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A Pd(II)-catalyzed arylation of methylene C(sp3)–H bonds in 
aliphatic amides directed by our newly developed PIP 
directing group with aryl iodides/bromides has been achieved. 
Arylation occurs efficiently with a broad range of aryl halides 
and amides. 10 

In recent years, transition-metal-catalyzed C-H arylation has 
emerged as an attractive alternative to traditional cross-coupling 
reactions due to the minimization of stoichiometric metallic waste 
and the avoidance of multi-step sequences to prepare the starting 
materials.1 Compared to the significant progress made with the 15 

arylation of C(sp2)–H bonds of arenes and heteroarenes, general 
strategies for the arylation of unactivated C(sp3)–H bonds, 
especially methylene C(sp3)–H bonds, remain relatively rare.2 An 
isolated example of methylene C(sp3)–H arylation of 2-
ethylpyridine with aryl iodides was first reported by Daugulis in 20 

2005.3 Shortly after, the seminal work by the same group 
described a removable bidentate directing group (DG) derived 
from 8-aminoquinoline for the effective arylation with broad 
substrate scope.4 In 2006, Corey reported the β-arylation of 
phthalimide protected α-amino acids with aryl iodides assisted by 25 

the same DG.5 Recently, Yu reported a ligand-enabled arylation 
of methylene C(sp3)–H bond  using a weakly coordinating 
perfluorinated arylamides DG (CONHArF).6a Very recently, Yu 
et al. have extended this elegant strategy to the β-arylation of α-
amino acids with aryl iodides.6b Besides, Shi has reported the 30 

arylation of methylene C(sp3)–H bonds with diarylhyperiodonium 
salts using 8-aminoquinoline DG.8 However, the above 
mentioned arylation reactions mainly depended on the use of aryl 
iodides4-7 or diarylhyperiodonium salts.8 Thus, extending 
arylation reactions of methylene C(sp3)–H bonds to other 35 

unreactive, yet readily available and cost-effecitve arylating 
reagents, such as aryl bromides, is highly desirable.  

Despite the well-established arylation of C(sp3)–H bonds with 
ArI under the Pd(II)/Pd(IV) catalytic cycle,4-7 the use of aryl 
bromides as arylating reagents was mainly limited to the 40 

Pd(0)/Pd(II) catalytic cycle initiated by the oxidative addition of 
ArBr to palladium(0).10 Recently, the You group has reported the 
first nickel-catalyzed arylation of C(sp3)–H with aryl bromides 
assisted by 8-aminoquinoline DG.11 However, this reaction 
protocol was limited to the arylation of methyl C(sp3)–H bonds 45 

adjacent to quanternary centers. We have recently developed a 
removable bidentate DG derived from 2-(pyridine-2-
yl)isopropylamine (PIP-amine), which exhibited superior 

reactivity in the activation of unactivated methylene C(sp3)–H 
bonds.12 Compared to Daugulis’ 8-aminoquinoline DG, the 50 

nitrogen atom on this DG is more electron-rich and sterically 
bulky. We hypothesized that this may not only facilitate the C-H 
activation but also promote the oxidative addition of the less 
reactive aryl bromides to the Pd(II) intermediates. Herein we 
report an efficient Pd(II)-catalyzed arylation of secondary C(sp3)–55 

H bonds with aryl bromides and/or iodides directed by our newly 
developed PIP DG. The reaction could tolerate a broad range of 
aryl halides and aliphatic amides, providing an efficient protocol 
for the synthesis of β-arylated aliphatic carboxylic acids and their 
derivatives.13  60 

Table 1  Optimization of the reaction conditions 

Inorganic bases and silver(I) salts have been widely used as 
halide scavengers in the direct arylation of C-H bonds under a 
Pd(II)/Pd(IV) catalytic cycle.4-7 Moreover, carboxylate 
counteranions also play a key role in the C-H activation 65 

reactions.14 Therefore, initial experiments were performed in t-
Amyl alcohol with K2CO3 (2.5 equiv) as halide scavenger and 
(BnO)2PO2H (0.2 equiv) as ligand, which has been found to 
facilitate the C(sp3)–H alkylation reactions.12b To our delight, the 
desired product 3a was obtained in 39% yield (Table 1, entry 1). 70 

Further investigation revealed that 3a was given in 53% yield 

Pd(OAc)2 (10 mol%)
base (2.5 equiv)

additive, solvent

120 oC, 24 h, N2

H
N

O
PIP

H

H
N

O
PIP
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Br
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+

Entry Base Solvent Yield (%)b

K2CO3 t-Amyl-OH

K2CO3

K2CO3

AgF

CsCO3

t-Amyl-OH

t-Amyl-OH

t-Amyl-OH

t-Amyl-OH

39

41

53

trace

23

NaHCO3 t-Amyl-OH

DCMK2CO3

trace

36

tolueneK2CO3 25

1

2

3

4

7

8

9

10

a Reaction conditions: 1a (0.15 mmol), Pd(OAc)2 (10 mol%), base and additive in 1.5

mL solvent at 120 oC for 36 h. b 1H NMR yield using CH2Br2 as the internal standard. 
cIsolated yield. d Pd(TFA) 2 (10 mmol%) was used.

