ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

COMMUNICATION

Four acid-catalysed dehydrations proceed without interference

Rio Carlo Lirag and Ognjen Š. Miljanić*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

⁵ Four acid-catalysed dehydration reactions can proceed in one pot, simultaneously and without interference, to yield one imine, one acetal (or boronic ester), one ester and one alkene, even though many other cross-products could be conceived. This advanced self-sorting behaviour is attributed to different ¹⁰ dehydration rates, brought about by dissimilar electronic properties of starting materials.

An ability to synthesize multiple well-defined products from complex ("messy") mixtures of starting materials is one of the hallmarks of living systems. In fact, at the origin of life, it is ¹⁵ likely that selective reactions needed to occur within complex chemical mixtures that did not yet have highly specific enzyme catalysts.¹ Parallel synthesis could also yield tremendous benefits to chemical industry if multiple value-added products could be produced simultaneously in a single reactor. Despite these

- ²⁰ practical and fundamental benefits, little work has been devoted to the study of multiple reactions occurring within the same laboratory flask. Otera's group has been active in the area of "shotgun" processes,² wherein two reactions occur at rates sufficiently different to allow them to proceed in a single flask
- ²⁵ without interference. This principle was exemplified by the parallel operation of aldehyde allylation and aldol reaction,^{2a} multiple Diels-Alder reactions,^{2b} and in the one-pot combination of Diels-Alder reaction, alcohol acetylation and aldehyde allylation.^{2c} It was also applied in total syntheses of small natural ³⁰ products.^{2d-e} Same group has also demonstrated parallel recognition:³ non-interfering parallel reactions which occur at sites that react completely independently from each other.

In the domain of dynamic combinatorial chemistry,⁴ multiple non-interfering metal-ligand binding events have been utilized by ³⁵ Nitschke⁵ and Schmittel,⁶ among others. In a seminal paper, Isaacs⁷ has shown that eight hydrogen-bonding ensembles maintain their partner association preferences even when they are all placed in a single solution.

We have recently shown that libraries of as many as 25 ⁴⁰ equilibrating members can self-sort⁸ into a handful of pure products through iterative application of an irreversible chemical⁹ or physical¹⁰ stimulus. In this contribution, we examine the question of whether similar reduction of complexity is possible in a system where chemical functionalities of reacting species are ⁴⁵ different and multiple reactions are involved.

As the model system, we chose a set of five reactions, all of which are catalysed by Brønsted acids: (1) imine formation from aldehydes and primary amines; (2) acetalization of aldehydes and alcohols; (3) boronic ester formation from alcohols and boronic ⁵⁰ acids; (4) esterification of carboxylic acids with alcohols, and (5) alkene formation through intramolecular dehydration of alcohols. All of these reactions are in principle reversible, but equilibria can be forced toward the dehydrated products by H₂O removal via a Dean-Stark trap. In addition, compounds like aldehydes, ⁵⁵ alcohols, and diols can engage in reactions with multiple partners (e.g. an alcohol can form an ester with a carboxylic acid, a boronic ester with a boronic acid, an acetal with an aldehyde or an alkene). This fact allowed the exploration of situations wherein multiple species can compete for a reaction partner. We ⁶⁰ examined the behaviour of various libraries of starting materials chosen from Fig. 1.

Fig. 1. Compounds examined in this study.

Three sets of reactions were performed. In the first set (Scheme 1: top left and entries #1-2 in the table), we combined 65 equimolar amounts (0.32 mmol) of aldehyde 1a, boronic acid 5a or 5b,¹¹ aniline 2a, diol 6a, carboxylic acid 3a and alcohol 4c, along with a threefold excess of alcohol 4a (0.96 mmol).¹² Catalytic amount of p-toluenesulfonic acid was added and the solution was heated at reflux for 2 d with H₂O removal. Within 70 such a library of starting materials, many possible products could have formed: one imine, four acetals, four boronic esters, four esters and two alkenes, and possibly other dehydration products (e.g. amides or boroxines). However, only four discrete products were observed, corresponding to the reactions highlighted by 75 thick red lines in Scheme 1, top left. Top table in Scheme 1 details this selectivity: one amine (from 1a and 2a, pathway A), one boronic ester (from 5a/5b and 6a, pathway B), one ester (from **3a** and **4a**, pathway **C**) and one alkene (from **4c**, pathway **D**) were formed, in yields that typically exceeded 90% as ⁸⁰ determined by ¹H NMR spectroscopy with an internal standard.

