ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

Journal Name

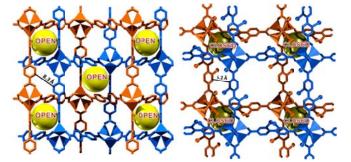
COMMUNICATION

Cite this: DOI: 10.1039/xoxxooooox

Does Functionalisation Enhance CO₂ Uptake in Interpenetrated MOFs? An examination of the IRMOF-9 series

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x


www.rsc.org/

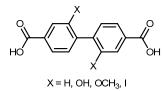
Ravichandar Babarao^{a*}, Campbell J. Coghlan^b, Damien Rankine^b, Witold M. Bloch^b, Gemma K. Gransbury^b, Hiroshi Sato^c, Susumu Kitagawa^c, Christopher J. Sumby^b, Matthew R. Hill^{a*} and Christian J. Doonan^{b*}

The effect of pore functionalisation (-I, -OH, -OCH₃) on a series of topologically equivalent, interpenetrated metalorganic frameworks (MOFs) was assessed by both simulation and experiment. Counter-intuitively, a decreased affinity for CO_2 was observed in the functionalised materials, compared to the non-functionalised material. This result highlights the importance of considering the combined effects of network topology and chemical functionality in the design of MOFs for enhanced CO_2 adsorption.

Capturing CO₂ from major anthropogenic sources such as coal-fired power plants is an area of intense research. One of the main challenges for chemists is the development of novel energy-efficient gas separation processes. Several strategies have been proposed including physical adsorption,¹ absorption by solvents,² and gas separation membranes.³⁻⁵ Indeed, recent work has shown that physical adsorption of CO₂ in MOFs is a promising low-energy alternative to conventional methods.¹ A commonly employed strategy to enhance CO₂ adsorption capacity at low pressures in MOFs is to incorporate moieties that have a high affinity for CO₂. As a result, such materials give rise to significant enthalpies of adsorption.^{2, 3} In addition to tailoring the functionality of the framework, careful control over the internal pore size is important as a there is a trade-off between maximising the potential energy well overlap between the pore walls at close distances, and loss of available pore volume.4 For example, although framework interpenetration reduces the gravimetric gas uptake of a given material it has been shown to assist CO₂ uptake, highlighting the importance of tailoring both functionality and pore confinement.⁵ In the case mentioned, the unusual and enhanced CO₂ adsorption shown by the framework is linked to the stepwise filling of pores and structural vacancies.

Modelling and experimental studies have shown that pore functionalisation generally improves the $\rm CO_2$ uptake in non-

RSCPublishing


Fig.1 Schematic representation of IRMOF-9 (left) and iodo functionalised IRMOF-9 (right), with inter-framework distances of 8.3 and 6.2 Å respectively, showing accessible (yellow ball) and inaccessible (dark green ball) *small* pores for gas uptake.

interpenetrated frameworks.^{2, 6-13} However, we note that the effect of functional groups on CO₂ capacity in interpenetrated MOFs is not well documented.¹⁴ A recent study showed that combining both interpenetration and functionality in a MOF can enhance both H₂ and CO₂ uptake, taking advantage of their individual effects.¹⁵ Here however, we show, for interpenetrated [Zn₄O(BPDC)₃] IRMOF derivatives (Scheme 1), that these effects do not necessarily combine to enhance CO₂ uptake. Accordingly, careful consideration of both the framework architecture and functionality is required for the development of suitable physisorbents for CO₂ capture and separation.

We previously demonstrated that by carefully controlling reaction conditions, phase-pure isostructural MOFs with interpenetrated and non-interpenetrated structures can be synthesised.¹⁶ Here we expand this study by investigating a series of, topologically analogous, interpenetrated MOFs constructed from functionalised biphenyl links (Scheme 1) with the aim of understanding the impact of functional groups on CO₂ uptake.¹⁶ Notably, our results show that irrespective of the functional group, a decrease in CO₂ uptake is observed when compared to that of the non-functionalised material, IRMOF-9. This

ChemComm Accepted Manuscrij

is quite surprising given that functionalisation in non-interpenetrated frameworks is generally observed to enhance CO_2 affinity. Here we use molecular modelling to shed light on how functional groups block the inaccessible regions (i.e. small pores) present in functionalised IRMOF-9 analogues (Fig. 1). This highlights that the increased potential-well overlap due to small pores is more important energetically than the presence of functional groups in enhancing CO_2 uptake, particularly at low pressure.¹⁷⁻¹⁹

