ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Environmentally-benign catalysts for the selective catalytic reduction of NO_x from diesel engines: Structure-activity relationship and reaction mechanism aspects

Fudong Liu[†], Yunbo Yu[†] and Hong He^{*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Selective catalytic reduction of NO_x with NH_3 or hydrocarbons (NH_3 -SCR or HC-SCR) in oxygen-rich exhaust from diesel engines remains a major challenge in environmental catalysis. The development of highly efficient, stable and environmentally-benign catalysts for SCR processes is very important for

¹⁰ practical use. In this feature article, the structure-activity relationship of vanadium-free catalysts in NH₃-SCR reaction is discussed in detail, including Fe-, Ce-based oxide catalysts and Fe-, Cu-based zeolite catalysts, which is beneficial for catalyst redesign and activity improvement. Based on our research, a comprehensive mechanism contributing to the performance of Ag/Al₂O₃ in HC-SCR is provided, giving a clue to the design of a catalytic system with high efficiency.

15 1. Introduction

Nitrogen oxides (NO_x) are a major air pollutant that can lead to the formation of acid rain, photochemical smog and haze, thus endangering the eco-environment and human health ^[1]. The NO_x emissions resulting from human activity can be ascribed to

- ²⁰ stationary sources such as coal-fired power plants and mobile sources such as motor vehicles ^[2]. With the challenges arising from the energy crisis and global warming, the wide application of diesel engines in vehicles becomes more and more important because of their high fuel efficiency. Two main pollutants from
- ²⁵ diesel engine exhaust are NO_x and particulate matter (PM). Through the adjustment of heavy-duty diesel engines, the PM emission from diesel engines can be effectively reduced. However, due to the well-known "trade-off" relationship between PM and NO_x emitted from diesel engines, the increasing demand
- ³⁰ to eliminate NO_x, especially in oxygen-rich conditions, has drawn great attention from both academia and industry ^[3, 4]. Selective catalytic reduction (SCR) of NO_x using reductants such as NH₃, urea or hydrocarbons (HC) in the oxygen-rich exhausts is a highly efficient way to reduce NO_x emission, although it ³⁵ remains one of the major challenges in the field of environmental

catalysis. The SCR of NO_x with NH₃ (NH₃-SCR) was initially applied in the removal of NO_x from stationary sources, and the

commercially used catalyst systems are mainly WO₃ or MoO₃ ⁴⁰ doped V₂O₅/TiO₂ ^[5, 6]. Vanadium-based NH₃-SCR catalysts have also been successfully used for the deNO_x process from diesel engines, starting in 2005 ^[7, 8]. However, disadvantages remain for the vanadium-based catalysts, including the toxicity of V₂O₅, the narrow operation temperature window, the easy ⁴⁵ sublimation of V₂O₅ and phase transformation of the TiO₂

support from anatase to rutile at high temperatures, which greatly restrict their further application, especially when stricter regulations are established for both PM and NO_x for diesel engines, and the SCR converter should be installed downstream 50 of the diesel particulate filter (DPF), with timed thermal shock (~ 800 °C) in the regeneration processes of the DPF system. Therefore, many researchers are trying to develop vanadium-free NH_3 -SCR catalysts with high deNO_x efficiency, high N_2 selectivity, excellent hydrothermal stability and insensitivity to 55 co-existing poisoning components in SCR atmosphere such as H₂O, SO₂, HC or alkali metals etc. Currently, metal oxide catalysts and zeolitic catalysts are two well-studied types of vanadium-free catalysts for the NH₃-SCR process in heavy-duty diesel engines, some of which show great potential in practical 60 use [6, 9, 10]. However, despite the numerous studies on SCR performance under different conditions, a comprehensive summarization of the structure-activity relationship of these catalysts in the NH₃-SCR process is still lacking. In this article, taking Fe-, Ce-based oxide catalysts and Fe-, Cu-based zeolite 65 catalysts as examples, we will discuss the microstructure of active sites, the role of acidity and also the activation of reactants on these catalysts for the NH₃-SCR reaction in detail, which is very important for the design of catalysts and study of reaction mechanisms.

⁷⁰ On the other hand, since the pioneering work of Iwamoto *et al.* ^[11] and Held *et al.* ^[12], many catalysts such as zeolitic oxide, base oxide/metal and noble metal catalysts have been found to be effective for the SCR of NO_x with hydrocarbons (HC-SCR) in the presence of excess oxygen ^[3, 4, 7, 13-19]. Among the catalysts ⁷⁵ proposed for HC-SCR technology, zeolitic oxide catalysts are effective for NO_x reduction, while their water tolerance has been little improved ^[5]. Noble metal catalysts such as Pt/Al₂O₃ exhibit high deNO_x activity in the low temperature range of 200-300 °C

ARTICLE TYPE

while exhibiting a narrow operation temperature window $^{[20, 21]}$. Up to now, alumina-supported silver (Ag/Al₂O₃) has been known as one of the most effective catalysts for the HC-SCR even in the presence of water vapor and SO₂ $^{[13, 16, 22-32]}$. The distinctive

- s advantage of HC-SCR is that the on-board fuel can be used as the reductant for NO_x conversion, thus reducing the cost involved in infrastructure development for delivering reductant to the automotive engine exhaust system. The past several years have witnessed a growth in research in NO_x reduction by fuel-
- ¹⁰ component hydrocarbons over Ag/Al₂O₃, while the light-off temperature for NO_x reduction is still too high to be used for commercial application in diesel vehicles, even though it has been reported that low temperature activity can be promoted by the addition of H₂ ^[24, 32-40]. More importantly, aromatic
- ¹⁵ hydrocarbons, typically present in diesel fuel, give low activity for NO_x reduction even in the presence of H₂ ^[41]. Indeed, when using diesel fuel (ultra-low sulfur diesel, US06) as reductant ^[34], Ag/Al₂O₃ showed high initial activity for NO_x reduction in the presence of 3200 ppm H₂, while its activity gradually decayed
- $_{\rm 20}$ with time, reaching a final conversion level similar to that observed in the absence of H_2. These results indicate that the issue of catalyst deactivation by hydrocarbon poisoning still needs to be resolved for the commercial application of HC-SCR. To provide a guideline for developing an ideal HC-SCR system,
- $_{25}$ it is highly desirable to understand the mechanism of NO_x reduction by hydrocarbons at the molecular level.

2. Structure-activity relationship of vanadium-free catalysts for NH₃-SCR of NO_x

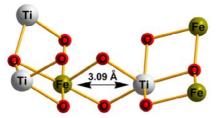
2.1. NH₃-SCR of NO_x over oxide catalysts

- ³⁰ Many researchers have focused on the development of vanadiumfree oxide catalysts for the NH₃-SCR process, which can be divided into single metal oxide catalysts, supported-type metal oxide catalysts and mixed metal oxide catalysts according to the forms of the catalytic materials. Based on the active components,
- ³⁵ the vanadium-free oxide catalysts can be further classified as Fe-, Ce-, Mn-, or Cu-based materials, of which the Fe- and Ce-based catalysts have been well studied in the $deNO_x$ process of diesel engines due to their compatibility with the typical exhaust temperature range. In the following sections, we will ⁴⁰ systematically summarize the recent research advances in
- understanding the structure-activity relationship of Fe- and Cebased oxide catalysts in the NH₃-SCR reaction, which are important for their practical use.

2.1.1. Fe-based oxide catalysts

- ⁴⁵ Early in the 1980s, Kato *et al.* ^[42] used Fe₂O₃ as the active phase in a NH₃-SCR catalyst (*i.e.* Fe₂O₃-TiO₂ mixed oxide catalyst) with high SCR activity and N₂ selectivity at relatively high temperatures (350-450 °C), and thereafter numerous types of Fe₂O₃-containing catalysts were developed by researchers, ⁵⁰ including Fe₂O₃-pillared layered clay (PILC) ^[43], Fe₂O₃-SiO₂ ^[44], Fe₂O₃ supported on activated carbon (AC) ^[45] or activated carbon fiber (ACF) ^[46] *etc.* Yet at that time, no
- activated carbon fiber (ACF)^{1/3} *etc.* Yet at that time, no systematic studies of the microstructure of Fe species and its relationship with SCR performance were reported.
- 55 Several years ago, Apostolescu et al. ^[47] developed a new

supported-type Fe₂O₃/WO₃/ZrO₂ catalyst achieving total NO_x conversion and high N₂ selectivity in the NH₃-SCR reaction over the temperature range 280-430 °C. Based on a series of characterization results including XRD and H2-TPR, they pointed 60 out that the Fe species in the $Fe_2O_3/WO_3/ZrO_2$ catalyst were mainly present in the form of well-crystallized Fe₂O₃ and also small Fe_xO_y particles. During the NH₃-SCR reaction, the Fe³⁺ species catalyzed the dehydrogenation of NH₃ to NH₂ while being reduced to Fe^{2+} species, and thereafter the NH₂ species 65 reacted with gaseous NO to produce N₂ and H₂O, while O₂ could re-oxidize Fe²⁺ species to Fe³⁺ species participating into the next redox cycle. The SCR reaction over this catalyst mainly followed an Eley-Rideal (E-R) mechanism. This is probably the first successful example elucidating the structure-activity relationship 70 of Fe species in the NH₃-SCR reaction for an Fe₂O₃-containing oxide catalyst.

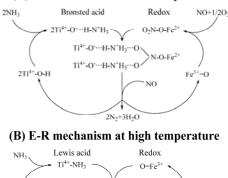

Usually, it is also accepted that NO can be molecularly adsorbed on the transition metal ion or it can dissociatively chemisorb on oxide ion vacancies of the metal oxide catalysts, 75 and react with adsorbed NH₃ or NH₄⁺ species to form SCR reaction intermediates and decompose into N2 and H2O afterwards, following a Langmuir-Hinshelwood (L-H) mechanism. To effectively disperse the active species, anatase TiO₂ is usually utilized as the catalyst support for the NH₃-SCR ⁸⁰ reaction. Although it is inert for NO_x conversion, its acidity can inhibit the formation of sulfate species on the catalyst surface in SO₂-containing atmospheres above 200 °C to avoid the deactivation of SCR catalysts [48]. Based on the above-mentioned ideas, Roy et al. [49] prepared an Fe ion substituted TiO2, namely ss the $Ti_{0.9}Fe_{0.1}O_{2-\delta}$ catalyst, by a novel single-step solution combustion method, showing total NO_x conversion at ca. 300-425 °C with rather high N₂ selectivity. Compared with the wellcrystallized ilmenite phase FeTiO₃ over which the maximum NO_x conversion did not exceed 20%, the catalytic activity of the 90 Ti_{0.9}Fe_{0.1}O₂₋₈ catalyst with ionic metal sites and oxide ion vacancies was much higher, indicating that such defect structures in NH₃-SCR catalysts were important factors influencing their catalytic performance in the deNO_x process.

Over the Ti_{0.9}Fe_{0.1}O_{2-δ} catalyst, Roy *et al.* ^[49] considered that ⁹⁵ the Lewis acid sites were beneficial to the wide SCR operation temperature window, and for the Fe₂O₃/WO₃/ZrO₂ catalyst prepared by Apostolescu *et al.* ^[47], the importance of Lewis acid sites to the E-R mechanism of the NH₃-SCR reaction was also strongly emphasized. However, for the supported-type ¹⁰⁰ Fe₂(SO₄)₃/TiO₂ catalyst prepared by Ma *et al.* ^[50] with high NO_x conversion at 350-450 °C, they considered that the relatively strong Brønsted acid sites induced by sulfate species contributed substantially to the deNO_x efficiency. Thus, the roles of Lewis acid sites and Brønsted acid sites in the NH₃-SCR reaction over ¹⁰⁵ Fe₂O₃-containing catalysts are still in debate, and in future study, we strongly recommend that the elucidation of the involvement of these two types of acid sites in the NH₃-SCR reaction should be closely correlated to the reaction temperature.

In recent years, we have focused on the investigation of the ¹¹⁰ structure-activity relationship of iron titanate (FeTiO_x) catalysts in the NH₃-SCR reaction. This environmentally-friendly catalyst, when prepared by a co-precipitation method using Fe(NO₃)₃ and Ti(SO₄)₂ as precursors, showed high SCR activity, N₂ selectivity

and H_2O/SO_2 durability in the medium temperature range (200-400 °C) ^[51], and an operation temperature window at least 50-150 °C lower than those of the above-mentioned Fe₂O₃-containing catalysts. Compared with the FeTiO_x catalyst prepared

- ⁵ using TiCl₄ as precursor and Fe₂O₃/TiO₂ catalyst prepared by an impregnation method, the existence of sulfate species in the preparation process could significantly inhibit the crystallization of mixed metal oxide phases, resulting in the formation of highly dispersed small iron titanate crystallites, which is totally different
- ¹⁰ from the Fe₂O₃ particles normally found in previously reported studies ^[52]. A similar promotion effect by sulfate species on the dispersion of Fe species was also observed by Ma *et al.* on their Fe₂(SO₄)₃/TiO₂ catalyst ^[50]. Thereafter, the microstructure of iron titanate crystallites in FeTiO_x catalysts was studied in detail
- ¹⁵ using various characterization methods, including N_2 physisorption, Powder XRD, UV-vis DRS, Raman spectroscopy and XAFS *etc.*, and the surface chemical composition and redox behavior were studied using XPS and H₂-TPR. It was definitively concluded that the active iron titanate crystallites in the FeTiO_x
- ²⁰ catalyst prepared at low calcination temperature were mainly in the form of a specific edge-shared $Fe^{3+}-(O)_2-Ti^{4+}$ structure (Scheme 1), and had large surface area, pore volume and abundant surface defects supplying rich catalytically active sites for the NH₃-SCR reaction. In this specific edge-shared Fe³⁺-(O)₂-
- ²⁵ Ti⁴⁺ structure, the existence of an electronic inductive effect between Fe³⁺ species and Ti⁴⁺ species was confirmed, leading to higher NO adsorption and oxidation ability for Fe³⁺ species and thus higher SCR activity at low temperatures ^[52, 53]. Although after high temperature calcination such as at 600 or 700 °C, the
- ³⁰ specific surface area and reactant adsorption ability of the FeTiO_x catalyst was decreased to a certain extent due to the occurrence of sintering (*i.e.* well-crystallized Fe₂TiO₅ was formed), the intrinsic SCR activity normalized by surface area was actually increased ^[54]. In future study, the deposition of such iron titanate
- ³⁵ crystallites onto microporous or mesoporous materials with large surface area holds promise as a method to enhance its dispersion and thermal stability for practical utilization in industry.



