
 

 

 

 

 

 

Entrapment in Giant Polymersomes of an Inorganic 

Oscillatory Chemical Reaction and Resulting Chemo-
Mechanical Coupling 

 

 

Journal: ChemComm 

Manuscript ID: CC-COM-03-2014-002321.R1 

Article Type: Communication 

Date Submitted by the Author: 16-Jun-2014 

Complete List of Authors: Pereira de Souza, Tereza; Harvard University, Earth and Planetary Sciences 

Perez-Mercader, Juan; Harvard University, Earth and Planetary Sciences 

  

 

 

ChemComm



Journal Name RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2012, 00, 1‐3 | 1 

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Entrapment in Giant Polymersomes of an Inorganic 
Oscillatory Chemical Reaction and Resulting Chemo-
Mechanical Coupling  

T. Pereira de Souzaa and J. Perez-Mercadera 

 

 

 

 

We present a methodology to entrap and run the Belousov-
Zhabotinsky (BZ) reaction inside a polymer vesicle. We 
report on experiments with polymer vesicles where we 
observed (1) vesicle membrane deformations, (2) oscillations 
and (3) pulsating (expansion/contraction) episodes. The above 
provide us with evidence for chemo-mechanical coupling 
between these polymersomes and their contents. 

The study of microscopic flexible containers for complex chemical 
reactions is central for understanding issues in the origin of life as 
well as in biotechnology1-3. In fact, natural questions that arise in the 
study of the dynamics of the interaction between chemical reactions 
taking place within flexible container vesicles (liposomes or 
polymersomes) and their walls (membranes)4, 5, are (1) if and how 
the internal reaction couples to the container, and (2) how the effects 
of the internal reaction propagate into the collective dynamics of 
containers. Answers to the above questions are basic for the potential 
implementation of self-replication in vesicles, for the study of 
collective effects in the evolution of a population of vesicles as a 
consequence of their own internal chemical dynamics, and for 
biomimetic purposes when in search of simple pathways6 for the 
synthesis of amphiphilic molecules without involving the fine-tuned 
multienzyme pathways that are required for the synthesis of 
liposome components4 both in vitro and in vivo. 
For example, one may ask how some cooperative behavior occurring 
in the chemistry inside a vesicle affects the behavior of the isolated 
vesicle itself as an individual in a population of vesicles, or if they 
induce any feedback or adaptive processes in the population. More 
specifically, when one considers an oscillatory chemical reaction 
contained within a vesicle we may also ask if the chemical 
oscillations couple mechanically (or otherwise) to the vesicle and, if 
so, what properties does this confer to the vesicle collective. In the 
following we present the results of experiments done to entrap by 
“self-assemblage” an oscillatory chemical reaction inside 
polymersomes with block copolymer membranes. 

A prototype of an oscillatory chemical reaction is the well-known 
Belousov-Zhabotinsky (BZ) reaction7, 8, while a typical class of 
substances used for vesicle formation are phospholipids1, 3. But, the 
BZ reaction takes place in a very low-pH medium (< 3), which is 
incompatible with the physico-chemical nature of most lipids9, 10. 
This incompatibility poses a difficulty in the study of potential 
container-contents relationship in pH oscillators and their stability. 
Motivated by these problems, we have asked what kind of materials 
could be used to entrap and contain a BZ reaction running in one of 
its oscillatory modes without using microfluidic vesicle fabrication 
techniques in order to force the entrapping. That is, to achieve the 
entrapment of BZ inside a vesicle in a somewhat primitive and 
autonomous “self-organized” manner. Because of the 
incompatibilities between the oscillatory reaction, the vesicles and 
their eventual self-organization, we have shifted our attention from 
lipids to block copolymers. They are known to be more robust than 
lipids to lower-pH11, higher proton collision rates and other “extreme 
conditions”9, 12, 13†. We have focused on block copolymers known to 
be capable of forming vesicles with diameters in the range of a few 
microns to several tens of microns, that is, in the giant-vesicle size 
range12, 14. These polymers and their polymersomes have been 
extensively studied in the literature. The particular case of 
polybutadiene-b-polyethylene oxide (PB-PEO) is well characterized 
and its phase diagram is known to a sufficient level of detail so as to 
allow us to roughly estimate what morphologies would be formed in 
an aqueous medium as a function of the degree of polymerization of 
polybutadiene (NPB), weight fraction of polyethylene oxide (WPEO)15-

17 and concentration of copolymer. This enables one to choose the 
blocks in the copolymer so that the formation of pH-resistant 
vesicles based on PB-PEO11 is guaranteed.  
Armed with the above, we have carried out a series of experiments 
trying to explore which combination of vesicle material (including 
polymer conformation, vesicle forming procedure, and the BZ recipe 
used in the experiments) and avoiding the use of microfluidic 
extrusion techniques could generate giant polymersomes in pure 
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done using IEM with the CHD-BZ reaction resolve the previous 
difficulties: they allow us to have only sucrose in the external 
polymersome solution (cf. ESI) while only the CHD-BZ reaction 
solution inside the polymersomes20, 21. We found in all our 
preparations the formation of polymersomes, albeit with a 
heterogeneous size distribution: (1) small giant polymersomes 
observed as single vesicles or as pairs of similarly sized vesicles; (2) 
large giant polymersomes (approx. 30 µm in diameter) were 
preferentially present as clusters of 3 or more vesicles (PolBZ3.avi). 
These clusters were composed by a number of different size 
polymersomes with typical diameters ranging from a few microns to 
tenths of micrometers. Experimentally, we observed two distinct 
situations. First (PolBZ3.avi), each polymersome in the cluster 
undergoes two or three pulsation episodes followed by an increase of 
their sizes (swelling), after which the polymersomes start to shrink 
slowly, with pulsation episodes remaining active until the full 
system dries up. Figure 2 shows the initial size of a multivesicle 
cluster (A), the maximum size that the cluster reaches in the swelling 
process (B), and the final size, (C), after shrinkage has taken place. 