Scheme 1. Self-sorting of complex reaction mixtures during acid-catalysed dehydrations. Dominant reaction pathways are highlighted with thick red lines, minor pathways with full black lines. Pathways that were not observed but were theoretically possible are shown in dashed black lines.

In the second set of thirteen experiments (Scheme 1: top centre and entries #3–15), boronic acid was replaced with a second aldehyde, setting up a competition between the two aldehydes as each could form either an imine or an acetal, or both. In total, 10 at least 16 products could be formed: two imines, eight acetals, four esters and four alkenes. In the benchmark reaction (entry #3), electron-poor aldehyde **1a** reacted with amine **2a** to form an imine (pathway **A**, 84%) and with **6a** to give a miniscule amount of acetal (pathway **E**, 0.4%). Electron-rich **1c** was dominantly 15 converted into an acetal with **6a** (pathway **B**, 77%), but a minor imine product (with **2a**, pathway **F**, 9%) was also observed. As in the previous set of experiments, carboxylic acid **3a** and alcohol **4a** formed an ester (pathway **C**, 96%) and alcohol **4c** exclusively

dehydrated into an alkene (pathway **D**, 99%). ²⁰ We subsequently probed the effect of replacing individual

components of this self-sorting system. Aldehydes can be switched without erosion of selectivity (entries #4-5), but once they become too close in their electronic properties (entry #6, where both 1b and 1f are electron-poor), imines and acetals are 25 formed indiscriminately. Switching the primary amine (entries #7–9) does not lower self-sorting selectivity. With alkylamine 2c, esterification of 3a with 4a proceeds in only 43% yield, which can be rationalized by the formation of small amounts of amide between 2c and 3a (as well as other unidentified products). As 30 entries #10-12 show, diol can also be varied rather freely, although 6c (entry #11) shows a lower yield, presumably on account of the Thorpe-Ingold effect. Switching the carboxylic acid (entries #14–15) and carboxylic acid along with alcohol (entry #13) still keeps the selectivity largely unaffected, although 35 esterification of benzoic acid (3d, entry #15) proceeded only to 11% conversion.¹³

This high preference for the dominant products observed in experiments #3-5 and #7-15 can tentatively be explained as follows (entry #3 will be used as the example). Donor-acceptor imines are both more stable and formed faster than their donor-

⁵ donor counterparts. Therefore, the electron-poor **1a** reacts quickly with amine **2a**, forcing aldehyde **1c** into an acetal with diol **6a**—which is entropically favoured relative to acetals formed from **1c** and two molecules of a monool. Unimolecular dehydration of tertiary alcohol **4c** into an alkene is quick,¹⁴ leaving **4a** with no

¹⁰ choice but to slowly (in a bimolecular reaction) form an ester with **3a**. Curiously, excess of **4a** still does not compete in acetal formation: it is observed unchanged at the end of the reaction.

The final set of experiments (Scheme 1: top right and entries #16-17) examined what happens when one of the monools is

- ¹⁵ replaced with a diol—thus setting up a competition between two aldehydes and two diols. Thirteen products: two imines, four acetals, five esters, and two alkenes could be expected. Intriguingly, in neither of the two experiments, electron-poor aldehyde **1a** formed an acetal—even though it was offered a
- ²⁰ choice of diols (therefore, pathway E is omitted from the last table in Scheme 1). In the first experiment (entry #16), two diols (**6a** and **6d**) were of the same length and aldehyde **1c** could not distinguish them (pathway **B**: 54%, pathway **H**: 46%). Carboxylic acid then reacted with the excess of **6d** to produce an ester
- 25 (pathway C, 95%). The second experiment replaced 6d with longer 6e, restoring the original selectivity: only four products from pathways A–D were observed.