Scheme 1. Proposed model of homogeneous edge-shared Fe³⁺-(O)₂-Ti⁴⁺ ⁴⁰ structure in FeTiO_x catalyst (Reproduced with permission from Elsevier Inc.) ^[53]

Using *in situ* DRIFTS, transient response experiments and temperature programmed desorption/surface reaction methods, the NH₃-SCR reaction mechanism over the FeTiO_x catalyst was ⁴⁵ well studied (Scheme 2) ^[55]. At temperatures below 200 °C, on the Fe³⁺-(O)₂-Ti⁴⁺ structure, NO can be oxidized into nitrate species on Fe³⁺ sites and then react with adjacent adsorbed NH₃ species on Ti⁴⁺-OH Brønsted acid sites to form intermediate species (similar to ammonium nitrate species), followed by ⁵⁰ subsequent reaction with gaseous NO to produce N₂ and H₂O. An L-H mechanism is proposed accordingly for NH₃-SCR of

 NO_x at low temperatures over the FeTiO_x catalyst, in which the formation of reactive monodentate nitrate on Fe³⁺ sites is the ratedetermining step ^[55]. An efficient method to improve the low $_{55}$ temperature SCR activity of the FeTiO_x catalyst is to enhance the NO_x adsorption as monodentate nitrate ^[56], as confirmed by subsequent experimental results in which the low temperature SCR activity was greatly enhanced through partial substitution of Fe species by Mn species in FeTiO_x with considerably enhanced 60 formation of monodentate nitrates ^[57]. If SO₂ is present in the NH₃-SCR atmosphere, the sulfate species will preferentially adsorb onto Fe sites to form Fe-O-S bonds (as evidenced by EXAFS results) competing with the adsorption of nitrate species, leading to the decline of low temperature SCR activity to a 65 certain extent ^[58]. This inhibition effect is more prominent on Mn-substituted FeTiO, catalysts, mainly due to the easier blocking of the L-H reaction pathway at low temperatures by sulfate deposition on Mn sites ^[59]. In future study, the simultaneous improvement of the low temperature SCR activity 70 and SO₂ durability of Fe-containing catalysts is still a great challenge, unless a completely new reaction pathway different from L-H mechanism can be opened by catalyst modification or redesign.

(A) L-H mechanism at low temperature

75 Scheme 2. Proposed SCR mechanisms over FeTiO_x catalyst in different temperature ranges (Reproduced with permission from Elsevier Inc.)^[55]

Returning to the FeTiO_x catalyst, at temperatures above 200 °C, the Ti⁴⁺-OH Brønsted acid sites can be transformed into Lewis acid sites through dehydroxylation, and then adsorb NH₃ to participate in the NO_x reduction process. The adsorbed NH₃ species can be activated into -NH₂ species by neighboring Fe³⁺ sites through dehydrogenation, and thereafter react with gaseous NO to form a NH₂NO intermediate and decompose into N₂ and H₂O. In this process, the Fe³⁺ species is first reduced to Fe²⁺ species and then reoxidized to Fe³⁺ species by gaseous O₂, completing a redox cycle. A typical E-R mechanism for NH₃-SCR of NO_x at high temperatures over the FeTiO_x catalyst is proposed accordingly, with the formation of NH₂NO being the rate-determining step ^[55]. Although sulfate species may also form 90 on Fe³⁺ sites in this process, the activation of NH₃ to -NH₂ species is not influenced. Therefore, the E-R reaction pathway can still proceed over the sulfated FeTiO_x catalyst, ensuring high deNO_x efficiency at relatively high temperatures ^[58]. In brief, this was possibly the first time that different NH₃-SCR mechanisms over Fe-containing catalysts in the low and high temperature

- ⁵ ranges with the involvement of both acid sites and redox sites was demonstrated. Since then, researchers have started to pay attention to the influence of reaction temperature on the NH₃-SCR mechanism over different types of catalysts, such as the Fe-Ti spinel catalyst ^[60], CeO₂/TiO₂, CeO₂-WO₃/TiO₂ catalysts ^[61]
- ¹⁰ and CuO_x/WO_x-ZrO₂ catalyst ^[62] *etc.* In future study, the hydrothermal stability and resistance to coexisting poisoning pollutants in the SCR atmosphere (*i.e.* H₂O, SO₂, HC, alkali metals *etc.*) of this FeTiO_x catalyst still need to be investigated in more detail before its practical use in deNO_x process of diesel ¹⁵ engines.

The above-mentioned Fe-containing catalysts are usually in the form of supported-type or mixed oxides, with the second or third component acting as support or promoter. Actually, the well-designed Fe_2O_3 oxide itself can also show good performance in

- ²⁰ the NH₃-SCR reaction, and this type of material has obvious advantages for the investigation of the structure-activity relationship. Very recently, the synthesis of Fe₂O₃ nanomaterials with controlled crystal phase and morphology has achieved great success ^[63]. Over α-Fe₂O₃ samples prepared by Yang *et al.* ^[64] by
- $_{25}$ a hydrothermal route with nanocube and nanorod morphologies, the relationship between NH₃-SCR activity and exposed crystal facet was established. They concluded that α -Fe₂O₃ nanorods exposing more (110) facets with relatively higher surface energy and higher density of Fe atoms showed much better NH₃-SCR
- ³⁰ activity than α -Fe₂O₃ nanocubes mainly exposing (012) facets with low surface energy. Mou *et al.* ^[65] creatively synthesized novel α -Fe₂O₃ nanorods and γ -Fe₂O₃ nanorods by aqueous precipitation and calcination/refluxing methods, showing the same morphology but totally different exposed crystal facets.
- ³⁵ They clearly concluded that the γ -Fe₂O₃ nanorods enclosed by reactive (110) and (100) facets, simultaneously exposing Fe³⁺ and O²⁻ sites, were highly active for the activation of NH₃ and NO, and thus highly active for the NH₃-SCR reaction. In contrast, the α -Fe₂O₃ nanorods enclosed by (210) and (001) facets only
- ⁴⁰ exposed Fe³⁺ sites and showed relatively poor SCR activity, due to the lack of neighboring oxygen anions for the activation of NH₃ and NO. These studies have significantly elevated the research on the structure-activity relationship of Fe₂O₃ catalysts for the NH₃-SCR reaction to a new height, and in the near future ⁴⁵ studies on their practical utilization should be more focused.

2.1.2. Ce-based oxide catalysts

In previous studies, cerium oxide has usually been employed as the promoter or support for NH₃-SCR catalysts. For example, Chen *et al.* ^[66] added *ca.* 10 wt.% Ce to a V₂O₅-WO₃/TiO₂ ⁵⁰ catalyst with low vanadia loading (0.1 wt.%), which was able to

- greatly improve the NH₃-SCR activity in a broad operation temperature window. Long and Yang ^[67] found that Ce doping could enhance the stability of Fe-ZSM-5 catalysts, and Carja *et al.* ^[68] concluded that the synergistic effect between Fe and Ce in
- ⁵⁵ Fe-Ce-ZSM-5 catalysts could greatly improve the deNO_x efficiency. Wu *et al.* ^[69, 70] concluded that a Ce-promoted Mn/TiO₂ catalyst showed better SO₂ resistance in the low

temperature NH₃-SCR process. Li *et al.* ^[71] prepared a supported WO₃ catalyst using CeO₂-ZrO₂ mixed oxide as support, ⁶⁰ exhibiting excellent NH₃-SCR activity and thermal stability, as a potential candidate for the deNO_x process of diesel engines.

With the increase of understanding on the effect of cerium oxide in the NH₃-SCR reaction, researchers have begun to realize that this material with excellent redox properties can also be used 65 as an active component in SCR catalysts. For instance, Xu et al. ^[72] reported a novel Ce/TiO₂ catalyst, prepared by a conventional precipitation method, showing high deNO_x efficiency and N₂ selectivity from 250 to 400 °C. Afterwards, Gao et al. [73, 74] investigated the influence of preparation methods 70 (including sol-gel, impregnation and co-precipitation methods) and concluded that the catalyst prepared by the sol-gel method showed the best catalytic performance. They considered that the relatively strong interaction between Ce and Ti species and also the high dispersion of CeO₂ crystallites on the TiO₂ surface were 75 important for the NH3-SCR reaction. Although the SCR activity of the Ce/TiO₂ catalyst has been proved to be outstanding, the resistance to SO₂ poisoning and high space velocity (GHSV) still need to be enhanced for practical use. For example, the supported Ce/TiO₂ catalyst can be deactivated by SO₂ through the ⁸⁰ formation of highly thermally stable $Ce(SO_4)_2$ and $Ce_2(SO_4)_3$, cutting off the redox cycle between Ce³⁺ and Ce⁴⁺ species ^[75]. In addition, with increasing GHSV, the insufficient SCR activity, especially at low temperatures, cannot satisfy the requirements for practical use in diesel engines [72, 73]. To overcome these 85 shortcomings, Shan et al. ^[76] simply developed a homogeneous precipitation method characterized by uniform increase of pH value through decomposition of an organic base (urea in this study) to prepare a $CeTiO_x$ mixed oxide catalyst. During this process, the TiO_x species was first precipitated at the initial stage $_{90}$ and afterwards the CeO_x species was precipitated uniformly onto the TiO_x species, forming many catalytically active CeTiO_x crystallites ^[77]. This CeTiO_x catalyst showed much higher SCR activity than the supported Ce/TiO2 catalyst (Fig. 1), with significantly improved resistance to high space velocity.

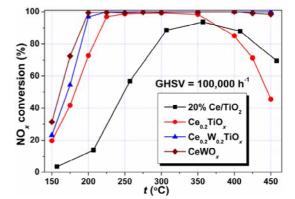


Fig. 1. NH₃-SCR activity over 20% Ce/TiO₂, Ce_{0.2}TiO_x, Ce_{0.2}W_{0.2}TiO_x, CeWO_x catalysts in simulated diesel engine exhaust

To better enhance the catalytic performance together with the thermal stability of this CeTiO_x catalyst, doping with W species ¹⁰⁰ was carried out (Fig. 1) ^[78]. Over the optimal Ce_{0.2}W_{0.2}TiO_x catalyst with Ce:W molar ratio of 1:1, NO_x conversion could be maintained above 90% from 275 to 450 °C even under the rather high GHSV of 500,000 h⁻¹. The W doping in the Ce_{0.2}W_{0.2}TiO_x

catalyst led to a much higher dispersion degree of Ce species, with a larger Ce^{3+}/Ce^{4+} ratio and more oxygen vacancies, resulting in higher NO oxidation ability and thus better SCR activity at low temperatures. In addition, due to the increased s capacity for adsorption of NH₃ species on both Brønsted acid

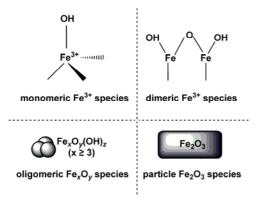
- sites and Lewis acid sites induced by W doping, the NH_3 unselective oxidation at high temperatures was also greatly inhibited, thus leading to higher SCR activity and N_2 selectivity simultaneously. A similar promotion effect by W species on
- ¹⁰ CeO₂/TiO₂ supported-type catalysts was also observed by Chen *et al.* ^[79], which they attributed to the strong interaction between Ce and W species.

Actually, for TiO₂-containing NH₃-SCR catalysts, the activity loss at high temperatures above 600 $^{\rm o}C$ is usually associated with

- ¹⁵ the occurrence of a phase transformation from anatase to rutile. Through analysis of the effect of W species in the $Ce_{0.2}W_{0.2}TiO_x$ catalyst, Shan *et al.* ^[80] had the idea to substitute all Ti species by W species. Under this inspiration, a novel and excellent CeWO_x catalyst with high NH₃-SCR activity, outstanding N₂ selectivity,
- ²⁰ improved thermal stability, good durability toward co-existing pollutants and especially much higher resistance to space velocity was developed (Fig. 1). Even under the very high GHSV of 500,000 h⁻¹, the NO_x conversion over CeWO_x could also be maintained at 100% from 250 to 425 °C, which is very beneficial
- ²⁵ for practical use in diesel vehicles with limited installation space for SCR converters. Based on various characterization results, it was concluded that, compared with pristine oxides, the strong interaction between Ce and W species led to higher dispersion of CeO₂ and WO₃ crystallites and more abundant Ce³⁺ species with
- $_{30}$ higher concentration of surface oxygen species, which were important for the oxidation of NO, thus promoting the "fast SCR" reaction. The synergistic effect between Ce and W species produced more Brønsted acid sites and Lewis acid sites for NH₃ adsorption and also maintained enough capacity for NO_x
- ³⁵ adsorption, achieving a broad operation temperature window in the NH₃-SCR reaction. This CeWO_x catalyst is a fascinating candidate for the deNO_x process from diesel engines, and Chen *et al.* ^[81] also found this advantageous combination of Ce and W species in a CeO₂-WO₃ mixed oxide catalyst at nearly the same
- ⁴⁰ time. Peng *et al.* ^[82, 83] found that this catalyst could resist greater amounts of alkali metals than V₂O₅-WO₃/TiO₂ and that Mn doping could further improve its low temperature SCR activity. Over this CeO₂-WO₃ mixed oxide catalyst, based on an *in situ* DRIFTS study, Chen *et al.* ^[84] proposed two reaction pathways of
- ⁴⁵ NH₃-SCR reaction which were similar to the E-R and L-H mechanisms. However, much more work needs to be done to better understand the intrinsic SCR reaction mechanism over this novel material, especially using other characterization methods.
- Besides the above-mentioned materials, CeO_2 supported on ${}_{50}$ Al₂O₃ ${}^{[85]}$, activated carbon fibers ${}^{[86]}$, and carbon nanotubes ${}^{[87]}$ together with a hydrothermally synthesized Ce-P-O catalyst ${}^{[88]}$, were also developed by other researchers, all showing impressive deNO_x efficiency, although the detailed structure-activity relationship of these CeO₂-containing catalysts in NH₃-SCR
- ⁵⁵ reaction still needs to be studied. In the aspect of catalyst structure design, Wang *et al.* ^[89] developed a novel titanium nanotube-confined CeO₂ catalyst, showing higher NH₃-SCR activity than that of CeO₂ supported on TiO₂ nanoparticles,

mainly due to the possession of stronger redox ability and NH₃ 60 adsorption capacity, judging from comparison of the H2-TPR and NH₃-TPD results, respectively. Owing to the presence of a "shell protection effect", Chen et al. [90] found that this titaniumnanotube-confined CeO₂ catalyst showed a remarkable resistance to alkali metal poisoning in the $deNO_x$ process. This result 65 provides a new route for synthesis of NH₃-SCR catalysts with higher poisoning resistance for practical use. Recently, the surface modification of CeO₂ by WO_x ^[91] or sulfate species ^[92] and the surface modification of CeO₂-ZrO₂ solid solutions by nickel/sulfate species ^[93] or phosphate species ^[94] to promote the 70 NH3-SCR activity also achieved some progress, in which the roles of acid sites induced by surface modifiers and the inhibition of NH₃ un-selective oxidation at high temperatures were carefully addressed. In future study, the surface modification of CeO_2 or other metal oxides could be a promising way to prepare 75 applicable catalysts that is also convenient for studying their structure-activity relationships in the NH₃-SCR reaction.

2.2. NH₃-SCR of NO_x over zeolite catalysts


Zeolite catalysts have received much attention in recent years due to their excellent SCR activity and thermal stability for the ⁸⁰ deNO_x process in diesel engines ^[3]. Owing to the complexity of zeolite structures (e.g. ZSM-5, HBEA, MOR, USY, CHA etc.), the difference in preparation methods (e.g. aqueous ion-exchange, solid-state ion-exchange, incipient wetness impregnation, chemical vapor deposition, one-pot synthesis etc.) together with 85 the differences in active metal sites (e.g. Fe, Cu etc.), a universally accepted structure-activity relationship for zeolite catalysts in the NH₃-SCR reaction cannot be easily established. Fortunately, many researchers have devoted themselves to relatively fundamental research on zeolite NH3-SCR catalysts 90 besides work aimed toward their industrially practical use. The enlightening results obtained in this area will be introduced in the following sections classified by the Fe and Cu transition metals commonly used as active sites.

