ChemComm

ChemComm

Transition-metal-free, visible-light induced cyclizations of arylsulfonyl chlorides with 2-isocyanobiphenyls to produce phenanthridines

SCHOLARONE™ Manuscripts

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Communications

Transition-metal-free, visible-light induced cyclizations of arylsulfonyl chlorides with 2-isocyanobiphenyls to produce phenanthridines

65

70

Lijun Gu,**^a* **Cheng Jin,***^b* **Jiyan Liu,***^a* **Hongyan Ding***^a* **and Baomin Fan***^a*

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X ⁵**DOI: 10.1039/b000000x**

6-Aryl substituted phenanthridines were synthesized by a visible-light-catalyzed cyclization of 2-isocyanobiphenyls with arylsulfonyl chlorides under oxidants-free and transitionmetal-free conditions. This transformation represents an ¹⁰**efficient and attractive synthetic utilization of arylsulfonyl chlorides.**

The expedient synthesis of substituted aromatic heterocycles has been a major goal for organic chemistry for decades, owing to the bioactive properties of heterocycles and their prevalence in

- ¹⁵natural products. As such, the development of new methods to synthesize heterocycles has been at the forefront of our discipline.¹ Of these techniques, radical-mediated reactions are among the most important in the development of new technologies for the synthesis of heterocycles.² The
- 20 phenanthridine ring system represents one class of the most abundant and ubiquitous heterocycles in nature.³ Owing to their structural diversity and remarkable biological functions, the synthesis and transformation of phenanthridines has been and continues to be a topic of research interest for synthetic organic 25 chemists.⁴
- Aryl isonitriles are highly versatile reagents which have found widespread application in organic, medicinal, and combinatorial chemistry (e.g. multicomponent reactions, heterocycle synthesis, and cycloadditions). Aryl isonitriles have gained renewed
- ³⁰attention as radical acceptors in cascade reactions for the construction of heteroarenes.⁵ Recently, a cascade radical pathway involving C-radical addition to 2-isocyanobiphenyls and subsequently intramolecular hemolytic aromatic substitution has been developed, which allows the rapid construction of
- ³⁵substituted phenanthridines with high efficiency. However, only a few studies have been focused on this field and limited radical precursors were developed such as boronic acids, CF_3 reagents,^{5,7} halides,⁸ aldehydes,⁹ diphenylphosphine oxide,¹⁰ αoxocarboxylic acids and hydrazines.11-12 Thus, it is still necessary ⁴⁰to develop more radical precursors to realize isocyanide insertion
- *via* a radical process.

Visible light photoredox catalyst initiated organic transformations are emerging as uniquely powerful tools for constructing new chemical bonds in organic synthesis due to their more

⁴⁵environmentally benign sustainability and mild operating conditions.¹³⁻¹⁴ However, despite progress in this area, the in situ generation of aryl radicals for C-C(aryl) bond formation by visible light photoredox catalysis is quite rare.¹⁵ Arylsulfonyl

chlorides which are readily available commercially by ⁵⁰sulfonylation of arenes have been utilized as aryl radical precursors for the sequential arylation of alkynes and carbocyclization with benzylic $C(sp^3)$ -H bonds.¹⁶ We hypothesized that 2-isocyanobiphenyls might serve as a platform to trap aryl radicals. In connection with our broader interest in the 55 synthesis of nitrogen-containing heterocycle compounds,¹⁷ herein, we disclose our preliminary results on visible-light promoted transformation of 2-isocyanobiphenyls and arylsulfonyl chlorides for the synthesis of phenanthridines under oxidants-free and transition-metal-free conditions. This transformation represents ⁶⁰an efficient and attractive synthetic utilization of arylsulfonyl chlorides.