Observed reaction preferences appear to be kinetic in character. By focusing on reaction #3 in Scheme 1 and observing

- ³⁰ its progress by ¹H NMR spectroscopy, we were able to estimate rates of formation of dehydrated products as following the trend: alkene \approx imine > acetal > ester. We then independently prepared the crossover imine and acetal species not observed in the actual reaction: imine formed from **1c** and **2a** and acetal from **1a** and **6a**.
- ³⁵ When these two "wrong" products were heated in *anhydrous* PhMe at reflux (to simulate the conditions at the end of self-sorting reactions) in the presence of *p*-toluenesulfonic acid, no equilibration was observed even after 4 d—suggesting that the mixture composition more likely corresponds to kinetic
- ⁴⁰ distribution of the products. No equilibration was observed in a similar experiment where "wrong" ester and acetal partners were heated for 2 d in the presence of acid catalyst.¹⁵

In conclusion, we have demonstrated that dehydration reactions yielding to imine, acetal/boronate ester, ester and alkene

- ⁴⁵ products may be accomplished in one-pot with a common—and very simple—acid catalyst. A single set of dehydrated products stems from different mechanisms for the participant reactions and electronic properties of starting materials, which together translate into sufficiently different rates of competing reactions.
- ⁵⁰ The system is modular, but within limits. While individual components can be swapped, examples of aldehydes with similar electronic properties and diols of similar chain lengths showed that selectivity quickly erodes when substrates are offered a "confusing" choice of reagents. Future work will focus on
- ⁵⁵ applications of this process, including testing whether similar parallel reactions on mixtures containing activated amino acid derivatives, to establish whether privileged oligopeptide structures could form in the absence of enzymatic catalysis.

This research was supported by the National Science 60 Foundation (award CHE-1151292) and the Welch Foundation (award E-1768). O. Š. M. is a Cottrell Scholar of the Research Corporation for Science Advancement.

Notes and references

University of Houston, Department of Chemistry, 112 Fleming Building, 65 Houston, Texas 77204-5003, USA. Fax: +1 (713)743-2709;