2.2.1. Fe-based zeolite catalysts

⁹⁵ Among the numerous Fe-based zeolite catalysts, the application of Fe-ZSM-5 in the NH₃-SCR reaction has attracted much attention from researchers since the end of the last century. In 1999, Ma and Grünert ^[95] and Long and Yang ^[67] both reported that Fe-ZSM-5 catalysts prepared by over-exchange of Fe into H¹⁰⁰ ZSM-5 through FeCl₃ sublimation and ion-exchange of Fe into NH₄-ZSM-5 using FeCl₂ as precursor, respectively, showed excellent NH₃-SCR activity even under high GHSV and in the presence of SO₂. Thereafter, more and more researchers focused on the study of Fe-ZSM-5 catalysts, investigating the influence of ¹⁰⁵ preparation methods, Fe exchange level and Si/Al ratio *etc.* on NH₃-SCR activity ^[10].

Although different research groups reported diverse optimal methods for preparation of Fe-ZSM-5 catalysts with high apparent SCR activity, such as the improved aqueous ion-¹¹⁰ exchange method by Long and Yang ^[96], the solid-state ion exchange method by Schwidder *et al.* ^[97], and the chemical vapor deposition method by Iwasaki *et al.* ^[98], the researchers eventually concluded that the preparation method was actually not a decisive factor in determining the intrinsic catalytic activity of Fe-ZSM-5 catalysts in the NH₃-SCR reaction (*i.e.* the turnover frequency), but the microstructure of Fe species was ^[10, 98]. Brandenberger *et al.* ^[99] recently systematically studied the different Fe sites located in Fe-ZSM-5 catalysts including ⁵ monomeric, dimeric, clustered and oligomeric species, and correlated them with the measured NH₃-SCR activity (Scheme 3). They concluded that actually all Fe species in the Fe-ZSM-5 catalyst were active, although they exhibited different temperature dependencies in the SCR reaction. Below 300 °C,

- ¹⁰ only monomeric Fe species contributed to the SCR reaction, and this type of Fe species did not catalyze the NH₃ unselective oxidation below 500 °C, which was beneficial to high N₂ selectivity. The important role of monomeric Fe³⁺ sites was also emphasized by Høj *et al.* ^[100] in their Fe-BEA catalyst. Above
- ¹⁵ 300, 400 and 500 °C, respectively, the dimeric Fe species, the oligomeric species (*e.g.* trimeric and tetrameric Fe species) and partially uncoordinated Fe sites in the outmost layer of Fe_xO_y particles could also contribute to the NH₃-SCR reaction, and at high temperatures (> 500 °C) the contribution of dimeric Fe
- ²⁰ species dominated. However, the unselective oxidation of NH₃ would occur on Fe_xO_y particles above 350 °C, resulting in low N₂ selectivity, and the dimeric Fe species governed the NH₃ oxidation up to 500 °C. A similar effect by severely clustered Fe_xO_y species on the unselective consumption of the reducing
- ²⁵ agent NH₃ in the SCR reaction was also proposed by Schwidder *et al.* ^[101] and Devadas *et al.* ^[102]. Therefore, to obtain excellent NH₃-SCR activity at low temperatures together with good N₂ selectivity at high temperatures, an Fe-zeolite catalyst with a maximum quantity of monomeric Fe³⁺ sites should be prepared.
 ³⁰ Although some other factors may also influence the apparent
- SCR activity of Fe-zeolite catalysts $^{[103]}$, the conclusions drawn by Brandenberger *et al.* $^{[99]}$ in the above-mentioned study are generally useful for the design, synthesis and application of efficient Fe-zeolite catalysts.

Scheme 3. The Fe species probably present in Fe-zeolite NH₃-SCR catalysts

Besides the nature and effect of Fe species in Fe-zeolite catalysts, researchers also have paid close attention to the ⁴⁰ influence of the acidic properties of zeolite materials on the NH₃-SCR reaction. On Fe-based zeolite catalysts with the same type of framework structure, the SCR activity usually increases with decreasing Si/Al ratio ^[104, 105], although the hydrothermal stability of zeolites deteriorates to a certain extent. Early work simply ⁴⁵ considered that the increase of SCR activity with low Si/Al ratio

⁴⁵ considered that the increase of SCR activity with low Si/Al ratio corresponded to the enhancement of Brønsted acidity induced by

aluminium sites (Al-OH)^[106], and that the NH₄⁺ species adsorbed on Brønsted acid sites directly participated in the SCR reaction to reduce NO_x^[107]. However, after extensive study, the researchers 50 finally realize that the Brønsted acidic property is actually not a decisive factor for the high NH₃-SCR activity of Fe-zeolite catalysts, because over some zeolite materials without acidic sites, high NO_x conversion rates could still be obtained ^[108]. Yet, in another aspect, a promotion effect by Brønsted acidity on the 55 NH₃-SCR reaction could still be observed if the catalysts contained the most favorable Fe species, and Schwidder et al. [108] concluded that this was probably due to the obvious promotion of an acid-catalyzed intermediate step in the NH₃-SCR reaction (e.g. the decomposition of NH₄NO₂) similar to the results reported by 60 Li et al. ^[109] and Savara et al. ^[110], which might be the ratedetermining step at low temperatures. In addition, Brandenberger et al. [111] concluded that the Brønsted acid sites might not be required directly in the SCR process for adsorbing or activating NH₃, but they were necessary to bind and disperse the reactive 65 Fe³⁺ ions in the preparation process for Fe-based zeolite catalysts, similar to the results reported by Iwasaki et al. [104]. Furthermore, the zeolite support with Brønsted acidity could also play a role as NH₃ reservoir, regardless of the form in which the NH₃ was stored, and in the NH₃-SCR reaction the stored NH₃ could 70 migrate to the active sites so as to undergo a reaction with NO^[111]. A similar spill-over effect of NH₃ on the zeolite support to the active Fe³⁺ sites in the NH₃-SCR reaction was also reported by Klukowski et al. [112] on their Fe-HBEA catalyst. Therefore, in brief summary, nowadays researchers basically 75 agree that in the standard NH₃-SCR reaction the oxidation function of Fe-based zeolite catalysts and the amount of active Fe species, but not the acidic properties of the zeolite supports, are

the main factors controlling the deNO_x efficiency $^{[104, 111]}$. Hydrothermal stability is an important factor for the practical 80 use of Fe-based zeolite catalysts, to which the researchers also paid great attention. Hydrothermal treatment could result in the dealumination of zeolite supports, leading to the decrease of Brønsted acid sites or breakdown of the framework structure, and more seriously the migration of active Fe³⁺ species to form ss clustered Fe_xO_y/Fe_2O_3 species, leading to the decline of NH₃-SCR activity and N₂ selectivity ^[113-116]. The remaining NH₃-SCR activity after hydrothermal aging at different conditions was mainly attributed to the residual monomeric Fe³⁺ species located at ion exchange sites ^[114]. The use of zeolite supports with high 90 Si/Al ratio is expected to result in acceptable hydrothermal stability, but the SCR activity may be negatively affected owing to the presence of fewer Brønsted acid sites to exchange, bind and disperse active Fe³⁺ sites. Recently, Iwasaki and Shinjoh ^[117] successfully improved the hydrothermal stability of Fe-BEA 95 catalysts by sequential ion-exchange of rare earth (RE) metals, and concluded that the improvement was dependent on the ionic radius of the exchanged metals. When using the RE metals with radii of 1.05-1.15 Å such as Ce, Nd, Sm, Gd and Tb, the dealumination of aged Fe-BEA catalyst was clearly reduced. This 100 method could also be useful with other Fe-based zeolite catalysts for the effective improvement of hydrothermal stability in practical use.

Another important deactivation factor for Fe-based zeolite catalysts is hydrocarbon (HC) poisoning, which is closely related

35

to the dimensional structure of zeolite supports. For example, on Fe-ZSM-5 and Fe-BEA catalysts with three-dimensional structure, after HC poisoning the NH₃-SCR activity, especially at low temperatures, was markedly decreased mainly due to ⁵ carbonaceous deposition. This resulted in the decline of surface area and pore volume together with suppressed NO oxidation ability for blocked Fe³⁺ sites, or the partial reduction of Fe³⁺ species to Fe²⁺ by HC, or the competitive adsorption of HC with NH₃/NO onto the catalyst surface ^[113, 118, 119]. The deactivation

¹⁰ effect of HC on NH₃-SCR activity was less on the Fe-MOR catalyst with one-dimensional structure due to the difficulty in HC diffusion, and using this feature Ma *et al.* ^[120] effectively improved the HC resistance of a modified Fe-BEA monolith catalyst by coating another layer of MOR zeolite on the outer

¹⁵ surface. This useful modification strategy is worthy of application in the preparation of other efficient NH₃-SCR monolith catalysts for the control of emissions from diesel engines.

In practical use, the low temperature NH₃-SCR activity of Febased zeolite catalysts still needs improvement to meet the diesel ²⁰ emission standards for cold-start and idle speed processes ^[121],

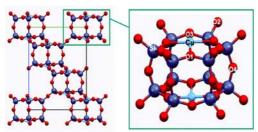
- especially in the regions where Cu-based zeolite catalysts cannot be used, such as in Japan^[122]. The relevant methods include the addition of catalyst promoters such as RE metal Ce^[68] and noble metal Pt ^[123], together with the tuning of the reaction atmosphere,
- $_{25}$ such as raising the NO₂ ratio in NO_x to facilitate the "fast SCR" reaction $^{[124, 125]}$ and adding a small amount of NH₄NO₃ solution as an effective oxidant for NO, creating a similar "fast SCR" reaction condition $^{[126]}$. In addition, to enable practical utilization of the catalysts, the deactivation effects of inorganic components
- ³⁰ contained in diesel exhaust on Fe-based zeolite catalysts are also worthy of investigation, including the combustion products of lubricant oil additives (*i.e.* Ca, Mg, Zn, P, B, Mo), the impurities of biodiesel fuel/urea solution (*i.e.* K, Ca) together with the aerosol particulates from intake air (*i.e.* Na, Cl) ^[127]; these issues
- ³⁵ will not be discussed in detail due to the length limit of this article.

2.2.2. Cu-based zeolite catalysts

Since the zeolite catalysts began being used in the NH_3 -SCR reaction in the late 1970s, the Cu-based zeolite catalysts (mainly

- ⁴⁰ Cu-exchanged Y zeolites) have shown relatively good catalytic performance among the studied materials ^[5]. In the 1990s, the Cu-based zeolite catalysts attracted more attention from researchers in the field of catalytic deNO_x from diesel engine exhaust. Cu-ZSM-5 catalysts have been well studied in early
- ⁴⁵ works, and showed excellent low temperature NH₃-SCR activity and broad operation temperature window even using urea as reductant ^[128]. Sjövall *et al.* ^[129] concluded that using a zeolite support with low Si/Al ratio and increasing the Cu loading could noticeably enhance the NH₃-SCR activity of Cu-ZSM-5 catalysts.
- ⁵⁰ Qi *et al.* ^[105] reported that Cu-ZSM-5 catalysts showed high deNO_x performance at medium and low temperatures even under high GHSV, but the hydrothermal treatment could result in a decline in activity to a certain extent.

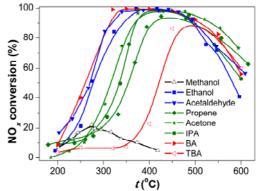
Actually, comparative studies showed that the preparation ⁵⁵ method, the Cu loading and even the precursors used for ZSM-5 synthesis could influence the hydrothermal stability of Cu-ZSM-5 catalysts ^[105, 128, 130]. It is generally accepted that the active sites

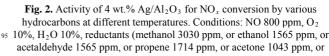

in the SCR reaction of Cu-based zeolites, including Cu-ZSM-5, Cu-beta and Cu-FAU, are mainly dimerized Cu²⁺ and Cu⁺ species, $_{\rm 60}$ and the facility of redox between ${\rm Cu}^{2+}$ and ${\rm Cu}^+$ is beneficial to high SCR performance ^[10, 128, 131-135]. Through studies on the variation of SCR activity and the alteration of catalytically active sites, Park et al. [131] attributed the hydrothermal deactivation of Cu-ZSM-5 catalysts to the migration and re-distribution of Cu²⁺ 65 species, leading to the decrease of active sites and the blockage of zeolite channels by sintered CuO, together with the dealumination and collapse of the zeolite support. After hydrothermal treatment of Cu-beta catalysts under different conditions (500-90 °C, 3% H₂O), Wilken et al. [134] found that the 70 zeolite structure showed no obvious change below 800 °C, yet the oxidation state of Cu species showed apparent change, with a decrease in Cu⁺ species and increase in Cu²⁺ species as indicated by XPS results. Peden et al. [135] found that after severe hydrothermal treatment of Cu-beta catalysts at 900 °C for 2 h 75 with 2% H₂O, the zeolite structure showed clear collapse. Therefore, in brief, the main reasons for the hydrothermal deactivation of Cu-based zeolite catalyst are the instability of active Cu species and of zeolite structures. Interestingly, Moden et al. ^[136] reported that the active Cu species in Cu-FER catalysts so with smaller pore size $(0.42 \times 0.54 \text{ nm})$ showed higher hydrothermal stability than that in Cu-beta catalysts with relatively larger pore size (0.66 \times 0.67 nm). Nanba *et al.* ^[137-139] also observed that in the presence of *n*-decane, NO_x conversion in the NH₃-SCR reaction over the Cu-FER catalyst was less 85 affected than that over Cu-ZSM-5. Thus, it is expected that using a zeolite support with smaller pore size may produce Cu-based zeolite catalysts with exceptional NH3-SCR activity, outstanding hydrothermal stability and HC resistance simultaneously.

Recently, Kwak et al. ^[140, 141] and Fickel et al. ^[142] reported a 90 series of Cu-chabazite (Cu-CHA) catalysts including Cu-SSZ-13 and Cu-SAPO-34, showing high NH₃-SCR activity, good N₂ selectivity and excellent hydrothermal stability with great application potential in the deNO_x process of diesel engines. Fickel et al. [142] considered that the excellent hydrothermal 95 stability of Cu-SSZ-13 and Cu-SAPO-34 catalysts was mainly due to the unique structure of CHA zeolites containing eightmembered-ring pores with small pore size $(0.38 \times 0.38 \text{ nm})$. For example, the ²⁷Al-NMR results by Kwak *et al.* ^[140] showed that the hydrothermally treated Cu-SSZ-13 catalyst showed no ¹⁰⁰ noticeable change in the peak intensity of AlO₄ species compared with the fresh catalyst; however, the peak intensity of AlO₄ species in Cu-ZSM-5 and Cu-beta catalysts decreased ca. 57% and 31%, respectively, suggesting an obvious dealumination process. Based on the commercial Cu-CHA catalyst from BASF 105 Corporation, Schmieg et al. [143] found that even after hydrothermal treatment at 800 °C for 16 h, which was comparable to 135,000 mile vehicle-ageing, this catalyst still exhibited more than 70% NO_x conversion from 200 to 450 $^{\circ}$ C. The small pore structure in Cu-CHA catalysts was also expected 110 to be more resistant to HC poisoning due to the difficulty in diffusion of HC with larger size, such as isobutane, with a kinetic diameter of 5.5 Å [142].

