This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A simple and facile strategy was developed for regulating the luminescence of Tb$^{3+}$ sensitized by DNA, in which Ag$^{+}$ and cysteine (Cys) act as activators. The Ag$^{+}$/Cys-mediated reversible luminescence changes in the Tb$^{3+}$-DNA sensing system enabled the design of a DNA INHIBIT logic gate and a H$_2$O$_2$ sensor in a time-resolved luminescence format.

Trivalent lanthanide ions (Ln$^{3+}$) have remarkable luminescent properties due to their unique 4f orbitals. Ln$^{3+}$ are very poor at absorbing light directly because their F-F transitions are Laporte-forbidden. Typically, direct excitation of Ln$^{3+}$ is difficult to generate efficient luminescence, which can be settled by Ln$^{3+}$ chelated with certain adjacent strongly absorbing ligands in the ultraviolet (UV) region for sensitization of Ln$^{3+}$ luminescence.1 Upon UV light irradiation, the central Ln$^{3+}$ displays the characteristic luminescence resulting from the efficient intramolecular energy transfer through the excited triplet state of the antenna ligand to the emitting electronic level of Ln$^{3+}$ (the so-called “antenna effect”).2 Among them, ligand-sensitized, luminescent terbium ion (Tb$^{3+}$) complexes are highly favourable because their unique photophysical capabilities (large Stokes’ shifts, sharply spiked emission bands, and long lifetimes) make them well suited as luminescent probes in time-resolved luminescence bioassays.3 Time-resolved luminescence bioassays could efficiently avoid background interference. There is increasing interest in time-resolved luminescence probes.4

Previous studies reveal that single-stranded DNA (ssDNA) can greatly enhance the Tb$^{3+}$ emission, but double-stranded DNA (dsDNA) cannot.5 On the basis of these facts, in our recent work, an optimum ssDNA antenna ligand ([G$_3$T$_3$]) was identified for effective sensitizing of the luminescence of Tb$^{3+}$, and [G$_3$T$_3$] improved the luminescence of Tb$^{3+}$ by 3 orders of magnitude due to energy transfer from nucleic acids to Tb$^{3+}$ (i.e., antenna effect).6 Such Tb$^{3+}$/DNA complexes have been utilized for the development of luminescence probes utilizing both the physicochemical properties of Tb$^{3+}$ and the structure-switching of DNA. Herein, we describe our ongoing efforts to develop a simple and facile strategy for regulating the luminescence of Tb$^{3+}$ sensitized by DNA, in which Ag$^{+}$ and cysteine (Cys) act as activators. Moreover, the proposed Ag$^{+}$/Cys-mediated reversible luminescence changes in the Tb$^{3+}$-DNA sensing system enabled the design of a DNA INHIBIT logic gate (Scheme 1A) and a H$_2$O$_2$ sensor (Scheme 1B).

Scheme 1A shows a schematic representation of this novel Ag$^{+}$/Cys-mediated reversible luminescence changes in the Tb$^{3+}$-DNA sensing system. Cytosine (C) has been demonstrated to be one of the most specific ligands for Ag$^{+}$, forming a C-Ag$^{+}$-C base pair complex with high selectivity and strong affinity.7 It was found that Cys captures Ag$^{+}$ through the interaction between thiol groups and Ag$^{+}$, which can disrupt the base pair complex of C-Ag$^{+}$-C.7a,b In this respect, facile and label-free luminescence assays for Ag$^{+}$ and Cys can be constructed based on a competition strategy, in which Tb$^{3+}$/[G$_3$T$_3$] complexes act as a signal indicator and [G$_3$T$_3$]c[G$_3$T$_3$] duplex as a target-responsive element (c[G$_3$T$_3$]: C-rich oligonucleotide complementary to [G$_3$T$_3$]$_3$ (Scheme 1A). In the presence of Ag$^{+}$, the as-prepared [G$_3$T$_3$]c[G$_3$T$_3$] duplex can be opened by the formation of C-Ag$^{+}$-C base pair complex in c[G$_3$T$_3$], and the released [G$_3$T$_3$]$_3$ acts as an antenna ligand for sensitizing the luminescence of Tb$^{3+}$ and leading to the Tb$^{3+}$.

Min Zhang,a Zhi-bei Qu,a Hai-Yan Ma,a Tianshu Zhou,a Guoyue Shi*a

Scheme 1. Schematic representation of the DNA-based sensitization of Tb$^{3+}$ luminescence regulated by Ag$^{+}$ and cysteine: use as (A) an INHIBIT logic gate and (B) a H$_2$O$_2$ sensor. The photos were taken under a 254 nm UV lamp excitation using a digital camera.
luminescence “On” state. However, by continuing to add Cys, the C−Ag−C structure is disrupted by the interaction between thiol groups and Ag⁺ and then c(G₄T₅) hybridize with [G₅T₃] anew, switching the system to the Tb³⁺ luminescence “Off” state again.