Scheme 1 Cyclization of 2-isocyanobiphenyls with various radical precursors including our work

The effort was initiated by using benzenesulfonyl chloride **1a** and 2-isocyanobiphenyl **2a** as a model reaction in the presence of 75 [Ru(bpy)₃Cl₂] (5 mol%), Na₂CO₃ (1.5 equiv), and 36 W compact fluorescent light in MeCN at room temperature. The desired phenanthridine **3aa** was obtained, albeit in low yield, after 10 h (Table 1, entry 1). Interestingly, the yield of **3aa** dramatically enhanced to 64% when the reaction was performed with 5 W blue ⁸⁰LED light (Table 1, entry 2). The yield of **3aa** was lowered to 51% when reaction was irradiated with 5 W green LED light (Table 1, entry 3). Extensive screening of bases revealed that

 K_2HPO_4 provided the best results (Table 1, entries 4-7). Of the solvents tested, MeCN proved particularly suitable (Table 1, 85 entries 8-10). Three other visible-light photoredox catalysts [Ir(ppy)₃], Eosin Y and Rose Bengal (RB), were also tested (Table 1, entries 11-13). With Eosin Y, a good yield was still achieved (Table 1, entry 12). However, the reaction did not take place in the absence of either the visible-light photoredox ⁹⁰catalysts (Table 1, entry 14) or additional visible light (Table 1, entry 15).

Table 1 Optimization of the reaction conditions*^a*

a Reaction conditions: **1a** (0.3 mmol), **2a** (0.45 mmol), base (1.5 equiv), catalyst (5 mol%), 5 W blue LED, solvent (1 mL), r.t. in Ar atmosphere for 10 h. ppy = phenylpyridine. b Isolated yield. c 36 W</sup></sup> compact fluore- scent light used instead of 5 W blue LED light. *^c* 5 W green LED. ^e Without additional ligh.

Encouraged by these results, we applied the above visible-light photocatalysis protocol to a range of both arylsulfonyl chlorides **1** and 2-isocyanobiphenyls **2** to investigate the scope. The scope of arylsulfonyl chlorides **1** was initially explored in the presence of s substrate **2a**, Eosin Y, K_2HPO_4 , and 5 W blue LED light. As summarized in Table 2, Both electron-donating and -withdrawing arylsulfonyl chlorides could be successfully converted to the corresponding phenanthridines in moderate to good yield. In addition, a high level of tolerance by functional groups was ¹⁰observed, and the efficiency of the reaction was not affected in

- the presence of halides, ether, and alkyl groups. Furthermore, substituents at different positions on the arene group (*para*, *meta*, and *ortho* positions) did not affect the reaction efficiency. It is noteworthy that halo-substituted arylsulfonyl chlorides were
- 15 tolerated well, thus leading to halo-substituted products, which could be used for further transformations. Interestingly, the polysubstituted arylsulfonyl chloride gave the desired product **3ah** with a good yield. Notably, the introduction of heterocycles into this system made this methodology more useful for the ²⁰preparation of pharmaceuticals and materials (Table 2, entry 3).

Table 2 Screen of the arylsulfonyl chlorides **1** *a*

a Reaction conditions: **1** (0.3 mmol), **2a** (0.45 mmol), Eosin Y (5 mol%), 5 W blue LED, K2HPO₄ (1.5 equiv), solvent (1 mL), r.t. in Ar atmosphere for 10 h. ^{*b*} Isolated yield.

The cyclocoupling method was also successfully applied to a variety of 2-isocyanobiphenyls **2**. As shown in Table 3, a broad range of 2-isocyanobiphenyl compounds reacted smoothly with ²⁵**1a** to give the corresponding phenanthridine derivatives in good yields. The isocyanides bearing either electron-rich or electrondeficient substituent on the benzene ring A afforded 6-phenyl phenanthridines with satisfactory yields (Table 3, entries 1-3). Replacement of the benzene ring A with a quinoline ring did not ³⁰affect the efficiency of the reactions (Table 3, entry 4). To highlight the utility of this transformation, the isocyanides having different functional groups on the benzene ring B were also investigated. Electronically different isocyanides underwent annulation with **1a** successfully (Table 3, entries 5-6). When an ³⁵isocyanide bearing a 2-naphthyl group was used, the cyclization occurred only at the 1-position and not at the 3-position (Table 3, entry 7). The regioselectivity observed in this particular case is a characteristic outcome of homolytic aromatic substitution. Notably, when 2-isocyanobiphenyl derivative **2i** was employed, ⁴⁰the reaction afforded the two regioisomers **3ia** and **3ja** in a ratio of 1.3: 2 (Table 3, entry 8).

