# Bromide-Bridged Palladium(III) Chain Complex Showing Charge Bistability Near Room Temperature

<table>
<thead>
<tr>
<th>Journal:</th>
<th>ChemComm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>CC-COM-04-2014-002547.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>26-May-2014</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Kumagai, Shohei; Tohoku University, Chemistry  
Takaishi, Shinya; Tohoku University, Chemistry  
Breedlove, Brian; Tohoku University, Chemistry  
Okamoto, Hiroshi; The university of Tokyo, Applied Physics  
Tanaka, Hisaaki; Nagoya University, Department of Applied Physics  
Kuroda, Shin-ichi; Nagoya University, Department of Applied Physics  
Yamashita, Masahiro; Tohoku University, Chemistry |
Bromide-Bridged Palladium(III) Chain Complex Showing Charge Bistability Near Room Temperature

Shohei Kumagai,1 Shinya Takaishi,2 Brian K. Breedlove,2 Hiroshi Okamoto,3 Hisaaki Tanaka,4 Shin-ichi Kuroda,4 and Masahiro Yamashita5ad

We synthesized and characterized bromide-bridged Pd(III) chain complexes, [Pd(en)2Br](MalCn−Y)2·H2O (en = ethylenediamine; MalCn−Y = dialkyl sulfomalonate; n: the number of carbon) (n = 7 and 12). The compound of n = 7 showed charge-bistability near room temperature. In addition, it is shown that the Pd(III) state is maintained in thin film state.

Bistable molecules, in which two stable states can be switched by external stimuli, such as temperature, light, electric and magnetic fields, and pressure, are promising for a variety of applications, such as memories, sensors, actuators etc. Furthermore, condensed molecular solids with cooperative bistability can exhibit gigantic stimulus response, although such materials are rare. Quasi-one-dimensional (Quasi-1D) halogen-bridged metal complexes (MX complexes) are aggregated bistable materials, which can show charge bistability, such as averaged valence (AV) or Mott-insulating state and mixed valence (MV) or charge-density-wave state. MX complexes have 1D electron systems composed of d2 orbitals of the metal ions (M = Ni, Pd and Pt) and the px orbitals of bridging halides (X = Cl, Br and I), forming an MV state, represented as –MIV–X–MI–X–MI–,… or an AV state, represented as –MI–X–MI–X–MI–,… These electronic states are thought to be Peierls-Hubbard systems, in which electron-lattice interactions (S, on- and inter-site Coulomb repulsions (U and V, respectively), and transfer integrals (T) compete with each other. In particular, the competition between S and U is the main factor that determines the electronic state. Thus, all Ni complexes should be in AV states, whereas Pd and Pt complexes should be in MV states due to the U values for each M ion (UNi ≈ 6.0 eV; UPd ≈ 1.5 eV; UPt ≈ 1.0 eV). Although MX complexes have the potential for charge bistability, until recently, there were no reports of a material showing both states. However, our research group have recently reported a series of Pd–Br complexes [Pd(en)2Br](SucCn−Y)2·H2O (Suc-Cn; en = ethylenediamine; SucCn−Y = dialkyl sulfosuccinate (Scheme 1a); n: the number of carbon atoms) that show charge bistability due to the introduction of alkyl chains as their counterions. For example, Suc-C5 undergoes an excitation-photon-energy-selective conversion from an AV to a metal phase transition at a critical temperature (Tc) of 206 K.

With MX complexes, it should be possible to optically switch the electronic states via charge-transfer (CT) transitions from X to M or from M to a neighboring M. In fact, optical switching, such as AV-to-MV conversion, and AV-to-metal one and gigantic third-order optical susceptibility have been reported for Pd–Br and Ni–Br complexes, respectively. Most recently, we have reported that Suc-C5 undergoes an excitation-photon-energy-selective conversion from an AV to a metal or an MV states at low temperature. However, for practical applications, the material has to be in an AV state at room temperature (RT). In other words, Tc should be near or greater than RT. In the present study, we designed a new counterion, MalC7−Y (dialkyl sulfomalonate) (Scheme 1b), to control Tc and prepared a new series of Pd–Br complexes [Pd(en)2Br](MalC7−Y)2·H2O (Mal-C7). Mal-C7 was shown to be in an AV state at RT by using X-ray, magnetic, and spectroscopic analyses. In addition, we were able to perform single-crystal X-ray diffraction analysis on Mal-C7, resulting in the first crystal structure of a Pd(III) complex in an AV state at RT. Finally, we prepared a thin film for use in an optical device.