Using a variable-temperature XRD method, Fickel and Lobo ^[144] proved that the ion-exchange of Cu species into NH₄-

comprehensive study using Rietveld refinement of the XRD data, *in situ* UV-Vis and XAFS techniques, Fickel and Lobo ^[144], Korhonen *et al.* ^[145] and Deka *et al.* ^[146] finally concluded that only the isolated Cu²⁺ species located in the six-membered-rings s of CHA structure coordinating with three oxygen atoms was the

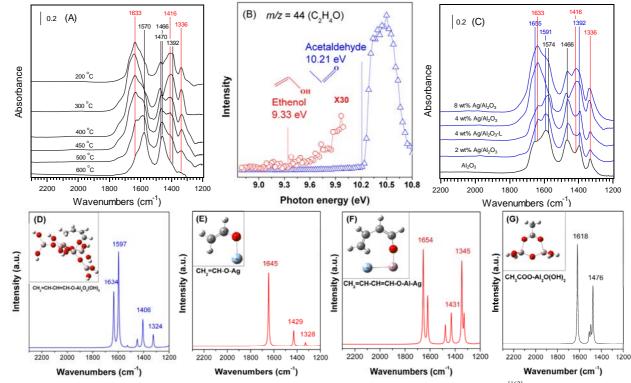

- real active species in the NH₃-SCR reaction (Scheme 4). Using *operando* XAFS, density functional theory (DFT) calculation, and first-principles thermodynamics models, Kispersky *et al.* ^[147] and McEwen *et al.* ^[148] proposed that under the standard NH₃-
- ¹⁰ SCR conditions at steady state, the active Cu species was actually in a mixture of Cu^+ species and Cu^{2+} species, indicating that the redox cycle between Cu^+/Cu^{2+} is very important for high NH₃-SCR activity, similar to other Cu-based zeolite catalysts. Very recently, a further study using H₂-TPR and FTIR methods by
- ¹⁵ Kwak *et al.* ^[149] revealed two distinct cationic positions in Cu-SSZ-13 catalysts at different ion-exchange levels. They concluded that at low ion-exchange levels, the Cu²⁺ ions primarily occupied the sites in the six-membered-rings similar to those identified in early reports, while at high ion-exchange levels,
- ²⁰ the Cu²⁺ ions were present mostly in the large cages of the CHA structure. The latter Cu²⁺ species were much more easily reduced in the H₂-TPR process, indicating a high redox capability at low temperatures, which might be the main origin of the exceptional NH₃-SCR activity over Cu-SSZ-13 catalysts. Therefore, although
- ²⁵ the NH₃-SCR performance of Cu-CHA catalysts has been well recognized, the understanding of the intrinsic active Cu sites is still in debate and ongoing. Besides, Kwak *et al.* ^[150] noticed that regardless of Cu ion-exchange degree, the NO oxidation ability of Cu-SSZ-13 catalysts was very low; even under the "fast SCR"
- ³⁰ condition, the NO_x conversion was only slightly improved, with little formation of N₂O. Compared with other Cu-based zeolite catalysts or even other NH₃-SCR catalysts, the above-mentioned "abnormal" results indicate that a totally different NH₃-SCR reaction mechanism may exist over the Cu-SSZ-13 catalyst,
- ³⁵ which needs be investigated in detail using various methods in future research. In addition, new types of Cu-based zeolite catalysts are being developed constantly with high deNO_x efficiency, such as the newly reported Cu-SSZ-39 with AEI structure, which also shows extraordinary hydrothermal ⁴⁰ stability ^[151]. Consequently, study of the structure-activity
- relationship of Cu-based zeolite catalysts in the NH₃-SCR reaction will always be a hotspot in the field of environmental catalysis.



45 Scheme 4. The structure of Cu-SSZ-13 obtained from refinements of neutron scattering data, and magnification of the double six member (d6r) unit with Cu present as an isolated ion (Reproduced with permission from American Chemical Society) ^[146]

Nowadays, most Cu-CHA zeolite catalysts are prepared by an ⁵⁰ ion-exchange method using Cu salt precursors and CHA zeolite

supports, usually including ion-exchange, filtration, washing and calcination procedures. Due to the limits in channel size and exchange capacity of CHA zeolites, repeated ion-exchange procedures or longer ion-exchange time is necessary to increase 55 the Cu loading. Furthermore, the synthesis of SSZ-13 zeolites requires the structure-directing agent (SDA) N,N,N-trimethyl-1adamantammonium hydroxide (TMAdaOH), which is very expensive ^[152], limiting the wide application of this material in industry. Therefore, it is highly imperative to improve the 60 synthesis method to reduce the cost of Cu-SSZ-13 catalysts for process. the NH₃-SCR Using the low-cost Cutetraethylenepentamine (Cu-TEPA) complex as a novel template, which is stable in strong alkaline solution and matches the CHA cage structure very well, Ren et al. [153, 154] successfully designed 65 a one-pot synthesis method for Cu-SSZ-13 catalysts, obtaining products with high Cu loading and high dispersion of Cu species simultaneously. Through adjusting the starting compositions in the precursor gels, Cu-SSZ-13 zeolites with different Si/Al ratios could be synthesized. The preliminary results showed that the 70 one-pot synthesized Cu-SSZ-13 catalyst exhibited very good NH₃-SCR activity, especially in the low temperature range, yet much more work should be done to investigate its feasibility in practical use for the deNO_x process of diesel engines. Picone et al. ^[155] used Cu cyclam (1,4,8,11-tetraazacyclotetradecane) and 75 tetraethylammonium (TEA⁺) acting as co-templates to directly synthesize a Cu-SAPO STA-7 catalyst with similar structure to that of Cu-SAPO-34, showing comparable performance in the NH₃-SCR reaction to that of Cu-ZSM-5 prepared by an ionexchange method and higher performance than that of Cu-SAPO 80 STA-7 with similar Cu content prepared by an aqueous ionexchange method. The characterization results showed that a more homogeneous distribution of Cu species in Cu-SAPO STA-7 was achieved via direct synthesis, which was probably the main reason for its high $deNO_x$ efficiency. The one-pot synthesis 85 methods for Cu-based zeolite catalysts with small pore size using relatively cheap Cu-containing templates allow researchers to tune the Cu content, Cu distribution, and Si/Al ratio and thus the NH₃-SCR activity efficiently, although this approach is restricted to those zeolitic systems that can be prepared using coordination 90 complexes as templates ^[156]. For practical use of this approach in industry, we believe, there is still a long but exciting way to go.



30

IPA 1043 ppm, or BA 783 ppm, or TBA 783 ppm), N_2 balance, total flow = 2000 ml min⁻¹, GHSV = 50,000 h⁻¹.

3. Mechanism responsible for the high performance of Ag/Al_2O_3 for the SCR of NO_x ⁵ with oxygenated hydrocarbons

It has been widely accepted that the structure of hydrocarbons has a great influence on the activity of Ag/Al_2O_3 for NO_x reduction ^[13, 16, 157]. Oxygenated hydrocarbons such as ethanol, acetaldehyde, and propyl alcohol exhibit excellent NO_x reduction ¹⁰ activity on Ag/Al_2O_3 ^[158, 159], which was also confirmed by our results ^[160-163]. More importantly, we attempted to determine the intrinsically property responsible for the NO_x reduction by oxygenated hydrocarbons over Ag/Al_2O_3 . As shown in Fig. 2, methanol shows the poorest activity for NO_x reduction, while ¹⁵ ethanol, acetaldehyde, and butyl alcohol (BA) are most active, giving similar T₅₀ (50% NO_x conversion) at *ca*. 270 °C with a SV of 50000 h⁻¹. It be should noted that tert-butyl alcohol (TBA) exhibits a much lower NO_x conversion in the temperature range 200-450 °C, providing a T₅₀ for NO_x conversion at around ²⁰ 420 °C, which is *ca*. 150 °C higher than that of the T₅₀ with BA. The reductants with three carbon atoms (iso-propanol (IPA), and acetone) exhibit moderate activity for NO_x reduction. Clearly, both the carbon chain length and configuration of oxygenated hydrocarbons have a pronounced effect on their properties for ²⁵ NO_x reduction, therefore understanding such differences at the mechanism level may give clues for the design of a HC-SCR system with high efficiency.

Fig. 3. (A) *in situ* DRIFTS spectra of 4 wt.% Ag/Al₂O₃ during partial oxidation of ethanol at different temperatures ^[162]; (B) The photoionization efficiency (PIE) spectra of m/z = 44 (C₂H₄O) measured in a flow of ethanol + O₂ over Ag/Al₂O₃ under low pressure at 330 °C ^[164]; (C) *in situ* DRIFTS spectra of Ag/Al₂O₃ with different Ag loadings during partial oxidation of ethanol at 250 °C; (D) molecular structure of the calculation model (inset figure) and its calculated FTIR spectrum for the surface C₄ enolic species on Al₂O₃; (E) surface C₂ enolic species on Ag/Al₂O₃; (F) C₄ enolic species on Ag/Al_2O_3 ^[165]; and (G) surface acetate on Ag/Al₂O₃ ^[166]. (Reproduced with permission from Elsevier Inc. and American Chemical Society)

3.1. Partial oxidation of oxygenated hydrocarbons over Ag/Al_2O_3

As the initial step of HC-SCR, the partial oxidation of ⁴⁰ hydrocarbons has attracted much attention. In NO_x reduction by ethanol over Ag/Al₂O₃, it has been proposed that acetate derived from the partial oxidation of ethanol plays a crucial role in the formation of isocyanate species (-NCO), as well as in the global NO_x reduction process ^[13, 30, 31, 167-169]. A possible mechanism for

⁴⁵ NO_x reduction by ethanol over Ag/Al₂O₃ was judged to be similar to that of C₃H₆: approximately, NO + O₂ + C₂H₅OH \rightarrow NO_x (nitrate in particular) + C_xH_yO_z (acetate in particular) \rightarrow R- NO_2 + R-ONO → -NCO + -CN + NO + O_2 → N_2 ^[23, 24, 30, 31, 167-171]. However, this mechanism does not sufficiently explain why ⁵⁰ ethanol has a much higher efficiency for the SCR of NO_x over Ag/Al₂O₃ than hydrocarbons such as propene (Fig. 2).

In our earlier papers ^[162, 172, 173], the formation and dynamic performance of partial oxidation products of ethanol over Ag/Al₂O₃ were studied by an *in situ* DRIFTS method, and we ⁵⁵ found a novel enolic species originating from the partial oxidation of ethanol, with the structural feature of an oxygen atom adjacent to carbon-carbon double bonds (C=C-O). As shown in Fig. 3A, peaks at 1633, 1416 and 1336 cm⁻¹ were assigned to the enolic species adsorbed on the surface of Ag/Al_2O_3 . This assignment was confirmed by using 2,3dihydrofuran as an enolic model compound, which has a structure containing C=C bonded with an oxygen. From a comparison of the intensities of the respective peaks in Fig. 3A, we deduced that

- ⁵ the enolic species is predominant during the oxidation of ethanol on the Ag/Al₂O₃ surface at low temperatures (within the range of 200-450 °C). However, at high temperatures ranging from 500 to 600 °C, the surface acetate species exhibiting characteristic frequencies at 1570 and 1466 cm⁻¹ becomes dominant.
- ¹⁰ The partial oxidation intermediates of ethanol over Ag/Al₂O₃ were further identified by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS), and photoionization efficiency (PIE) spectra ^[164]. The PIE spectra of m/z = 44 (C₂H₄O) (Fig. 3B) at low pressure unambiguously illustrate the
- ¹⁵ presence of ethenol (CH₂=CH-OH), with the ionization threshold of 9.33 eV ^[174]. At normal atmospheric pressure, however, this species was hardly observed in the gas phase, indicating a high level of activity. This result also indicates that Ag/Al_2O_3 provides a suitable surface to stabilize the ethenol, because of its
- ²⁰ strong DRIFTS intensity on the catalyst surface under normal pressure (Fig. 3A). Acetaldehyde, as the stable isomer of ethenol, was detected under low and atmospheric pressure with high ion intensity, giving the characteristic threshold of 10.21 eV.

Meanwhile, propenal (CH2=CHCHO), acetone (CH3COCH3),

²⁵ and 2-butenal (CH₃CH=CH-CHO) were also measured by VUV-PIMS during the partial oxidation of ethanol over Ag/Al₂O₃. This indicates that a condensation reaction occurs synchronously during the partial oxidation of ethanol over Ag/Al₂O₃, which also agrees with our TPD-MS experiment ^[173]. The condensation
 ³⁰ reactions of aldehydes, as well as ketones, are widely used in organic synthesis and are commonly catalyzed by zeolites, Al₂O₃,

and TiO₂ ^[175-177].

On a detailed mechanistic level, the role of silver species in the HC-SCR of NO_x over Ag/Al₂O₃ was mainly attributed to ³⁵ enhancement of the partial oxidation of reductants to form active intermediates, and their further reaction to produce N₂ ^[16, 158, 172, 10]

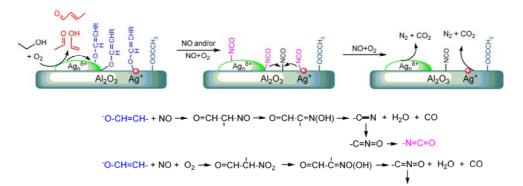
^{178]}. In situ DRIFTS spectra showed that the surface species formed from the partial oxidation of ethanol over Ag/Al_2O_3 (Fig. 3C) were closely related to Ag loading ^[165]. Over pure Al_2O_3 , the

⁴⁰ surface enolic species adsorbed on Al sites exhibited characteristic peaks at 1655, 1591, 1392, and 1336 cm⁻¹. After Ag loading, the peaks due to enolic species were observed at 1633, 1416, and 1336 cm⁻¹, the intensity of which gradually increased with increasing Ag content, indicating that this species would be ⁴⁵ bound on or close to Ag sites.

Density functional theory (DFT) calculations were also used to confirm the structure of adsorbed enolic species and acetate on Ag/Al_2O_3 ^[162, 165, 166, 173, 179]. Two kinds of surface enolic species, adsorbed only on Al sites (CH₂=CH-CH=CH-O-Al₆O₅(OH)₈)

- ⁵⁰ and bound on or close to Ag (CH₂=CH-O-Ag, CH₂=CH-CH=CH-O-Al-Ag) were suggested by DFT calculations over Ag/Al₂O₃ and Al₂O₃, with the simulation molecular structure model and corresponding FTIR spectrum shown in Fig. 3D, 3E, and 3F, respectively ^[165]. As revealed by ICP measurements ^[165]
- 55 the molar ratio of Al/Ag on 4 wt.% Ag/Al₂O₃ was as high as 60, while enolic species bound on Al sites were hardly observed (Fig. 3C), strongly suggesting that the enolic species is preferably adsorbed on or close to silver sites.