Table 3 Screen of the 2-isocyanobiphenyls **2***^a*

a Reaction conditions: Reaction conditions: **1a** (0.3 mmol), **2** (0.45 mmol), Eosin Y (5 mol%), 5 W blue LED, K_2HPO_4 (1.5 equiv), solvent (1 mL), r.t. in Ar atmosphere for 10 h. ^b Isolated yield. ^c The ratio was determined by the isolated yield.

On the basis of these observations and previous studies, $5, 14a, 15$ a plausible mechanism was proposed as shown in Scheme 2. Initially, photoexcitation of Eosin Y by visible light generates excited [Eosin Y*]. Then An phenyl radical (Ph·) is formed by a ⁵single-electron transfer (SET) from the excited state [Eosin Y*] to an arylsulfonyl chloride and subsequent addition of the phenyl radical (Ph·) to isocyanide **2a** to form the imidoyl radical **A** *via* intermolecular addition, followed by an intramolecular attack of the imidoyl radical **A** on the pendant aromatic ring to give the

¹⁰cyclized radical intermediate **B**. A single-electron oxidation of **B** by the Eosin Y radical cation regenerates the photocatalyst and forms the cation intermediate **C**. Finally, deprotonation of **C** leads to the desired phenanthridine **3aa**.

Scheme 3 Plausible mechanism

In summary, we have successfully executed a 2-isocyanobiphenyl ²⁵cyclization that involves arylsulfonyl chlorides and is triggered by visible-light photoredox catalysis to construct functionalized phenanthridines, a ubiquitous component of many natural products, biomolecules and materials applications. Most importantly, simple and readily available Eosin Y emerges as an ³⁰efficient catalyst, rather than a metal catalyst, which is often expensive and is required to be completely removed from products, especially in the synthesis of pharmaceutical compounds. What's more, high functional-group tolerance under mild conditions. Mechanistic, scope, and limitation studies of the 35 reaction are in progress in our laboratory.

Acknowledgement

We are grateful for the financial support from Undergraduate Innovative Experiment (2013HXSRT09) and the State Ethnic ⁴⁰Affairs Commission (12YNZ05).

Notes and references

^aKey Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming, Yunnan, 650500, China.

- ⁴⁵*E-mail: gulijun2005@126.com*
- *^bNew United Group Company Limited, Changzhou, Jiangsu,213166, China*

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See ⁵⁰DOI: 10.1039/b000000x/

