quantum yield (56\%) together with its short lifetime (3.9 ns) prompted us to apply this derivative as an active component of “guest–host” type organic light emitting diodes. In Figure 4 the electroluminescence spectrum of 1 wt.% molecular dispersion of P-C8 in a two component matrix consisting of hole transporting poly(9-vinylcarbazole) (PVK) and electron transporting 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) is compared with the spectrum of the pure matrix. It is clear that the Förster energy transfer is efficient and complete since the spectrum is characteristic of P-C8 with no features originating from the matrix (PVK + PBD). This is assured by a strong overlap the P-C8 absorption spectrum with the emission spectrum of the matrix.

Notes and references
70 "Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3, 00-664 Warsaw, Poland. E-mail: piotr.bujak@poczta.onet.pl
71 Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
72 Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
73 Electronic Supplementary Information (ESI) available: Experimental procedures, characterization data of P-C8, organic light emitting diode fabrication. CCDC 1006274. For ESI and crystallographic data in CIF see DOI: 10.1039/b000000xs/
Tetraoctyloxydnaptho[2,3-a:2',3'-h]phenazine a solution processable, self-assembling and electroluminescent conjugated molecule can be obtained from indanthrone, a old intractable dye, in a simple one-pot process.