On all Ag/Al₂O₃ samples, UV-vis analysis shows that that Ag 60 species are mainly present in the oxidized state (Ag⁺ and $Ag_n^{\delta+}$)^[40, 180-184]. Kinetic measurements confirm that such silver species, particularly strongly bound Ag⁺ ions, are the active sites responsible for the reduction of NO_x with ethanol. Thus, we propose that the enolic species on the Ag/Al2O3 surface possibly 65 adsorb on or close to isolated Ag^+ ions and/or $Ag_n^{\delta^+}$ clusters, exhibiting an intimate contact with the active phase. This enolic species was clearly observed on the leached sample (Fig. 3C), in which Ag⁺ ions were predominant, further supporting our assumption [165]. By using precipitable silver compound supported 70 catalysts such as Ag₃PO₄/Al₂O₃, Ag₂SO₄/Al₂O₃ and $AgCl/Al_2O_3$, we also confirmed that the high dispersion Ag^+ cations were the active silver species for NO_x reduction by ethanol, on which the reactive enolic species was formed having strong infrared intensity in the typical temperature range of 250-75 500 °C [185]


During the partial oxidation of ethanol on all samples, meanwhile, the peaks due to surface acetate were also clearly observed, with the characteristic vibrational frequencies (1574 and 1466 cm⁻¹), regardless of silver loading. These results ⁸⁰ indicate that the acetate species formed during the partial oxidation of ethanol may mainly adsorb on Al sites instead of Ag sites. The adsorption characteristics of acetate on the surface of Ag/Al₂O₃ catalysts have also been investigated by DFT calculations ^[166]. The calculated vibrational spectrum of acetate ⁸⁵ adsorbed on Al sites, present as CH₃COO-Al₂O(OH)₂, is in good agreement with the experimental one (Fig. 3G), while there is a large error between the calculated and experimental vibrational modes of the acetate species bound on silver sites, further confirming that acetate species over Ag/Al₂O₃ are prone to ⁹⁰ interact with Al sites.

Based on the above results, the formation mechanism for surface enolic species during the partial oxidation of ethanol over Ag/Al₂O₃ was proposed as shown in Scheme 5. Ethanol principally reacts with oxygen to form acetaldehyde, which is ⁹⁵ followed by isomerization to ethenol. Subsequently, a C₂ enolic anion (CH₂=CH-O⁻)-M⁺ is formed by hydrogen extraction when ethenol is adsorbed on the surface of Ag/Al₂O₃. Meanwhile, the occurrence of aldol condensation of acetaldehyde, which has been confirmed by PIMS and TPD-MS measurement, may lead to the ¹⁰⁰ formation of C₄ enolic species (CH₂=CH-CH=CH-O⁻)-M⁺ as shown in Scheme 5 ^[164, 173].

Obviously, if the formation of surface enolic species follows the hypothesis described above, two prerequisites must be met. First, the selected reductant must contain at least one C-C bond. ¹⁰⁵ This has been clarified by our previous research, in which the enolic species was rarely observed when CH₃OH (Fig. 4A) and CH₃OCH₃ were partially oxidized over Ag/Al₂O₃ ^[161, 186]. Secondly, it is widely accepted that the structural feature H-C-O-H is required for the partial oxidation of alcohols to aldehydes ¹¹⁰ and/or ketones. That is, the OH group must be attached to a carbon atom with at least one hydrogen atom (denoted as α -H). Considering that enols are the tautomers of aledhyde/ketones, the presence of α -H is also a prerequisite for the formation of enolic species during partial oxidation of alcohols over Ag/Al₂O₃. To ¹¹⁵ highlight this issue, butyl alcohol isomers with and without α -H were employed as reductants for NO_x reduction over 4 wt.% Ag/Al₂O₃ ^[163]. 1-butanol (Fig. 4B), sec-butyl alcohol and isobutyl alcohol, containing α -H, are favorable for the partial oxidation to form enolic species while the α -H participated reaction pathway is impossible for tert-butyl alcohol (Fig. 4C) s due to the absence of α -H.

Previous research further identified that surface enolic species were also produced during the partial oxidation of 1-propanol (and isopropyl alcohol) over Ag/Al_2O_3 ^[160, 161, 187], acetaldehyde over both Ag/Al_2O_3 ^[172] and Co/Al_2O_3 ^[188], and acetylene over

¹⁰ ZSM-5 ^[189]. Interestingly, substantial quantities of enols in the gas phase have been observed by VUV-PIMS during the combustion of hydrocarbons ^[190]. The above results strongly suggest that adsorbed enolic species and/or enols in the gas phase are common intermediates involved in the partial oxidation of ¹⁵ hydrocarbons and oxygenated hydrocarbons. As a result, identification of their role is a key point in understanding of the

pathway of HC-SCR.

20 Scheme 5. Hypothesis for adsorbed enolic species formation and mechanism of ethanol-SCR of NO_x over Ag/Al₂O₃. The intermediates in the gas phase such as acetaldehyde, ethenol, and 2-butenal were confirmed by VUV-PIMS measurement ^[164]. Surface enolic species, acetate, and -NCO were identified by DRIFTS and DFT calculations ^[165, 173]. (Reproduced with permission from Elsevier Inc.) ^[165]

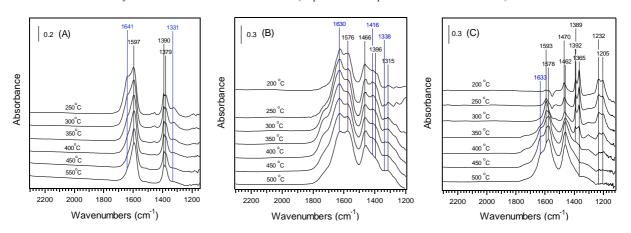


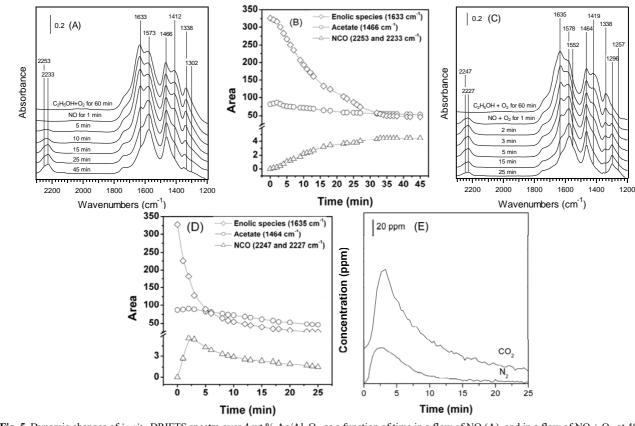
Fig. 4. In situ DRIFTS spectra of 4 wt.% Ag/Al₂O₃ during partial oxidation of methanol (A) ^[161], 1-butanol (B) ^[163], and tert-butyl alcohol (C) ^[163] at different temperatures. Conditions: the concentrations of reductants are the same as Fig. 2, O₂ 10%, N₂ balance. (Reproduced with permission from Elsevier Inc.)

3.2. Reactivity of intermediates originating from partial ³⁰ oxidation of oxygenated hydrocarbons over Ag/Al₂O₃

It has been widely accepted that the -NCO species is a vital intermediate for the SCR of NO_x with ethanol and other hydrocarbons, thus much attention has focused on its formation and reactivity ^[29, 178, 191-197]. With this in mind, the relationship

 $_{35}$ between -NCO formation and the consumption of enolic species and acetate was investigated on Ag/Al₂O₃ via the transient response of the DRIFTS method, and typical results are presented in Fig. 5 ^[165].

After exposure of 4 wt.% Ag/Al_2O_3 to $C_2H_5OH + O_2$ at 40 400°C for 60 min, the enolic species bound on or close to Ag sites


exhibited strong peaks at 1633, 1412, and 1338 cm⁻¹, while the characteristic vibration modes of the enolic species adsorbed on Al sites were hardly observed. Strong peaks assignable to acetate were also observed at 1573 and 1466 cm⁻¹ (Fig. 5A). Switching ⁴⁵ the feed gas to NO resulted in a significant decrease in the intensity of peaks due to enolic species, while the decrease in the intensity of acetate peaks was much slower than that of enolic species on the same time scale. Meanwhile, this decrease was accompanied by the appearance of peaks due to -NCO, whose ⁵⁰ intensity increased with time on stream. These results confirm that the enolic species bound on or close to Ag sites are more active toward NO to form -NCO than is acetate at this temperature (Fig. 5B).

Under the same conditions as in the above experiments, we also analyzed the reactivity of enolic species and acetate when NO + O_2 was introduced over 4 wt.% Ag/Al₂O₃ (Fig. 5C and 5D). In this case, a more significant decrease in the concentration ⁵ of enolic species was observed compared with experiments carried out in the absence of O_2 . The trend of -NCO with time on

- stream follows the typical behavior of a reactive intermediate, increasing its intensity at the beginning, reaching a maximum at 3 min and then decreasing gradually. Meanwhile, the gas phase
- ¹⁰ products such as N_2 and CO_2 were measured by mass spectrometry, with results shown in Fig. 5E. Based on these data, the consumption of surface enolic species within 25 min was estimated at 283.1-566.2 µmol/g-cat, which is fairly close to that of the final product N_2 , 204.5 µmol/g-cat. These results ¹⁵ quantitatively confirm that the enolic species in intimate contact ³⁰

with the active phase plays a crucial role in the reduction of NO_x with ethanol. Over this catalyst, meanwhile, H_2 - O_2 titration showed that the accessible amount of silver sites was 85.34 µmol/g-cat, which is lower than that of surface enolic species. ²⁰ This result indicates that not only the Ag sites, but also Al sites closely linked to Ag participate in the formation of surface enolic species, further confirming our assignment for this species.

Further studies confirmed that the enolic species originating from the partial oxidation of butyl alcohol (BA), sec-butyl ²⁵ alcohol (SBA), and isobutyl alcohol (IBA), propyl alcohol ^[160], isopropyl alcohol (IPA) ^[161], and acetaldehyde ^[162] over Ag/Al₂O₃ also exhibited high activity toward NO + O₂, and thus are responsible for NO_x reduction by these oxygenated hydrocarbons.

ChemComm Accepted Manuscript

Fig. 5. Dynamic changes of *in situ* DRIFTS spectra over 4 wt.% Ag/Al₂O₃ as a function of time in a flow of NO (A), and in a flow of NO + O₂ at 400 °C. Before measurement, the catalyst was pre-exposed to a flow of C₂H₃OH + O₂ for 60 min at 400 °C. Conditions: NO 800 ppm, C₂H₃OH 1565 ppm, O₂ 10% (if used), N₂ or Ar (for the case of (B)) balance. (C) and (D) time dependence of the integrated areas of the peaks of enolic species (◊), acetate (○), and -NCO (Δ) for the cases of (A), and (B), respectively, and (E) time dependence of N₂ and CO₂ concentration calculated from the mass signals for the cases of (C). (Reproduced with permission from Elsevier Inc.)^[165]

3.3. Reaction pathway of HC-SCR over Ag/Al₂O₃

⁴⁰ Based on the above results, a mechanism for the NO_x reduction by ethanol over Ag/Al_2O_3 was proposed as shown in Scheme 5. In a typical reaction process, partial oxidation of ethanol results in the formation of enolic species adsorbed on Al and Ag sites, as well as the formation of acetate on Al sites. Such different ⁴⁵ features in the adsorption sites for the enolic and acetate species on Ag/Al₂O₃ may contribute to their different reactivity toward NO + O₂ (and/or NO), and their role in the formation of -NCO during the reduction of NO_x with ethanol. The enolic species intimately linked with Ag sites (RCH=CH-O-Ag and RCH=CH- 50 O-Al-Ag), possessing high activity, further react with NO + O₂ (and/or NO), to form Ag-NCO. The acetate bound on Al sites are less active when compared with the enolic species intimately linked with Ag sites, and thus play a minor role in -NCO formation. With an increase in the concentration of Ag-NCO, this

species can transfer to Al sites, and as a result, the characteristic frequency of Al-NCO can be observed by the DRIFTS method.

- The characteristic IR peaks of -NCO located around 2230 and 2250-2260 cm⁻¹ have been commonly observed on Ag/Al_2O_3 ⁵ during HC-SCR, while the assignments of their coordination sites are still controversial. Bion *et al.* ^{[191, 192],} and Thibault-Starzyk *et al.* ^[196] observed the characteristic frequencies of -NCO on Ag/Al_2O_3 located at 2255-2265 and 2228-2240 cm⁻¹, which were assigned to -NCO species coordinated with octahedral Al^{3+} ions
- ¹⁰ (Al^{VI}-NCO) and tetrahedral Al³⁺ sites (Al^{IV}-NCO), respectively. During the reduction of NO_x with ethanol and propene on Ag/Al₂O₃, the two peaks at 2258-2262 and 2230-2235 cm⁻¹ were detected by Ukisu *et al.* ^[198], Kameoka *et al.* ^[23, 199], and Sumiya *et al.* ^[29, 168]. The high-frequency peak was assigned to Al-NCO,
- ¹⁵ while the low-frequency one was attributed to adsorption on Ag sites (Ag-NCO). To identify the adsorption sites of -NCO on the Ag/Al₂O₃ surface, DFT calculations were performed by Gao and He ^[194]. The calculated results indicate that the antisymmetric stretching mode of the Al-NCO group is located at 2267 cm⁻¹
- ²⁰ with strong intensity, which is in excellent agreement with the experimental value (around 2260 cm⁻¹). The calculated mode of (OH)₂Al-O-Ag-NCO shows the asymmetric stretching frequency of -NCO at 2215 cm⁻¹, also close to the corresponding experimental one (around 2230 cm⁻¹), indicating that the low-
- ²⁵ frequency peak may correspond to the -NCO species adsorbed on or close to Ag sites. Because of the weak intensity, the symmetric stretching mode for the surface structure containing Ag-NCO or Al-NCO groups has not been observed in the experimental IR spectra, which has also been proved by the DFT calculation. By
- ³⁰ using an elegant short time-on-stream *in situ* spectroscopic transient isotope experimental technique, more recently, Chansai *et al.* ^[178, 200] proposed that there may be two types of -NCO species during the reduction of NO_x with hydrocarbons over Ag/Al₂O₃. One is a slowly reacting spectator -NCO species,
- ³⁵ probably adsorbed on the oxide support of Al₂O₃, while another is related to reactive -NCO, possibly on or close to the active silver phase.

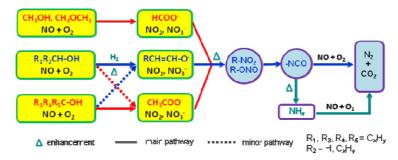
Organo-nitrite and -nitro species (R-ONO and R-NO₂) have been regarded as potential intermediates in the SCR of NO_x with ⁴⁰ hydrocarbons, which contributed to the formation of -NCO by

- reaction between the partial oxidation products of hydrocarbons and NO_x (or ad-NO_x) ^[201]. As for ethanol-SCR over Ag/Al₂O₃, the two species may also participate the formation of -NCO during exposure of the surface enolic species to NO and/ NO +
- ⁴⁵ O₂. In organic synthesis, enols and/or enolate anions are common intermediates in nitrosation reactions between aldehydes/ketones and substrates containing the NO group such as HONO, NO⁺, NO⁻, neutral NO, C(NO₂)₄, and [Fe(CN)₅NO]₂⁻ to form the initial product of nitroso and nitro compounds ^[202-204]. This machine provided in the production of the section.
- ⁵⁰ mechanism permitted us to hypothesize that similar reactions would occur during exposure of enolic species to NO on Ag/Al₂O₃, resulting in the formation of an organo-nitrite compound. Transformation of this organo-NO_x compound to its enol tautomer, -CH=N(OH), with subsequent dehydration to -CN
- ⁵⁵ and transformation to -NCO, has been proposed as a possible route for -NCO formation ^[181, 191, 205]. The presence of O₂ promoted the reaction of enolic species toward NO, possibly resulting in the formation of an organo-nitro intermediate. This

compound was also contributed to produce -NCO *via* enol and -⁶⁰ CNO formation ^[181, 191, 205].