- ‡ Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.
- 1 (a) A. V. Gulevich, A. S. Dudnik, N. Chernyak and V. Gevorgyan, ⁵⁵*Chem. Rev.*, 2013, **113**, 3084; (b) M. N. Pennell, R. W. Foster, P. G. Turner, H. C. Hailes, C. J. Tame and T. D. Sheppard, *Chem. Commun.*, 2014, **50**, 1302; (c) T. Yang, H. Cui, C. Zhang, L. Zhang and C. Su, *ChemCatChem*, 2013, **5**, 3131.
- 2 (a) Q. Lu, J. Zhang, G. Zhao, Y. Qi, H. Wang and A. Lei, *J. Am. Chem.*
- ⁶⁰*Soc.*, 2013, **135**, 11481; (b) Z. Huang, L. Jin, Y. Feng, P. Peng, H. Yi and A. Lei, *Angew. Chem. Int. Ed.*, 2013, **52**, 7151, (c) Q. Liu, R. Jackstell and M. Beller, *Angew. Chem. Int. Ed.*, 2013, **52**, 13871 (d) J. Wang, C. Liu, J. Yuan and A. Lei, *Angew. Chem. Int. Ed.*, 2013, **52**, 2256.
- ⁶⁵3 (a) E. C. Taylor and G. G. Spence,*Chem. Commun.*, 1968, 1037; (b) S. Simeon, J. L. Rios and A. Villar, *Pharmazie*, 1989, **44**, 593; (c) S. D. Phillips and R. N. Castle, *J. Heterocycl. Chem.*, 1981, 18, 223; (d) O. B. Abdel-Halim, T. Morikawa, S. Ando, H. Matsuda and M. Yoshikawa, *J. Nat. Prod.*, 2004, **67**, 1119.
- ⁷⁰4 For selected examples on the synthesis of substituted phenanthridines and their derivatives, see: (a) T. Gerfaud, L. Neuville, J. Zhu, *Angew. Chem. Int. Ed.*, 2009, **48**, 572; (b) A. K. Mandadapu, M. Saifuddin, P. K. Agarwal and B. Kundu, *Org. Biomol. Chem.*, 2009, **7**, 2796; (c) L. Zhang, G. Y. Ang and S. Chiba, *Org. Lett.*, 2010, **12**, 3682; (d) J.
- ⁷⁵Peng, T. Chen, C. Chen and B. Li, *J. Org. Chem.*, 2011, **76**, 9507; (e) J. Pawlas and M. Begtrup, *Org. Lett.*, 2002, **4**, 2687.
- 5 B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc and A. Studer, *Angew. Chem. Int. Ed.*, 2013, **52**, 10792.
- 6 M. Tobisu, K. Koh, T. Furukawa and N. Chatani, *Angew. Chem. Int.* ⁸⁰*Ed.*, 2012, **51**, 11363.
- 7 (a) Q. Wang, X. Dong, T. Xiao and L. Zhou, *Org. Lett.*, 2013, **15**, 4846; (b) Y. Cheng, H. Jiang, Y. Zhang and S. Yu, *Org. Lett.*, 2013, **15**, 5520.
- 8 (a) H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang and S. Yu, ⁸⁵*Angew. Chem. Int. Ed.*, 2013, **52**, 13289; (b) I. Lenoir and M. L.
	- Smith, *J. Chem. Soc., Perkin Trans. 1*, 2000, 641. 9 D. Leifert, C. G. Daniliuc and A. Studer, *Org. Lett.*, 2013, **15**, 6286.
	-
- 10 B. Zhang, C. G. Daniliuc and A. Studer, *Org. Lett.*, 2014, **16**, 250.
- 11 J. Liu, C. Fan, H. Yin, C. Qin, G. Zhang, X. Zhang, H. Yi and A. Lei, ⁹⁰*Chem. Commun.*, 2014, **50**, 2145.
- 12 T. Xiao, L. Li, G. Lin, Q. Wang, P. Zhang, Z. Mao and L. Zhou, *Green Chem.*, 2014, **DOI:** 10.1039/C3GC42517G.
- 13 For reviews on visible-light photoredox catalysis, see: (a) K. Zeitler, *Angew. Chem. Int. Ed.*, 2006, **48**, 9785; (b) J. M. R. Narayanam and C. ⁹⁵R. J. Stephenson, *Chem. Soc. Rev.*, 2011, **40**, 102.
- 14 (a) Y. C. Teo, Y. Pan and C. H. Tan, *ChemCatChem*, 2013, **5**, 235; (b) Y. Pan, S. Wang, C. W. Kee, E. Dubuisson, Y. Yang, K. P. Loha and C. Tan, *Green Chem.*, 2011, **13**, 3341; (c) T. Xiao, X. Dong, Y. Tang and L. Zhou, *Adv. Synth. Catal.*, 2012, **354**, 3195; (d) D. Ravelli
- 100 and M. Fagnoni, *ChemCatChem*, 2012, 4, 169; (e) T. Hering, D. P. Hari and B. König, *J. Org. Chem.*, 2012, **77**, 1034; (f) Y. Xu, W. Zhang, *ChemCatChem*, 2013, **5**, 2343.
	- 15 G. Deng, Z. Wang, J. Xia, P. Qian, R. Song, M. Hu, L. Gong and J. Li, *Angew. Chem. Int. Ed.*, 2013, **52**, 1535.
- ¹⁰⁵16 J. Xia, G. Deng, M. Zhou, W. Liu, P. Xie, and J. Li, *Synlett*, 2012, 2707.
	- 17 (a) L. Gu and C. Jin, *Org. Biomol. Chem.*, 2012, **10**, 7089; (b) L. Gu, C. Jin, J. Guo, L. Zhang and W. Wang, *Chem. Commun.* 2013, **49**, 10968; (c) L. Gu, J. Liu, L. Zhang, Y. Xiong and R. Wang, *Chin.*
- ¹¹⁰*Chem. Lett*. 2014, **25**, 90; (d) L. Gu, W. Wang, Y. Xiong X. Huang and G. Li, *Eur. J. Org. Chem.*, 2014, **2014**, 319.