 
Figure 2: Polybutadiene-b-polyethylene oxide polymersome (PB46-
b-PEO31) containing CHD-BZ reaction (H2SO4 600 mM, CHD 
0.111 mM, NaBrO3 246 mM, Ferroin 3.5 mM) prepared using 
inverted method in sucrose solution 100 mM as imaged by phase 
contrast microscopy. The micrographs shown in panels A to C 
illustrate the time evolution of the vesicles clusters. The time and the 
percentage of swelling (+) or shrinkage (-) corresponding to each 
panel, and taking the initial size of the cluster as reference, are: A) 
520 s (mean size 44µm); B) 1556s (+4.5 %) and C) 4260s (-8.2%). 
Scale bar 10 µm. 
 
Second (PolBZ4.avi), polymersomes undergo pulsation episodes 
while shrinking, although now without any accompanying swelling 
processes. Figure 3 shows the temporal evolution of a typical cluster 
of vesicles undergoing this type shrinkage; in 3A, 3B and 3C we 
show the initial, intermediate and final states of the system as time 
elapses. 

 
Figure 3: Polybutadiene-b-polyethylene oxide polymersome (PB46-
b-PEO31) containing CHD-BZ reaction (H2SO4 600 mM, CHD 0.111 
mM, NaBrO3 246 mM, Ferroin 3.5 mM) prepared using inverted 
method, in sucrose 100 mM. The phase contrast micrographs (Panels 
A to C) show the evolution of the cluster shrinkage process (no 
swelling was observed for these conditions). The sizes of the larger 
vesicle as well as the time are: A) (23 µm, 512 s); B) (20 µm, 2120 
s) and C) (18 µm, 4120s). Scale bar 10 µm. 

The above pulsation episodes also show very small membrane 
excursions. At first, this makes it difficult to quantify the effect. 
However, it demonstrates that the reaction is occurring only inside 

the vesicles (in a volume of appr. 10-14 m3) and unveils the presence 
of small chemo-mechanical coupling effects. Interestingly, these are 
of the same order of magnitude as those reported in gels22-24. Since 
no membrane disruption was observed, we feel that in principle one 
can safely assume that the forces that keep the polymers assembled 
as bilayers are stronger then the chemo-mechanical forces induced 
by the CHD-BZ reaction inside the vesicle. 

Conclusions 

Forming PB-PEO polymersomes using the inverted emulsion 
method with the CHD-BZ reaction trapped inside the polymersome 
and with the polymersomes enclosed in a sucrose-enriched medium, 
we have been able to observe that oscillations in the BZ reaction get 
transmitted as vesicle oscillations. Therefore there exists chemo-
mechanical coupling between the inner chemical oscillations and the 
containing vesicle. This form of chemo-mechanical coupling is, in 
principle, different from the well-known coupling that occurs in 
gels22-25 or other bulk polymer systems where, unlike here the 
catalyst is cross linked to the polymer network. In our experiments 
the catalyst is dissolved in the BZ reaction media and our vesicle 
formation protocols do not involve any steps (for example exposure 
to UV light) that might have led to the crosslinkage of the catalyst 
used in chemically responsive gels. The coupling reported here takes 
place just at the boundary of the vesicle, and leads us to believe that 
it involves components of the chemistry, the mechanics of the 
vesicles, perhaps also including some entropic effects and the 
chemistry of the polymer per se. The study of this phenomenon and 
its analysis and impact for vesicle communication and quorum 
sensing phenomena, as well as a detailed characterization of all the 
environmental conditions will be carried out in a separate 
publication. 
In summary we have demonstrated a) how to build low-pH 
resistant polymesomes, that b) can contain a low-pH redox 
oscillating chemical reaction, as is the case of BZ, c) that there 
exists oscillatory behavior in the vesicles and that d), this 
chemo-mechanical coupling is due to the chemical oscillation 
of the BZ catalyst. Our results will be useful, among other 
applications for the study of phenomena associated with the BZ 
reaction inside polymersomes. These phenomena for example 
include the coupling of BZ to the vesicle walls to implement 
valves, or to investigation of BZ-controlled vesicle fusion or 
collective properties of vesicle networks. 
 
Notes and references 
a Department of Earth and Planetary Sciences, Harvard University, 
Cambridge, Massachusetts 02138, USA 
*tpereiradesouza@fas.harvard.edu 
Electronic Supplementary Information (ESI) available: Miscellaneous 
Information.doc; PolW1.avi; PolBZ1.avi; PolBZ2.avi; and PolBZ3.avi 
See DOI: 10.1039/c000000x/ 
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Note†. Figures S4 and S5 in ESI show the stability of a polymersome 
containing a 600 mM sulphuric acid. 
Note†† Sugars solutions are extensively used as enhancer for optical contrast 
in vesicle microscopy 
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