A general reaction pathway involving the formation of enolic species closely linked to active Ag sites was proposed to explain the NO_x reduction by different alcohols over Ag/Al₂O₃ ^[206]. As shown in Scheme 6, both the presence of α -H and at least C=C ⁶⁵ bond in alcohols are necessary for the formation of enolic species. The employed alcohols with these two features thus exhibit high efficiency for NO_x reduction, derived from the high concentration of reactive enolic species. As for NO_x reduction by hydrocarbons such as alkanes and alkenes, however, the formation of acetate 70 (or formate in the case of NO_x reduction by CH₄) and its further transformation to -NCO play a crucial role in NO_x reduction. The low reactivity of acetate (or formate) results in a low efficiency for NO_x reduction by hydrocarbons if compared with the NO_x reduction by oxygenated hydrocarbons such as ethanol.

⁷⁵ Water vapor is commonly present in diesel engine exhaust, the presence of which has a great influence on the reaction pathway of the HC-SCR ^[13, 158, 191]. Generally, the presence of water vapor usually suppressed the NO_x reduction by hydrocarbons such as propene over Ag/Al₂O₃, while high NO_x conversion was ⁸⁰ maintained when oxygenated hydrocarbons such as ethanol were employed as reductants. In our previous work ^[16], *in situ* DRIFTS results showed that the presence of water vapor promoted the formation of enolic species intimately linked to Ag sites, while it suppressed the formation of acetate species. These opposite ⁸⁵ effects of water vapor on the two species may derive from their different behaviors on the adsorbed sites, identification of which may provide important implications for understanding the effect of water vapor on the HC-SCR.


From a practical point of view, it is important to develop $_{90}$ catalysts or catalyst-reductant systems that are active for NO_x reduction in the presence of SO2. Numerous studies confirmed that the structure of hydrocarbons (oxygenated hydrocarbons) was not only responsible for the activity of Ag/Al₂O₃ for NO_x reduction, but also contributed to the sulfur tolerance of this 95 silver catalyst ^[13, 159, 160]. In the presence SO₂, the deteriorated activity of Ag/Al2O3 for HC-SCR was mainly due to the adsorption and accumulation of sulfates on the Al₂O₃ support, before which the oxidation of SO₂ should have occurred on Ag sites [13, 207, 208]. As for NO_x reduction by oxygenated 100 hydrocarbons such as ethanol and acetaldehyde, large amounts of enolic species were formed, which adsorbed on or close to the active Ag sites. On the Ag sites covered with enolic species, the oxidation of SO₂ would be suppressed, followed by the adsorption and accumulation of sulfates. Therefore, it is 105 reasonable that the catalyst-reductant system of Ag/Al₂O₃oxygenated hydrocarbon exhibits high sulfur tolerance. The acetate, as the main product of partial oxidation of hydrocarbons, prefers to interact with Al sites. This situation is of benefit for SO₂ oxidation on Ag sites, and thus a pronounced poisoning 110 effect would be observed during NO_x reduction by hydrocarbons such as C_3H_6 over Ag/Al₂O₃.

Recently, it was found that the presence of H_2 significantly enhanced the low temperature activity of Ag-based catalysts for NO_x reduction by hydrocarbons ^[17, 40, 209-211]. Up to now, however, ¹¹⁵ the interpretation of the H₂ promotional effect on HC-SCR has been under debate. To increase the rate of NO_x conversion,

basically, the hydrogen must accelerate the rate(s) of the slow step(s) in the reaction of HC-SCR, while the slow step(s) are likely to vary depending on the reaction temperature and feed conditions ^[212]. We were the first to report the pronounced $_{5}$ promotional effect of H₂ on the NO_x reduction by ethanol over Ag/Al₂O₃ even in the presence of water vapor ^[213]. Evidence provided by in situ DRIFTS revealed that the presence of H₂ enhanced the formation of enolic species during the partial oxidation of ethanol over Ag/Al2O3 at low temperatures. Such ¹⁰ enhancement by H₂ was also confirmed by GC-MS analysis, by promoting the formation of organic nitrogen-containing

intermediates such as CH3-NO2 and CH3CN during the ethanol-25

SCR over Ag/Al₂O₃ at low temperatures. By using in situ DRIFTS, we also found that the presence of H₂ increased the 15 activity of -NCO toward NO + O_2 during the NO_x reduction by ethanol over Ag/Al2O3. As revealed by VUV-PIMS analysis, meanwhile, the presence of H₂ may trigger the hydrolysis of -NCO to NH₃, providing a new pathway for NO_x reduction ^[206]. As a result, we proposed that the H₂ effect on ethanol-SCR could 20 be attributed to enhancement of the formation of enolic species and their further transformation to -NCO via the formation of organic nitrogen-containing species, which has been presented in Scheme 6. Such enhancement was also observed during the NO_x reduction by C_3H_6 over Ag/Al₂O₃ in the presence of H₂^[160, 214].

Scheme 6. Mechanism of HC-SCR of NO_x over Ag/Al₂O₃ (Reproduced with permission from CAS/DICP) ^[206]

Typically, most of the studies dealing with the reaction 30 mechanism of HC-SCR have been restricted to surface phenomena. However, Eränen and co-workers [215, 216] proposed that the octane-SCR over Ag/Al2O3 not only occurs on the surface of catalyst but also continues in the gas phase, leading to the final products of N₂, H₂O, CO₂. Such gas-phase reaction was

- 35 proved by placing a commercial Pt-supported oxidation catalyst after the Ag/Al₂O₃ catalyst in order to remove CO and unburnt hydrocarbons. When the oxidation catalyst was placed immediately behind the Ag/Al₂O₃, NO_x conversion to N₂ was decreased dramatically. Similar gas-phase reaction was also
- 40 observed to occur during NO_x reduction by ethanol over Ag/Al_2O_3 ^[24, 217, 218]. The above results strongly suggest that very active N-containing intermediates in the gas phase were created over the Ag/Al2O3 catalyst. Identification of these unstable intermediates is thus important in order to understand
- 45 the mechanism of HC-SCR over Ag/Al₂O₃ and to further optimize the catalysts. However, this may be a difficult task because these gas phase intermediates possess very high reactivity and a short lifetime. Eränen et al. [215] proposed that gas phase reaction behind the silver catalyst may be involved in the
- $_{50}$ reaction of activated NO_x species with amines and ammonia. Organic N-containing species such as R-NO₂, R-NCO, and R-CN are intermediates in the formation of amines and ammonia, which may also take part in this gas reaction. Using a conventional electron-impact (EI) ionization mass spectrometer and liquid
- 55 nitrogen trap, unfortunately, only R-CN species were detected during the NO_x reduction by octane over Ag/Al₂O₃, together with nitrogen-free species due to the partial oxidation of the reductant ^[215]. During the NO_x reduction by ethanol or octane over Ag/Al₂O₃, large amounts of N-containing species such as

60 NH₃ and HCN were detected by a conventional MS technique ^[24].

Considering that the two gas phase species are not so active as to produce N₂ in a catalyst-free system, this may not be the true story. Indeed, the real intermediates would have changed into the final product of N2 and/or more stable species owing to 65 molecular collision and secondary reaction during the sampling and long retention times of a conventional mass spectrometer.

Recently, synchrotron vacuum ultraviolet (VUV) molecular-beam with photoionization combined mass spectrometry (MBMS), also referred to as synchrotron VUV 70 photoionization mass spectrometry (VUV-PIMS), was successfully applied in detecting reactive intermediates in hydrocarbon combustion chemistry [190, 219]. In this case, molecular-beam sampling and high vacuum downstream can ensure free molecular flow of the sampled gas and reduce 75 collision effects, making it possible to detect both stable and unstable intermediates; the employed vacuum ultraviolet singlephoton photoionization can minimize fragmentation of target molecules because the total absorbed photon energy barely exceeds the ionization energy. Both of these two advantages of 80 VUV-PIMS may also provide an opportunity for identification of the reactive gas phase intermediates created by Ag/Al₂O₃ during the HC-SCR and give deeper insight into its mechanism if this technique is employed properly. In fact, by using this powerful method, ethenol in gas phase, an important intermediate during s5 the catalytic oxidation of C_2 - C_4 alcohols over Ag/Al₂O₃ catalyst, was unambiguously identified [164, 219], further confirming the formation of surface enolic species during the NO_x reduction by ethanol over Ag/Al₂O₃.

4. Conclusions and perspectives

90 The development of vanadium-free catalysts for the NH₃-SCR of NO_x with high deNO_x activity, N₂ selectivity, hydrothermal

stability and durability toward poisoning components is a continuing research hotspot in the field of environmental catalysis. The study of the structure-activity relationship of these environmentally-benign catalysts in the NH₃-SCR reaction shows s that the high dispersion of active species is a very important

- factor influencing the SCR performance, not only for metal oxide catalysts (such as the high dispersion of Fe³⁺-(O)₂-Ti⁴⁺ species in the FeTiO_x catalyst and CeO_x species in CeTiO_x, CeWTiO_x and CeWO_x catalysts), but also for zeolitic catalysts (such as the
- 10 isolated Fe^{3+} and Cu^{2+} species located in ion-exchanged sites), which is a quite common view in heterogeneous catalysis. For metal oxide catalysts, the investigation of the effect of exposing different crystal facets in the NH₃-SCR reaction, especially for Fe₂O₃ oxides, has achieved great success, which may be
- ¹⁵ extended to other metal catalyst systems for better understanding of the intrinsic origin of excellent SCR performance on certain materials. The improvement of hydrothermal stability is highly needed for metal oxide NH₃-SCR catalysts, and is a main factor restricting their practical use in the deNO_x process of diesel
- ²⁰ engines. Although the hydrothermal stability of Fe- and Cu-based zeolite catalysts is higher to a certain extent, due to the long-term operating conditions involving water vapor and timed thermal shock, the migration of isolated active sites still can occur, which requires researchers to develop novel zeolitic materials to meet
- ²⁵ the increasingly strict NO_x emission standards. The Cu-CHA catalysts such as Cu-SSZ-13, Cu-SAPO-34 and Cu-AEI catalyst such as Cu-SSZ-39 are good examples in this field, and we believe in the near future, more and more novel, efficient zeolitic materials will be developed not only by conventional ion-³⁰ exchange, chemical vapor deposition methods *etc.* but also by one-pot synthesis using cheaper templates.

The acidity of NH_3 -SCR catalysts is always given close attention by researchers, although many debates still remain. On metal oxide catalysts, both the Brønsted acid sites and Lewis acid

- ³⁵ sites are usually considered to be involved in the NH₃-SCR process, while on zeolite catalysts, only the Brønsted acid sites are proven to be useful for holding active metal sites and storing the reducing agent NH₃. The differences in understanding of the effects of acid sites on metal oxide catalysts and zeolite catalysts
- ⁴⁰ may be due to the distinct dispersion, microstructure and neighboring local environments of active sites in these two types of materials. For the metal oxide catalysts, with their relatively large amount of active phase but small amount of acid sites, the proper increase in acidity may be helpful for the deNO_x process;
- ⁴⁵ while for the zeolite catalysts, with relatively small quantities of isolated active sites but large amount of acid sites, maintaining the active sites in an isolated state is quite important. In further study, with more advanced methods including *ex situ*, *in situ*, and *operando* methods, we believe that a universally accepted ⁵⁰ structure-activity relationship for these vanadium-free catalysts
- for NH₃-SCR reaction can be established.

The HC-SCR of NO_x has attracted much attention as a possible alternative to the NH_3 /Urea-SCR. However, the activity and/or stability of catalysts developed for diesel-SCR are not sufficient

ss to satisfy the demanding conditions of the deNO_x application for diesel engines. On the other hand, the oxygenated hydrocarbons such as ethanol, acetaldehyde, propyl alcohols, and butyl alcohols exhibit excellent NO_x reduction activity on Ag/Al₂O₃, during which enolic species were formed and identified by *in situ* ⁶⁰ DRIFTS, VUV-PIMS measurements and DFT calculation. The enolic species originating from the partial oxidation of alcohols over Ag/Al₂O₃ prefer to adsorb on or close to silver sites, in intimate contact with the active phase. This adsorption behavior of the enolic species contributes to their high activity for the ⁶⁵ formation of -NCO species and the final product N₂ during the

NO_x reduction by oxygenated hydrocarbons over Ag/Al₂O₃. A general reaction pathway involving the formation of enolic species closely linked to active Ag sites was proposed to explain the NO_x reduction by different alcohols over Ag/Al₂O₃. The ⁷⁰ presence of at least one α -H and one C-C bond is indispensable for the employed alcohols to produce enolic species during their partial oxidation over Ag/Al₂O₃. This intrinsic property responsible for NO_x reduction by oxygenated hydrocarbons may provide a guideline for developing diesel-SCR of NO_x systems ⁷⁵ with high efficiency for diesel engines.

5. Acknowledgements

The authors give their sincere thanks for the support from the National Natural Science Foundation of China (51221892, 51108446, 21177142, 51278486) and the Ministry of Science and ⁸⁰ Technology, China (2013AA065301, 2010CB732304).

Notes and references

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

- [†] Authors made equal contributions. ⁸⁵ ^{*} Corresponding author. Fax: 86-10-6284-9123; Tel: 86-10-6284-9123;
- *E-mail: honghe@rcees.ac.cn*
- 1. H. Bosch and Janssen, F., Catal. Today, 1988, 2, 369.
- K. Skalska, J. S. Miller and S. Ledakowicz, *Sci. Total Environ.*, 2010, 408, 3976.
- 90 3. P. Granger and V. I. Parvulescu, Chem. Rev., 2011, 111, 3155.
 - 4. Z. Liu and S. Ihl Woo, Catal. Rev., 2006, 48, 43.
 - 5. V. I. Pârvulescu, P. Grange and B. Delmon, *Catal. Today*, 1998, **46**, 233.
- G. Busca, L. Lietti, G. Ramis and F. Berti, *Appl. Catal. B: Environ.*, 5 1998, 18, 1.
- 7. S. Roy, M. S. Hegde and G. Madras, *Appl. Energy*, 2009, **86**, 2283.
- 8. T. V. Johnson, Int. J. Engine Res., 2009, 10, 275.
- F. Liu, W. Shan, X. Shi, C. Zhang and H. He, *Chin. J. Catal.*, 2011, 32, 1113.
- 100 10. S. Brandenberger, O. Kröcher, A. Tissler and R. Althoff, *Catal. Rev.*, 2008, **50**, 492.
 - M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo and N. Mizuno, Shokubai (Catalyst), 1990, 1990, 430.
- 12. W. Held, A. König, T. Richter and L. Pupper, *SAE Paper*, 1990, 900496.
 - R. Burch, J. P. Breen and F. C. Meunier, *Appl. Catal. B: Environ.*, 2002, **39**, 283.
 - 14. A. Fritz and V. Pitchon, Appl. Catal. B: Environ., 1997, 13, 1.
- 15. M. A. Gómez-García, V. Pitchon and A. Kiennemann, *Environ. Int.*, 2005, **31**, 445.
 - 16. H. He and Y. Yu, Catal. Today, 2005, 100, 37.
 - 17. F. Klingstedt, K. Arve, K. Eränen and D. Y. Murzin, *Accounts Chem. Res.*, 2006, **39**, 273.
 - 18. P. G. Savva and C. N. Costa, Catal. Rev., 2011, 53, 91.
- 115 19. K.-i. Shimizu and A. Satsuma, Phys. Chem. Chem. Phys., 2006, 8, 2677.
 - 20. R. Burch and P. J. Millington, Catal. Today, 1995, 26, 185.
 - 21. J. Li, J. Hao, L. Fu, T. Zhu, Z. Liu and X. Cui, *Appl. Catal. A: Gen.*, 2004, **265**, 43.
- 120 22. K. A. Bethke and H. H. Kung, J. Catal., 1997, 172, 93.