Figure 1A shows that the presence of increasing concentrations of Ag⁺ to the Tb³⁺/[G₅T₃]₅/c[G₅T₅]₅ probe leads to the gradual luminescent enhancement of Tb³⁺, which owes to the formation of a Ag⁺-mediated C−Ag⁻−C complex resulting in the split of [G₅T₅]₅/c[G₅T₅]₅ duplex that facilitates the released [G₅T₅]₅ sensitizes the luminescence of Tb³⁺. Also, the increasing luminescence of Tb³⁺ was sensitive to Ag⁺ in a concentration-dependent manner (Figure 1A inset). To validate the selectivity of Ag⁺-stimulated luminescent enhancement of the Tb³⁺/[G₅T₅]₅/c[G₅T₅]₅ probe, competing metal ions including Pb²⁺, Hg²⁺, K⁺, Ca²⁺, Na⁺, Cu²⁺, Al³⁺, Ni²⁺, Mg²⁺, Ba²⁺, Mn²⁺, Zn²⁺, Cd²⁺, Fe³⁺ and Co³⁺ were tested under the same conditions as for Ag⁺. Figure 1B clearly shows that significant luminescent enhancement was only observed in the case of Ag⁺, while there was a nearly negligible luminescence change when adding the competing metal ions.

In the absence of Ag⁺, the Tb³⁺/[G₅T₅]₅/c[G₅T₅]₅ probe is in the close state with Tb³⁺ luminescence “Off”. However, upon challenged with Ag⁺, c(G₄T₅) undergoes a conformational alteration due to the formation of C−Ag⁻−C complex and [G₅T₅]₅ is liberated from the [G₅T₅]₅/c[G₅T₅]₅ duplex, leading to Tb³⁺ luminescence “On”. Further addition of Cys to the above system, Ag⁺ is grabbed from the C−Ag⁻−C complex and then the c(G₄T₅) re-hybridize with [G₅T₃]₅ to turn off the Tb³⁺ luminescence again. Thus, we further examined the feasibility of the quantitative determine of Cys based on the above Tb³⁺/[G₅T₅]₅/c[G₅T₅]₅ probe containing Ag⁺. A solution of Tb³⁺/[G₅T₅]₅/c[G₅T₅]₅ probe containing Ag⁺ (Tb³⁺+[G₅T₅]₅/c[G₅T₅]₅+Ag⁺ sensing system) was prepared (see Supplementary Information). Upon addition of Cys with increasing concentrations, a gradual luminescence decrease in the Tb³⁺/[G₅T₅]₅/c[G₅T₅]₅+Ag⁺ sensing system was observed (Figure 1C). Figure 1C, inset, depicts a dependence of luminescent decrease on Cys concentration. The specific response of the probe to Cys was investigated by examining the luminescence signal of the Tb³⁺+[G₅T₅]₅/c[G₅T₅]₅+Ag⁺ sensing system in the presence of various amino acids under the same conditions. It was found that none of these amino acids, except for Cys, could result in an obvious luminescence decrease, indicating the Tb³⁺+[G₅T₅]₅/c[G₅T₅]₅+Ag⁺ sensing system is suitable for specific Cys detection against other amino acids (Figure 1D).

Molecular logic systems, performing mechanical functions using functional biomolecules, have attracted significant recent interest. In recent years, a series of DNA logic gates have been reported, which are recognized as a fascinating generation of molecular logic systems. In this work, the Ag⁺/Cys-mediated reversible luminescence changes in the Tb³⁺-[G₅T₅]₅/c[G₅T₅]₅ system provides a potential for the design of a DNA INHIBIT logic system based on Boolean logic (Figure 2). For input, the presence of Ag⁺ or Cys was defined as 1 and their absence as 0. Luminescence intensity at a wavelength of 546 nm (LI₅₄₆) was defined as the output (1 or 0) for the logic gate. With no input, or with Cys input alone, the output was 0 (Figure 2A, green line and violet line). With Ag⁺ input alone, the Ag⁺-mediated the split of [G₅T₅]₅/c[G₅T₅]₅ duplex that facilitates the released [G₅T₅]₅ sensitizes the luminescence of Tb³⁺ and the LI₅₄₆ of the Tb³⁺-[G₅T₅]₅/c[G₅T₅]₅ sensing system sharply increased, giving an output signal of 1 (Figure 2A, red line). When the system was subjected to the two inputs together, the luminescence output was 0 (Figure 2A, blue line). The four possible input combinations were (0, 0), (1, 0), (0, 1) and (1, 1) listed in the truth table (Figure 2B). Moreover, the reversibility of this logic gate operation was also studied with alternating addition of Ag⁺ and Cys (Figure 2C). The luminescence intensity change of the Tb³⁺-[G₅T₅]₅/c[G₅T₅]₅ system gradually decreased after cycle treatment with Ag⁺ and Cys, which can be possibly attributed to the dilution effect, because of the increase in the solution volume with the alternating addition of Ag⁺ and Cys.
Figure 2. An INHIBIT logic gate system consisting of the Tb$^{3+}$-[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$ system using both Ag$^+$ and Cys as inputs. (A) Time-resolved luminescence spectra of the Tb$^{3+}$-[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$ system in the presence of different inputs: ① Ag$^+$ (0 µM) + Cys (0 µM) (green line), ② Ag$^+$ (40 µM) + Cys (0 µM) (red line), ③ Ag$^+$ (0 µM) + Cys (20 µM) (violet line) and ④ Ag$^+$ (40 µM) + Cys (20 µM) (blue line); inset: visual representation of the INHIBIT logic gate based on our proposed method, and the picture was taken under a 254 nm UV lamp excitation using a digital camera. (B) Truth table for the INHIBIT logic gate. (C) Reversible switching of the described logic system between the on and off states through the addition of Ag$^+$ and Cys.