- *Tel:* +1(832)842-8827; *E-mail: miljanic@uh.edu;*
- † Electronic Supplementary Information (ESI) available: complete reaction protocols, annotated NMR spectra and characterization data for all new compounds. See DOI: 10.1039/b000000x/
- 70 1 Origin of Life: Chemical Approach, ed. P. Herdewin and M. V. Kısakürek, Wiley-VCH, Weinheim, 2008.
- (a) Y. Nagano, A. Orita and J. Otera, *Bull. Chem. Soc. Jpn.*, 2003, **76**, 2183–2189. (b) Y. Nagano, A. Orita and J. Otera, *Tetrahedron*, 2002, **58**, 8211–8217. (c) A. Orita, Y. Nagano, K. Nakazawa, and J. Otera,
- 75 Synlett, 2000, 599–602. (d) Y. Nagano, A. Orita and J. Otera, Synlett, 2003, 684–688. (e) Y. Nagano, A. Orita and J. Otera, *Tetrahedron*, 2003, **59**, 5569–5578.
- 3 (a) J. Chen and J. Otera, Angew. Chem. Int. Ed., 1998, 37, 91–93. (b)
 J. Chen, K. Sakamoto, A. Orita and J. Otera, Tetrahedron, 1998, 54, 8411–8420.
- 4 (a) J. N. H. Reek and S. Otto, Dynamic Combinatorial Chemistry, Wiley-VCH, Wenheim, 2010. (b) P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders and S. Otto, *Chem. Rev.*, 2006, **106**, 3652–3711.
- 85 5 (a) A. G. Salles, Jr., S. Zarra, R. M. Turner and J. R. Nitschke, J. Am. Chem. Soc., 2013, **135**, 19143–19146. (b) M. Hutin, C. J. Cramer, L. Gagliardi, A. R. M. Shahi, G. Bernardinelli, R. Cerny and J. R. Nitschke, J. Am. Chem. Soc., 2007, **129**, 8774–8780.
- 6 (a) M. L. Saha and M. Schmittel, J. Am. Chem. Soc., 2013, 135, 17743–17746. (b) M. L. Saha, J. W. Bats and M. Schmittel, Org. Biomol. Chem., 2013, 11, 5592–5595. (c) K. Mahata, M. L. Saha and M. Schmittel, J. Am. Chem. Soc., 2010, 132, 15933–15935.
- A. Wu and L. Isaacs, J. Am. Chem. Soc., 2003, 125, 4831–4835.
 (a) O. Ji, R. C. Lirag and O. Š. Milianić, Chem. Soc. Rev. 2014.
- 8 (a) Q. Ji, R. C. Lirag and O. Š. Miljanić, *Chem. Soc. Rev.*, 2014, 43, 1873–1884. (b) M. M. Safont-Sempere, G. Fernandez and F. Würthner, *Chem. Rev.*, 2011, 111, 5784–5814. (c) K. Osowska and O. Š. Miljanić, *Synlett*, 2011, 1643–1648.
- 9 K. Osowska and O. Š. Miljanić, J. Am. Chem. Soc., 2011, 133, 724–727.
- 100 (a) Q. Ji, N. El-Hamdi and O. Š. Miljanić, J. Chem. Educ., 2014, 91, doi: 10.1021/ed400681w. (b) Q. Ji and O. Š. Miljanić, J. Org. Chem., 2013, 78, 12710–12716. (c) R. C. Lirag, K. Osowska, and O. Š. Miljanić, Org. Biomol. Chem., 2012, 10, 4847–4850. (d) K. Osowska and O. Š. Miljanić, Angew. Chem. Int. Ed., 2011, 50, 8345–8349.
- ¹⁰⁵ 11 Formation of imines and boronate esters has been shown to occur orthogonally, and has been used in the synthesis of cage compounds. See, for example: (a) B. Içli, N. Christinat, J. Tönnemann, C. Schüttler, R. Scopelliti and K. Severin, *J. Am. Chem. Soc.*, 2009, 131, 3154–3155. (b) N. Christinat, R. Scopelliti and K. Severin, *Angew. Chem. Int. Ed.*, 2008, 47, 1848–1852.
- 12 Alcohol was always added in excess (3 eq. compared to other starting materials), to ensure complete consumption of carboxylic acid and to remain available to compete with diol for acetal formation.
- (a) A. S.-Y. Lee, H.-C. Yang and F.-Y. Su, *Tetrahedron Lett.*, 2001,
 42, 301–303. (b) M.-Y. Chen and A. S.-Y. Lee, *J. Chin. Chem. Soc.*,
 2003, 50, 103–108.
- 14 A carboxylic acid can add to the alkene formed by the dehydration of the tertiary alcohol (see: J. Otera and J. Nishikido, *Esterification. Methods, Reactions, and Applications,* 2nd ed., Wiley-VCH, Weinheim, 2010, pp. 10), but we did not observe this process in the examined reactions. A secondary alcohol (1,2-diphenylethanol) was also used in place of 4c: while ¹H NMR analysis showed no ester formation, dehydration of secondary alcohol did not go to completion after several days at reflux, reaching a maximum conversion of 32%.
- 125 15 If either an acetal or the ester bore a free –OH group (e.g. in a monoester of 6d and 3a), equilibration did proceed.

GRAPHICAL ABSTRACT

⁵ Four acid-catalysed dehydration reactions can proceed in one pot, simultaneously and without interference, to yield one imine, one acetal (or boronic ester), one ester and one alkene, even though many other cross-products could be conceived.