- 23. S. Kameoka, Y. Ukisu and T. Miyadera, *Phys. Chem. Chem. Phys.*, 2000, **2**, 367.
- 24. J. H. Lee, S. J. Schmieg and S. H. Oh, Appl. Catal. A: Gen., 2008, 342, 78.
- 5 25. L. E. Lindfors, K. Eränen, F. Klingstedt and D. Y. Murzin, *Top. Catal.*, 2004, 28, 185.
- A. Martínez-Arias, M. Fernández-García, A. Iglesias-Juez, J. A. Anderson, J. C. Conesa and J. Soria, *Appl. Catal. B: Environ.*, 2000, 28, 29.
- 10 27. V. I. Pârvulescu, B. Cojocaru, V. Pârvulescu, R. Richards, Z. Li, C. Cadigan, P. Granger, P. Miquel and C. Hardacre, J. Catal., 2010, 272, 92.
- K.-i. Shimizu, A. Satsuma and T. Hattori, *Appl. Catal. B: Environ.*, 2000, 25, 239.
- 15 29. S. Sumiya, H. He, A. Abe, N. Takezawa and K. Yoshida, J. Chem. Soc., Faraday Trans., 1998, 94, 2217.
- Y. F. Tham, J. Y. Chen and R. W. Dibble, P. Combust. Inst., 2009, 32, 2827.
- Y. H. Yeom, M. Li, W. M. H. Sachtler and E. Weitz, J. Catal., 2006,
 238, 100.
- 32. D. Y. Yoon, J.-H. Park, H.-C. Kang, P. S. Kim, I.-S. Nam, G. K. Yeo, J. K. Kil and M.-S. Cha, *Appl. Catal. B: Environ.*, 2011, **101**, 275.
- K. Arve, H. Backman, F. Klingstedt, K. Eränen and D. Y. Murzin, Appl. Catal. B: Environ., 2007, 70, 65.
- 25 34. V. Houel, P. Millington, R. Rajaram and A. Tsolakis, Appl. Catal. B: Environ., 2007, 73, 203.
 - 35. M. K. Kim, P. S. Kim, J. H. Baik, I.-S. Nam, B. K. Cho and S. H. Oh, *Appl. Catal. B: Environ.*, 2011, **105**, 1.
- 36. T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda and M. Niwa, *Appl. Catal. B: Environ.*, 1998, **17**, 333.
- 37. C. Petitto, H. P. Mutin and G. Delahay, *Chem. Commun.*, 2011, **47**, 10728.
- J. Rodríguez-Fernández, A. Tsolakis, M. Ahmadinejad and S. Sitshebo, *Energ. Fuels*, 2009, 24, 992.
- 35 39. B. Sawatmongkhon, A. Tsolakis, S. Sitshebo, J. Rodríguez-Fernández, M. Ahmadinejad, J. Collier and R. R. Rajaram, *Appl. Catal. B: Environ.*, 2010, **97**, 373.
 - P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dědeček, K. Arve and B. Wichterlová, J. Catal., 2005, 232, 302.
- 40 41. C. L. DiMaggio, G. B. Fisher, K. M. Rahmoeller and M. Sellnau, *SAE paper*, 2009, 2009-01-0277.
 - 42. A. Kato, S. Matsuda, F. Nakajima, M. Imanari and Y. Watanabe, J. Phys. Chem., 1981, 85, 1710.
- 43. J. P. Chen, M. C. Hausladen and R. T. Yang, *J. Catal.*, 1995, **151**, 135.
- 44. P. Fabrizioli, T. Bürgi and A. Baiker, J. Catal., 2002, 206, 143.
- 45. H. Teng, L.-Y. Hsu and Y.-C. Lai, *Environ. Sci. Technol.*, 2001, **35**, 2369.
- 46. G. Marbán and A. B. Fuertes, Catal. Lett., 2002, 84, 13.
- 50 47. N. Apostolescu, B. Geiger, K. Hizbullah, M. T. Jan, S. Kureti, D. Reichert, F. Schott and W. Weisweiler, *Appl. Catal. B: Environ.*, 2006, 62, 104.
 - 48. F. Nakajima and I. Hamada, Catal. Today, 1996, 29, 109.
- 49. S. Roy, B. Viswanath, M. S. Hegde and G. Madras, *J. Phys. Chem. C*, 2008, **112**, 6002.
 - 50. L. Ma, J. Li, R. Ke and L. Fu, J. Phys. Chem. C, 2011, 115, 7603.
 - 51. F. Liu, H. He and C. Zhang, Chem. Commun., 2008, 2043.
 - 52. F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie and T. Hu, *Appl. Catal. B: Environ.*, 2010, **96**, 408.
- 60 53. F. Liu, K. Asakura, P. Xie, J. Wang and H. He, *Catal. Today*, 2013, 201, 131.
 - F. Liu, K. Asakura, H. He, Y. Liu, W. Shan, X. Shi and C. Zhang, *Catal. Today*, 2011, 164, 520.
- 55. F. Liu, H. He, C. Zhang, W. Shan and X. Shi, *Catal. Today*, 2011, **175**, 18.
- 56. F. Liu and H. He, J. Phys. Chem. C, 2010, 114, 16929.
- F. Liu, H. He, Y. Ding and C. Zhang, *Appl. Catal. B: Environ.*, 2009, 93, 194.
- 58. F. Liu, K. Asakura, H. He, W. Shan, X. Shi and C. Zhang, *Appl. Catal. B: Environ.*, 2011, **103**, 369.
- 59. F. Liu and H. He, Catal. Today, 2010, 153, 70.

- 60. S. Yang, J. Li, C. Wang, J. Chen, L. Ma, H. Chang, L. Chen, Y. peng and N. Yan, *Appl. Catal. B: Environ.*, 2012, **117–118**, 73.
- 61. L. Chen, J. Li and M. Ge, *Environ. Sci. Technol.*, 2010, **44**, 9590. 75 62. Z. Si, D. Weng, X. Wu, J. Li and G. Li, *J. Catal.*, 2010, **271**, 43.
- 63. X. Mou, Y. Li, B. Zhang, L. Yao, X. Wei, D. S. Su and W. Shen, *Eur. J. Inorg. Chem.*, 2012, 2012, 2684.
- 64. X.-Y. Yang, L. Sun, Z.-W. Huang, X.-M. Cheng, T.-W. Zhang, B. Li and X.-F. Tang, *Acta Phys. -Chim. Sin.*, 2012, 28, 184.
- 80 65. X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D. S. Su and W. Shen, *Angew. Chem. Int. Ed.*, 2012, **51**, 2989.
 - 66. L. Chen, J. Li and M. Ge, J. Phys. Chem. C, 2009, 113, 21177.
 - 67. R. Q. Long and R. T. Yang, J. Am. Chem. Soc., 1999, 121, 5595.
- 68. G. Carja, G. Delahay, C. Signorile and B. Coq, Chem. Commun., 2004, 1404.
- 69. Z. Wu, R. Jin, Y. Liu and H. Wang, Catal. Commun., 2008, 9, 2217.
- 70. Z. Wu, R. Jin, H. Wang and Y. Liu, Catal. Commun., 2009, 10, 935.
- 71. Y. Li, H. Cheng, D. Li, Y. Qin, Y. Xie and S. Wang, Chem. Commun., 2008, 1470.
- 90 72. W. Xu, Y. Yu, C. Zhang and H. He, *Catal. Commun.*, 2008, **9**, 1453.
- 73. X. Gao, Y. Jiang, Y. Zhong, Z. Luo and K. Cen, *J. Hazard. Mater.*, 2010, **174**, 734.
- 74. X. Gao, Y. Jiang, Y. Fu, Y. Zhong, Z. Luo and K. Cen, *Catal. Commun.*, 2010, **11**, 465.
- 95 75. W. Xu, H. He and Y. Yu, J. Phys. Chem. C, 2009, 113, 4426.
- W. Shan, F. Liu, H. He, X. Shi and C. Zhang, *ChemCatChem*, 2011, 3, 1286.
- W. Shan, F. Liu, H. He, X. Shi and C. Zhang, *Catal. Today*, 2012, 184, 160.
- 100 78. W. Shan, F. Liu, H. He, X. Shi and C. Zhang, Appl. Catal. B: Environ., 2012, 115–116, 100.
 - 79. L. Chen, J. Li, M. Ge and R. Zhu, Catal. Today, 2010, 153, 77.
 - W. Shan, F. Liu, H. He, X. Shi and C. Zhang, *Chem. Commun.*, 2011, 47, 8046.
- 105 81. L. Chen, J. Li, W. Ablikim, J. Wang, H. Chang, L. Ma, J. Xu, M. Ge and H. Arandiyan, *Catal. Lett.*, 2011, **141**, 1859.
 - Y. Peng, J. Li, L. Chen, J. Chen, J. Han, H. Zhang and W. Han, Environ. Sci. Technol., 2012, 46, 2864.
- 83. Y. Peng, Z. Liu, X. Niu, L. Zhou, C. Fu, H. Zhang, J. Li and W. Han, 110 *Catal. Commun.*, 2012, **19**, 127.
 - L. Chen, J. Li, M. Ge, L. Ma and H. Chang, *Chin. J. Catal.*, 2011, **32**, 836.
 - 85. Y. Shen, S. Zhu, T. Qiu and S. Shen, Catal. Commun., 2009, 11, 20.
- 86. L. Zhu, B. Huang, W. Wang, Z. Wei and D. Ye, *Catal. Commun.*, 115 2011, **12**, 394.
 - 87. X. Chen, S. Gao, H. Wang, Y. Liu and Z. Wu, *Catal. Commun.*, 2011, 14, 1.
 - 88. F. Li, Y. Zhang, D. Xiao, D. Wang, X. Pan and X. Yang, *ChemCatChem*, 2010, 2, 1416.
- 120 89. H. Wang, X. Chen, X. Weng, Y. Liu, S. Gao and Z. Wu, Catal. Commun., 2011, 12, 1042.
 - X. Chen, H. Wang, Z. Wu, Y. Liu and X. Weng, J. Phys. Chem. C, 2011, 115, 17479.
 - 91. Z. Ma, D. Weng, X. Wu and Z. Si, J. Environ. Sci., 2012, 24, 1305.
- 125 92. T. Gu, Y. Liu, X. Weng, H. Wang and Z. Wu, Catal. Commun., 2010,
 - 310.
 Z. Si, D. Weng, X. Wu, J. Yang and B. Wang, *Catal. Commun.*, 2010, 11, 1045.
- 94. Z. Si, D. Weng, X. Wu, R. Ran and Z. Ma, *Catal. Commun.*, 2012, **17**, 130 146.
 - 95. A. Z. Ma and W. Grunert, Chem. Commun., 1999, 71.

140

- 96. R. Q. Long and R. T. Yang, Catal. Lett., 2001, 74, 201.
- M. Schwidder, S. Heikens, A. De Toni, S. Geisler, M. Berndt, A. Brückner and W. Grünert, J. Catal., 2008, 259, 96.
- 135 98. M. Iwasaki, K. Yamazaki, K. Banno and H. Shinjoh, J. Catal., 2008, 260, 205.
 - S. Brandenberger, O. Kröcher, A. Tissler and R. Althoff, *Appl. Catal.* B: Environ., 2010, 95, 348.
 - 100.M. Høj, M. J. Beier, J.-D. Grunwaldt and S. Dahl, *Appl. Catal. B: Environ.*, 2009, **93**, 166.
 - 101.M. Schwidder, M. S. Kumar, A. Bruckner and W. Grunert, *Chem. Commun.*, 2005, 805.

ChemComm

110

- 102.M. Devadas, O. Krocher, M. Elsener, A. Wokaun, G. Mitrikas, N. Soger, M. Pfeifer, Y. Demel and L. Mussmann, *Catal. Today*, 2007, 119, 137.
- 103.S. Brandenberger, O. Kröcher, A. Tissler and R. Althoff, *Ind. Eng. Chem. Res.*, 2011, **50**, 4308.
- 104.M. Iwasaki, K. Yamazaki and H. Shinjoh, Appl. Catal. B: Environ., 2011, 102, 302.
- 105.G. Qi, Y. Wang and R. Yang, Catal. Lett., 2008, 121, 111.
- 106.R. Q. Long and R. T. Yang, J. Catal., 1999, 188, 332.
- 10 107.R. Q. Long and R. T. Yang, J. Catal., 2002, 207, 224.
- 108.M. Schwidder, M. Santhosh Kumar, U. Bentrup, J. Pérez-Ramírez, A. Brückner and W. Grünert, *Micropor. Mesopor. Mater.*, 2008, **111**, 124.
- 109.M. Li, Y. Yeom, E. Weitz and W. Sachtler, *Catal. Lett.*, 2006, **112**, 15 129.
- 110.A. Savara, M.-J. Li, W. M. H. Sachtler and E. Weitz, *Appl. Catal. B: Environ.*, 2008, **81**, 251.
- 111.S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler and R. Althoff, J. Catal., 2009, 268, 297.
- 20 112.D. Klukowski, P. Balle, B. Geiger, S. Wagloehner, S. Kureti, B. Kimmerle, A. Baiker and J. D. Grunwaldt, *Appl. Catal. B: Environ.*, 2009, **93**, 185.
 - 113.C. He, Y. Wang, Y. Cheng, C. K. Lambert and R. T. Yang, Appl. Catal. A: Gen., 2009, 368, 121.
- 25 114.S. Brandenberger, O. Kröcher, M. Casapu, A. Tissler and R. Althoff, *Appl. Catal. B: Environ.*, 2011, **101**, 649.
 - 115.X. Shi, F. Liu, W. Shan and H. He, Chin. J. Catal., 2012, 33, 454.
 - 116.L. Ma, J. Li, H. Arandiyan, W. Shi, C. Liu and L. Fu, *Catal. Today*, 2012, **184**, 145.
- 30 117.M. Iwasaki and H. Shinjoh, Chem. Commun., 2011, 47, 3966.
- 118.I. Heo, Y. Lee, I.-S. Nam, J. W. Choung, J.-H. Lee and H.-J. Kim, *Micropor. Mesopor. Mater.*, 2011, **141**, 8.
- 119.J. Li, R. Zhu, Y. Cheng, C. K. Lambert and R. T. Yang, *Environ. Sci. Technol.*, 2010, 44, 1799.
- 35 120.L. Ma, J. Li, Y. Cheng, C. K. Lambert and L. Fu, *Environ. Sci. Technol.*, 2012, 46, 1747.
 - 121.J. Li, H. Chang, L. Ma, J. Hao and R. T. Yang, *Catal. Today*, 2011, **175**, 147.
- 122.B. Moden, J. Donohue, W. Cormier and H.-X. Li, *Top. Catal.*, 2010, 53, 1367.
- 123.G. Qi and R. T. Yang, Catal. Lett., 2005, 100, 243.
- 124.A. Grossale, I. Nova, E. Tronconi, D. Chatterjee and M. Weibel, J. Catal., 2008, 256, 312.
- 125.M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, N. Söger, M. 5 Pfeifer, Y. Demel and L. Mussmann, *Appl. Catal. B: Environ.*, 2006,
- 67, 187. 126.P. Forzatti, I. Nova and E. Tronconi, Angew. Chem. Int. Ed., 2009,
- 120.F. FORZULI, I. NOVA and E. IFONCONI, Angew. Chem. Int. Ed., 2009, 121, 8516.
- 127.P. Kern, M. Klimczak, T. Heinzelmann, M. Lucas and P. Claus, *Appl. Catal. B: Environ.*, 2010, **95**, 48.
- 128.J. Baik, S. Yim, I.-S. Nam, Y. Mok, J.-H. Lee, B. Cho and S. Oh, *Top. Catal.*, 2004, **30-31**, 37.
- 129.H. Sjövall, L. Olsson, E. Fridell and R. J. Blint, *Appl. Catal. B: Environ.*, 2006, **64**, 180.
- 55 130.M. Berggrund, H. Ingelsten, M. Skoglundh and A. Palmqvist, *Catal. Lett.*, 2009, **130**, 79.
 - 131.J.-H. Park, H. J. Park, J. H. Baik, I.-S. Nam, C.-H. Shin, J.-H. Lee, B. K. Cho and S. H. Oh, *J. Catal.*, 2006, **240**, 47.
 - 132.T. Komatsu, M. Nunokawa, I. S. Moon, T. Takahara, S. Namba and T. Yashima, *J. Catal.*, 1994, **148**, 427.
- 133.G. Delahay, S. Kieger, N. Tanchoux, P. Trens and B. Coq, *Appl. Catal. B: Environ.*, 2004, **52**, 251.
- 134.N. Wilken, K. Wijayanti, K. Kamasamudram, N. W. Currier, R. Vedaiyan, A. Yezerets and L. Olsson, *Appl. Catal. B: Environ.*, 2012, 111–112, 58.
- 135.C. H. F. Peden, J. H. Kwak, S. D. Burton, R. G. Tonkyn, D. H. Kim, J.-H. Lee, H.-W. Jen, G. Cavataio, Y. Cheng and C. K. Lambert, *Catal. Today*, 2012, **184**, 245.
- 136.B. Moden, J. M. Donohue, W. E. Cormier and H. X. Li, in *Studies in Surface Science and Catalysis*, eds. P. M. Antoine Gédéon and B. Florence, Elsevier, 2008, **74**, 1219.