Hydrogen peroxide (H$_2$O$_2$) is the simplest peroxide, which has been broadly used in a wealth of applications, e.g. in water treatment, industrial applications, therapeutic use, etc. It is reported that high concentrations of H$_2$O$_2$ can induce various cellular damage. Therefore, the sensitive and specific recognition of H$_2$O$_2$ to detect and control its concentration is important before and after its exposure to the environment. The oxidation of Cys to cystine by H$_2$O$_2$ was previously reported.\(^{10}\) Enlightened by this fact, it can be envisioned that Tb$^{3+}$/DNA complex-based luminescent probe can be devised for the detection of H$_2$O$_2$ utilizing both Cys-mediated luminescence changes in the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system and the oxidation of Cys to cystine by H$_2$O$_2$. Scheme 1B illustrates a schematic representation of this novel Tb$^{3+}$/DNA complex-based luminescent probe for H$_2$O$_2$ sensing. The oxidation of Cys by H$_2$O$_2$ yields cystine, and the resulting disulfide reverses the Cys-mediated luminescence decrease in the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system, which can be applied to the development of a “turn on” luminescent assay for H$_2$O$_2$. Figure 3 shows the luminescence responses of the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system to 40 µM Cys treated with various H$_2$O$_2$ concentrations from 0 to 400 µM. The results reveal that after adding the equal amount of Cys treated with increasing concentrations of H$_2$O$_2$, a gradual luminescence increase in the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system was observed. From Figure 3, inset, it can be seen that the luminescence increase in the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system is sensitive to the oxidation of Cys by H$_2$O$_2$ with increasing concentrations, which could ultimately obtain a novel detection system for H$_2$O$_2$.

Figure 3. The determination of H$_2$O$_2$ via reversing the Cys-mediated luminescence changes in the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system (40 µM Cys used). Luminescence responses of the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system to 40 µM Cys treated with various H$_2$O$_2$ concentrations of 0, 0.1, 1, 2, 5, 10, 12.5, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200, 300 and 400 µM; inset: plot of luminescence responses of the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system to 40 µM Cys treated with the various concentrations of H$_2$O$_2$ indicated.

Conclusions

In summary, we have successfully demonstrated a simple and facile strategy to regulate the luminescence of Tb$^{3+}$ sensitized by DNA ([G$_5$T$_5$]$_x$), in which Ag$^+$ and cysteine (Cys) act as activators. Moreover, the proposed Ag$^+/$/Cys-mediated reversible luminescence changes in the Tb$^{3+}$/[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$ probe enabled the design of a DNA INHIBIT logic gate. This is a new concept for performance of logic systems proved with a Tb$^{3+}$-DNA-based Ag$^+/$/Cys-driven luminescent DNA INHIBIT logic gate. Moreover, a novel time-resolved luminescence detection system has been devised for the detection of H$_2$O$_2$ utilizing both Cys-mediated luminescence changes in the Tb$^{3+}$+[G$_5$T$_5$$]_x/c[G$_5$T$_5$]$_x$+Ag$^+$ sensing system and the oxidation of Cys to cystine by H$_2$O$_2$. We believe this work will inspire the development of multifunctional Tb$^{3+}$-based biosensing platforms for various applications.

This work is supported by the National Natural Science Foundation of China (21275055, 21277048). This work is supported by the National Science Foundation of Shanghai (11ZR1410700). We also greatly thank the Research Fund for the Doctoral Program of Higher Education (20100076110002).

Notes and references

 a) Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China. Email: gyshi@chem.ecnu.edu.cn; Tel&Fax: +86-21-54340043.
 b) Department of Environmental Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/c000000x/