t-BuOHK2CO3 75c11

Additive (equiv)

(BnO)2PO2H (0.2)

PivOH (0.2)

MesCOOH (0.2)

-

PivOH (0.2)

PivOH (0.2)

PivOH (0.2)

PivOH (0.2)

KHCO3

K3PO4

t-Amyl-OH

t-Amyl-OH

17

43

5

6

PivOH (0.2)

PivOH (0.2)

PivOH (0.2)

1a 2a 3a
N

PIP =

K2CO3 t-Amyl-OH 4112d PivOH (0.2)
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when PivOH was used as ligand (entry 3).4b,d Other inorganic 
bases and silver salts gave reduced yields (entries 4-8). t-BuOH 
was found to be the ideal solvent for the reaction providing 
arylated product 3a in 75% yield (entries 9-11 and see ESI†). The 
yield decreased to 41% when Pd(TFA)2 was used as catalyst 5 

(entry 12).  
With the optimized conditions in hand, we explored the scope 

of the aryl bromide coupling partners (Table 2). The reaction 
conditions were compatible with a wide range of aryl bromides 
with different functional groups, such as alkyl, fluoro, methoxy, 10 

trifluoromethyl, cyano, methoxycarbonyl, nitro, acetylamino and 
chloro. It is worth noting that aryl bromides bearing strong 
electron-withdrawing groups, such as nitro, methoxycarbonyl and 
cyano, were also tolerated under the optimized reaction 
conditions, affording the desired products in moderate yields (3k-15 

3n, 43%-64% yields). Notably, aryl bromides bearing free 
hydroxyl groups were also survived, albeit affording the products 
in reduced yields (3q and 3rb). Moreover, disubstituted aryl 
bromides bearing synthetically useful functional groups were also 
good arylating reagents and gave the desired products in 20 

reasonable yields (3r-3u). 

Table 2 Pd(II)-Catalyzed arylation of methylene C(sp3)–H bonds 
with ArBra ,b 

   The present reaction was next applied to various aliphatic 
amides (Table 3). A variety of functional groups, such as chloro, 25 

indolyl and Phth-protected amine, were tolerated under the 
reaction conditions. Arylation of cyclobutanecarboxamide gave 
the diarylated product 3ac in 38% yield. To our delight, some 
specific carboxamides and aryl bromides, which were ineffective 
for arylation under Conditions A, were compatible with the 30 

reaction conditions established by Daugulis (Conditions B)4 
using ArI as the arylating reagents (3ad-3ao). Thus, aryl iodides 
with strong electron-withdrawing groups and heteroaryl iodides, 
proceed smoothly under Conditions B to give the desired 
products in good yields (3ai-3ao, 51%-90%). Interestingly, 35 

bromo was survived under Conditions B (3ah, 86%). It is also 
worth noting that heteroaryl iodides such as 2-iodothiophene and 
4-iodopyridine were also tolerated under the arylation conditions, 
affording the desired products in good yields (3an, 89% and 3ao, 
51%, respectively). 40 

Table 3 Pd(II)-Catalyzed arylation of methylene C(sp3)–H bonds 
with aryl halidesa 

Finally, the PIP directing group was removed under acidic 
conditions (eqn (1)). The corresponding carboxylic acid 6 was 
obtained in 66% yield. Most importantly, the 2-(pyridine-2-45 

yl)isopropylamine (PIP-amine) is readily prepared from the 
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aReaction conditions: 1a (0.15 mmol), Pd(OAc)2 (10 mol%), K2CO3 (2.5 equiv) and 

PivOH (0.2 equiv) in 1.5 mL t-BuOH at 120 oC for 24 h. bIsolated yields.

Ac

Ar =

a Isolated yields. b Condations A. c Conditions B: 1 (0.2 mmol), Pd(OAc) 2 (10 mol%),

AgOAc (1.5 equiv) and ArI (1.5 equiv ) in 2 mL t-BuOH at 120 oC for 24 h. d Work-up by 

treating with 0.5 mL Et3N for 5 h. e 60 oC, 3 equiv ArI. f Conditions B, AgF (1.5 equiv).
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reaction of 2-cyanopyridine with MeMgBr on large scale 
following an improved procedure (eqn (2), see ESI†).15 

In conclusion, we have developed a Pd(II)-catalyzed direct 
arylation of methylene C(sp3)–H bonds with aryl bromides and/or 
aryl iodides. Good structural versatility in both aryl halides and 5 

aliphatic amides and high functional group tolerance were 
achieved, providing an efficient protocol for the synthesis of β-
arylated carboxylic acid derivatives. Unlike the arylation 
reactions proceeded under palladium/phosphine ligand catalytic 
system, this reaction protocol was believed to go through a 10 

Pd(II)/Pd(IV) catalytic cycle. Further studies to elucidate the 
mechanistic details are currently underway.  
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