- 137.T. Nanba, A. Sultana, S. Masukawa, M. Haneda, J. Uchisawa, A. Obuchi and H. Hamada, *Top. Catal.*, 2009, **52**, 1766.
- 138.A. Sultana, T. Nanba, M. Haneda and H. Hamada, *Catal. Commun.*, 2009, **10**, 1859.
- 139.A. Sultana, T. Nanba, M. Sasaki, M. Haneda, K. Suzuki and H. Hamada, *Catal. Today*, 2011, **164**, 495.
- 140.J. H. Kwak, D. Tran, S. D. Burton, J. Szanyi, J. H. Lee and C. H. F. Peden, J. Catal., 2012, **287**, 203.
- ⁸⁰ 141.J. H. Kwak, R. G. Tonkyn, D. H. Kim, J. Szanyi and C. H. F. Peden, *J. Catal.*, 2010, **275**, 187.
 - 142.D. W. Fickel, E. D'Addio, J. A. Lauterbach and R. F. Lobo, *Appl. Catal. B: Environ.*, 2011, **102**, 441.
 - 143.S. J. Schmieg, S. H. Oh, C. H. Kim, D. B. Brown, J. H. Lee, C. H. F. Peden and D. H. Kim, *Catal. Today*, 2012, **184**, 252.
 - 144.D. W. Fickel and R. F. Lobo, J. Phys. Chem. C, 2010, 114, 1633.
 - 145.S. T. Korhonen, D. W. Fickel, R. F. Lobo, B. M. Weckhuysen and A. M. Beale, *Chem. Commun.*, 2011, **47**, 800.
 - 146.U. Deka, A. Juhin, E. A. Eilertsen, H. Emerich, M. A. Green, S. T. Korhonen, B. M. Weckhuysen and A. M. Beale, *J. Phys. Chem. C*,
 - 2012, **116**, 4809. 147.V. F. Kispersky, A. J. Kropf, F. H. Ribeiro and J. T. Miller, *Phys.*
- Chem. Chem. Phys., 2012, 14, 2229. 148.J. S. McEwen, T. Anggara, W. F. Schneider, V. F. Kispersky, J. T.
- Miller, W. N. Delgass and F. H. Ribeiro, *Catal. Today*, 2012, **184**, 129.
- 149.J. Hun Kwak, H. Zhu, J. H. Lee, C. H. F. Peden and J. Szanyi, *Chem. Commun.*, 2012, 48, 4758.
- 150.J. Kwak, D. Tran, J. Szanyi, C. Peden and J. Lee, *Catal. Lett.*, 2012, 100 **142**, 295.
 - 151.M. Moliner, C. Franch, E. Palomares, M. Grill and A. Corma, *Chem. Commun.*, 2012, **48**, 8264.
 - 152.S. I. Zones, J. Chem. Soc., Faraday Trans., 1991, 87, 3709.
 - 153.L. Ren, Y. Zhang, S. Zeng, L. Zhu, Q. Sun, H. Zhang, C. Yang, X. Meng, X. Yang and F.-S. Xiao, *Chin. J. Catal.*, 2012, **33**, 92.
 - 154.L. Ren, L. Zhu, C. Yang, Y. Chen, Q. Sun, H. Zhang, C. Li, F. Nawaz, X. Meng and F.-S. Xiao, *Chem. Commun.*, 2011, **47**, 9789.
 - 155.A. Lorena Picone, S. J. Warrender, A. M. Z. Slawin, D. M. Dawson, S. E. Ashbrook, P. A. Wright, S. P. Thompson, L. Gaberova, P. L. Llewellyn, B. Moulin, A. Vimont, M. Daturi, M. B. Park, S. K. Sung,
 - I.-S. Nam and S. B. Hong, *Microport. Mesoport. Mater.*, 2011, **146**, 36.
 - 156.U. Deka, I. Lezcano-Gonzalez, S. J. Warrender, A. Lorena Picone, P. A. Wright, B. M. Weckhuysen and A. M. Beale, *Micropor. Mesopor. Mater.*, 2013, 166, 144.
- 115 157.J. Lee, S. Song and K. M. Chun, Ind. Eng. Chem. Res., 2010, 49, 3553.
 - 158.T. Miyadera, Appl. Catal. B: Environ., 1993, 2, 199.
- 159.K.-I. Shimizu, M. Tsuzuki and A. Satsuma, *Appl. Catal. B: Environ.*, 2007, **71**, 80.
 120 160.H. He, X. Zhang, Q. Wu, C. Zhang and Y. Yu, *Catal. Surv. Asia*,
 - 2008, **12**, 38.
 - 161.Q. Wu, H. He and Y. Yu, Appl. Catal. B: Environ., 2005, 61, 107.
 - 162.Y. Yu, H. He, Q. Feng, H. Gao and X. Yang, *Appl. Catal. B: Environ.*, 2004, **49**, 159.
- 125 163.Y. Yu, X. Song and H. He, J. Catal., 2010, 271, 343.
 - 164. Y. Li, X. Zhang, H. He, Y. Yu, T. Yuan, Z. Tian, J. Wang and Y. Li, *Appl. Catal. B: Environ.*, 2009, **89**, 659.
 - 165.Y. Yan, Y. Yu, H. He and J. Zhao, J. Catal., 2012, 293, 13.
- 166.H. Gao, T. Yan, Y. Yu and H. He, J. Phys. Chem. C, 2008, 112, 6933.
- ¹³⁰ 167.T. Miyadera, *Appl. Catal. B: Environ.*, 1997, 13, 157.
 168.W. L. Johnson II, G. B. Fisherb and T. J. Toops, *Catal. Today* 2012, 184, 166.
 - 169.Y. H. Yeom, M. Li, W. M. H. Sachtler and E. Weitz, J. Catal., 2007, 246, 413.
- 135 170.T. Chafik, S. Kameoka, Y. Ukisu and T. Miyadera, J. Mol. Catal. A: Chem., 1998, 136, 203.
 - 171.A. Martínez-Arias, D. Gamarra, M. Fernández-García, A. Hornés, P. Bera, Z. Koppány and Z. Schay, *Catal. Today*, 2009, **143**, 211.
 - 172. Y. Yu, H. He and Q. Feng, J. Phys. Chem. B, 2003, 107, 13090.
- 140 173.Y. B. Yu, H. W. Gao and H. He, Catal. Today, 2004, 93-95, 805.

- 174.P. J. Linstrom and W. G. Mallard, NIST Chemistry Webbook, 2003, NIST Standard Reference Database Number 69, http://webbook.nist.gov.
- 175.M. El-Maazawi, A. N. Finken, A. B. Nair and V. H. Grassian, J. 5 Catal., 2000, **191**, 138.
- 176.A. Panov and J. J. Fripiat, Langmuir, 1998, 14, 3788.
- 177.M. I. Zaki, M. A. Hasan, F. A. Al-Sagheer and L. Pasupulety, Langmuir, 1999, 16, 430.
- 178.S. Chansai, R. Burch, C. Hardacre, J. Breen and F. Meunier, *J. Catal.*, 2010, **276**, 49.
- 179.H. Gao, H. He, Y. Yu and Q. Feng, J. Phys. Chem. B, 2005, 109, 13291.
- 180.S. T. Korhonen, A. M. Beale, M. A. Newton and B. M. Weckhuysen, *J. Phys. Chem. C*, 2010, **115**, 885.
- 15 181.F. C. Meunier, J. P. Breen, V. Zuzaniuk, M. Olsson and J. R. H. Ross, *J. Catal.*, 1999, **187**, 493.
 - 182.X. She and M. Flytzani-Stephanopoulos, J. Catal., 2006, 237, 79.
 - 183.K.-I. Shimizu, M. Tsuzuki, K. Kato, S. Yokota, K. Okumura and A. Satsuma, J. Phys. Chem. C, 2006, 111, 950.
- 20 184.A. Sultana, M. Haneda, T. Fujitani and H. Hamada, *Catal. Lett.*, 2007, 114, 96.
 - 185.H. He, Y. Li, X. Zhang, Y. Yu and C. Zhang, *Appl. Catal. A: Gen.*, 2010, **375**, 258.
- 186.Q. Wu, Y. Yu and H. He, Chin. J. Catal., 2006, 27, 993.
- 25 187.Q. Wu, H. Gao and H. He, Chin. J. Catal., 2006, 27, 403.
 - 188.A. Takahashi, M. Haneda, T. Fujitani and H. Hamada, J. Mol. Catal. A: Chem., 2007, **261**, 6.
 - 189.Q. Yu, X. Wang, N. Xing, H. Yang and S. Zhang, J. Catal., 2007, 245, 124.
- ³⁰ 190.C. A. Taatjes, N. Hansen, A. McIlroy, J. A. Miller, J. P. Senosiain, S. J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T. A. Cool, J. Wang, P. R. Westmoreland, M. E. Law, T. Kasper and K. Kohse-Höinghaus, *Science*, 2005, **308**, 1887.
 - 191.N. Bion, J. Saussey, M. Haneda and M. Daturi, J. Catal., 2003, 217, 47.
- 47. 192.N. Bion, J. Saussey, C. Hedouin, T. Seguelong and M. Daturi, *Phys. Chem. Chem. Phys.*, 2001, **3**, 4811.
 - 193.R. M. Ferullo, M. M. Branda, G. R. Garda and N. J. Castellani, J. Mol. Catal. A: Chem., 2001, 167, 115.
- 40 194.H. Gao and H. He, Spectrochim. Acta A, 2005, 61, 1233.
 - 195.S. Tamm, H. H. Ingelsten and A. E. C. Palmqvist, J. Catal., 2008, 255, 304.
 - 196.F. Thibault-Starzyk, E. Seguin, S. Thomas, M. Daturi, H. Arnolds and D. A. King, *Science*, 2009, **324**, 1048.
- ⁴⁵ 197.Y. Ukisu, S. Sato, A. Abe and K. Yoshida, *Appl. Catal. B: Environ.*, 1993, 2, 147.
 - 198.Y. Ukisu, T. Miyadera, A. Abe and K. Yoshida, *Catal. Lett.*, 1996, **39**, 265.
- 199.S. Kameoka, T. Chafik, Y. Ukisu and T. Miyadera, *Catal. Lett.*, 1998, 50 **55**, 211.
- 200.S. Chansai, R. Burch, C. Hardacre, J. Breen and F. Meunier, *J. Catal.*, 2011, **281**, 98.
- 201.V. Zuzaniuk, F. C. Meunier and J. R. H. Ross, *J. Catal.*, 2001, **202**, 340.
- 55 202.R. Rathore and J. K. Kochi, J. Org. Chem., 1996, 61, 627.
- 203.M. B. Smith and J. March, March's Advanced Organic Chemistry Reactions, Mechanisms, and Structure, Sixth Edition, 2007, Wiley-Interscience A John Wiley & Sons, Inc., 784.
- 204.D. L. H. Williams, Advances in Physical Organic Chemistry 19
- 60 (Edited by V. Gold and D. Bethell), 1983, Academic Press Inc., New York, 381.
- 205.A. Obuchi, C. Wögerbauer, R. Köppel and A. Baiker, *Appl. Catal. B: Environ.*, 1998, **19**, 9.
- 206.H. He, Y. Yu, Y. Li, Q. Wu, X. Zhang, C. Zhang, X. Shi and X. Song, 65 *Chin. J. Catal.*, 2010, **31**, 491.
- 207.F. C. Meunier and J. R. H. Ross, *Appl. Catal. B: Environ.*, 2000, **24**, 23.
- 208.Q. Wu, H. Gao and H. He, J. Phys. Chem. B, 2006, 110, 8320.
- 209.R. Burch, J. Breen, C. Hill, B. Krutzsch, B. Konrad, E. Jobson, L. 70 Cider, K. Eränen, F. Klingstedt and L. E. Lindfors, *Top. Catal.*, 2004,
- **30-31**, 19.

- 210.M. Richter, U. Bentrup, R. Eckelt, M. Schneider, M. M. Pohl and R. Fricke, *Appl. Catal. B: Environ.*, 2004, **51**, 261.
- 211.S. Satokawa, *Chem Lett.*, 2000, **29**, 294.
- 75 212.J. P. Breen, R. Burch, C. Hardacre, C. J. Hill and C. Rioche, J. Catal., 2007, 246, 1.
 - 213.X. Zhang, H. He and Z. Ma, Catal. Commun., 2007, 8, 187
 - 214.X. Zhang, Y. Yu and H. He, *Appl. Catal. B: Environ.*, 2007, **76**, 241. 215.K. Eränen, F. Klingstedt, K. Arve, L.-E. Lindfors and D. Y. Murzin,
 - J. Catal., 2004, 227, 328. 216.K. Eränen, L.-E. Lindfors, F. Klingstedt and D. Y. Murzin, J. Catal.,
 - 210. K. Eranen, L.-E. Lindiors, F. Kingsteat and D. Y. Murzin, J. Catal., 2003, **219**, 25.
 - 217.X. Shi, Y. Yu, H. He, S. Shuai, H. Dong and R. Li, J. Environ. Sci., 2008, 20, 177.
- 85 218.X. P. Song, C. B. Zhang and H. He, Chin. J. Catal., 2008, 29, 524.
- 219.Y. Li and F. Qi, Accounts Chem. Res., 2009, 43, 68.