A crystal structure of Mal-C7 at RT is shown in Fig. 1a. Mal-C7 has a 1D chain structure of infinitely alternating Pd and Br ions. The 1D chain structure is cooperatively maintained by N–H···O hydrogen bonds among the en ligands and oxygen atoms of the sulfonate groups.

Scheme 1 Chemical structure of (a) SucCn−Y− and (b) MalCn−Y.
of counterions. In addition, water molecules contribute to hydrogen bonding and support of the 1D chain structure (water molecules are omitted for clarity in Fig. 1). As shown in Fig. 1b, Mal-C7 has a lamellar structure, in which the hydrophilic 1D space is separated from the hydrophobic space by counterions. These structural features closely resemble those of Suc-C5.5

In 1D MX chains, the position of bridging halide is strongly related to the electronic state. In other words, if each bridging halide is located at the midpoint between neighboring M ions, the MX complexes are in AV states. In Mal-C7, the Pd–Br bond lengths were determined to be 2.6001(18) and 2.6065(18) Å (Fig. 1c), indicating that all bridging Br ions were located at the midpoints of neighboring Pd ions. Furthermore, the neighboring Pd–Pd distance was 5.207(3) Å, which was shorter than 5.26 Å which was the boundary between the MV and AV states reported previously.5 Thus, Mal-C7 was structurally expected to be in an AV state at RT. Further, while we couldn’t succeed in determination of the crystal structure at high temperature, the diffuse scattering arising from a disorder or a distortion of bridging X was observed in the X-ray oscillation patterns above 308 K, implying that Mal-C7 converted from an AV state to an MV state (see ESI).

In order to confirm that Mal-C7 was in an AV state at RT, and that it had an MV state at high temperature, variable-temperature (VT) electron spin resonance (ESR) spectroscopy was performed. Because AV and MV states should display paramagnetic (antiferromagnetic) and diamagnetic behaviors, respectively, the magnetic susceptibilities should be different for both states. VT ESR spectra are shown in ESI. The temperature dependence of the spin susceptibility (χM) obtained by integrating the first derivative of the ESR signal twice is shown in Fig. 2a. Near 310 K, χM drastically changed between 5 × 10−6 and 1 × 10−6 esu mol−1 at 295 and 330 K, respectively. This result indicated that the electronic state changed from an AV to MV states with an increase in temperature with Tc ≈ 310 K. Furthermore, χM gradually decreased with a decrease in temperature below 200 K, which was probably due to a spin–Peierls transition, which has been observed for [Ni(chxn)Br]Br2 (chxn = 1R,2R-diaminocyclohexane)16 and other materials, such as organic conductors11 and CuGeO2.12 This phenomenon is currently being studied.

Next, we conducted electrical conductivity measurements. In Fig. 2b, the temperature dependence of the electrical resistivity (ρ) along the a axis (1D chain direction) is shown. The ρ value was ca. 10 MΩ cm at 100 K, and semiconducting behaviour was observed when temperature was increased. Then ρ started to increase at 310 K, indicating a conversion from AV to MV states. The value of ρ continued to increase steeply until temperature reached 350 K. Such behavior has also been observed for Suc-C5, suggesting a charge fluctuation due to AV–MV conversion accompanied by CT. Therefore, at RT, Mal-C7 is in an AV state. Differed from the ESR study, the electrical properties during the heating and cooling processes did not correlate with each other (see ESI), most likely due to deterioration of the crystal surface at high temperature. Thus, we cannot discuss the differences in ρ during heating and cooling.

Polarized Raman and IR spectra were acquired to obtain further information about the electronic state. In Raman spectroscopy, the Br–PdIV–Br symmetrical stretching mode (ν(Br–PdIV–Br)) is allowed in an MV state, whereas it is forbidden in an AV state. A Raman peak at ca. 125 cm−1 assigned to ν(Br–PdIV–Br) gradually appeared above 310 K (see ESI). In addition, in IR spectroscopy, the vibrational energy of the N–H symmetrical stretching mode (ν(N–H)) of the in-plane ligands depends on the valence of the metal ion to which it is coordinated.13 In other words, two kinds of ν(N–H) corresponding to PdIV and PdII are observed in an MV state, whereas only one ν(N–H) assigned to PdIV is observed in an AV state. For Mal-C7, ν(N–H) were observed in the range 3080–3150 cm−1 (see ESI). Below 310 K, only one peak at 3115 cm−1 was observed. And this peak split into two peaks at 3100 and 3130 cm−1 above 310 K. In other words, the electronic state changed from an AV to an MV state.

Finally, the temperature dependence of the CT energy (ECT), which was estimated from polarized reflectivity spectra and optical conductivity spectra (see ESI), is shown in Fig. 3a. ECT for Mal-C7 was ca. 0.6 eV below RT. This value and the temperature dependence are consistent with those for Suc-C5 in an AV state.1 In the AV state, the lowest electronic transition was assigned to a CT transition from the lower Hubbard band (LHB) to the upper Hubbard band (UHB) (Fig. 3b left). In this state, ECT ≈ U if V and T are neglected. Thus, ECT is independent of temperature and Pd–Pd distance. On the other hand, the lowest electronic transition is a CT transition from PdIV to a neighbouring PdII sites in an MV state. Here, ECT ≈ 2S – U if V and T are neglected (Fig. 3b right). Since S depends on Pd–Pd distance (and temperature), ECT should be temperature dependent in an MV state. Thus, on the bases of these results, we concluded that Mal-C7 was in an AV state at RT.

To test the possibility for practical applications, we fabricated a thin film of Mal-C7 and studied its optical absorption properties. Herein,
for simplification, we call an aggregate of nanocrystals deposited on a transparent substrate “thin film”. In the case of conventional MX complexes, there are two problems in fabricating thin films: (1) vacuum deposition methods are unavailable, and (2) few MX complexes can be dissolved in organic media while maintaining their 1D chain structures. However, the latter disadvantage can be overcome by introducing alkyl chains in the in-plane ligands or counterions due to the hydrophobic nature of the alkyl chains. We believed that Mal-Cn was suitable for fabricating thin films by using a spin coating process because of its hydrophobic counterions. By elongation of alkyl chains, a thin film of Mal-C12 (TF-C12) was actually prepared using poly(methyl methacrylate) (PMMA) as a matrix polymer (see ESI). In Fig. 3c, photon-energy dependence of absorbance for several Pd compounds are both structural and spectroscopic studies. To the best of our knowledge, new 1D bromide-bridged Pd chain complex, Mal-C7, Mal-C12 and Suc-C5 (green, blue and purple lines, respectively). All spectra were measured at RT. A signal at 0.4 eV in TF-C12 is derived from SiO2 substrate.

In summary, we designed a new counterion and used it to prepare a new 1D bromide-bridged Pd chain complex, Mal-C7, which was in an AV state at RT. The electronic ground state was characterized by using both structural and spectroscopic studies. To the best of our knowledge, for the first time, we determined the crystal structure of a Pd(III) chain complex in an AV state at RT. In addition, we prepared a thin film of Mal-C12 for use in practical applications and are currently studying its optical switching abilities.

Notes and references


Department of Advanced Material Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan.

Department of Applied Physics, Graduate School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8603, Japan.

CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

† Electronic Supplementary Information (ESI) available: VT ESR, Raman, reflectivity and optical conductivity spectra, electrical resistivity and photographs of thin films. CCDC 989698. See DOI: 10.1039/c000000x/