Scheme 1

IRMOF-9 [Zn₄O(BPDC)₃] and its functionalised analogues (-OH, -OCH₃) were prepared as reported in previous work.¹⁶ Iodo functionalised IRMOF-9 (IRMOF-9-I) was synthesised using a slightly modified method (See ESI†). The functionalised IRMOF-9 materials are an isostructural series consisting of Zn₄O tetrahedral clusters acting as six-connecting nodes with the functional groups directed into the smaller pores that are formed by interpenetration.¹⁶ CO₂ and N₂ gas isotherms were measured for each MOF (Table 1 and Fig. 2) and Grand Canonical Monte Carlo (GCMC) simulations were employed to predict pure CO₂ isotherms and NVT simulation to predict the heat of adsorption at infinite loading (See ESI†).

Table 1. Framework density, pore volumes, accessible volumetric surface area and isosteric heat of adsorption at low coverage predicted from NVT simulation with blocking of the inaccessible pore regions (except for IRMOE-9)

Structure	$ ho_{ m f}$ (g/cm ³)	V _{free} (cm ³ /g)	Volumetric surface Area (m ² /cm ³)	Q _{st} ⁰ CO ₂ (kJ/mol)
IRMOF-9	0.636	1.18	1918	22.73
IRMOF-9-OH	0.705	0.99	1619(1262) ^a	16.95
IRMOF-9-OCH ₃	0.773	0.84	1573(1317) ^a	18.55
IRMOF-9-I	0.878	0.76	1730(1184) ^a	15.94

 $^{\rm a}$ Experimental BET surface area based on N_2 isotherms

BET analysis of the 77K N₂ isotherm for each MOF showed a reduction in surface area for the functionalised materials. This observation is in qualitative agreement with the predicted surface area based on nitrogen as a probe molecule (**Table 1**). Excepting IRMOF-9, typical type I isotherms were observed for all the functionalised analogues. Due to weak interframework interactions in IRMOF-9 (Fig. 1), evidence of gating behaviour was observed in the N₂ as well as CO₂ isotherms at 195 K (Fig. S3 and S4, ESI†). Such gating behaviour has been found recently in a two-fold interpenetrated framework and also in a partially interpenetrated framework.^{5, 20} In the present case, structural transformations occur under pressure for CO₂ showing multiple steps at 195 K. It is noteworthy that this is the first time such an adsorption profile has been reported for IRMOF-9. We attribute this to careful

handling and activation procedures (See ESI[†]). Addition of functional groups to the IRMOF-9 backbone enhances the interframework interactions (Fig. 1) and eliminates adsorption gating behaviour. Similar behaviour has been observed in many interpenetrated MOFs with pendant groups attached to the BPDC linkers.²¹⁻²³ The Type I isotherms suggest that functionalised IRMOF-9 derivatives, behave more like a rigid open framework due to a lack of dynamic motion.

Next, we investigated the CO₂ gas adsorption in IRMOF-9 and its functionalised analogues at room temperature (Fig. 2). No adsorption/desorption hysteresis was observed for either IRMOF-9 or the functionalised frameworks at temperatures above the triple point. Fig. 2 shows good agreement between the simulated data and the experimental values for IRMOF-9 and the functionalised materials, when the inaccessible region is blocked in the simulation (see Fig. S11 and S12). The experimental CO₂ uptake of IRMOF-9 was measured to be 40 cm³ g⁻¹ at 100 kPa and was found to decrease drastically to 28 cm³ g⁻¹ in IRMOF-9-OCH₃ and to 16 cm³ g⁻¹ in IRMOF-9-I, respectively.

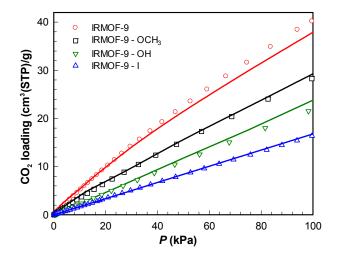


Fig. 2 CO_2 uptake in interpenetrated IRMOF-9 and functionalised IRMOF-9 frameworks at 298 K. Simulations show that blocking the inaccessible pore in the functionalised IRMOF-9 materials provides excellent agreement to experiment. The empty symbols represent experimental data, while the solid lines represent simulated data.

This observation can be rationalised from an energetic viewpoint as the calculated adsorption enthalpy at low coverage from NVT simulations and dispersion corrected density functional theory is highest in IRMOF-9, followed by -OCH₃, -OH and -I frameworks (Table 1 and Table S7). As amino groups are widely employed for enhancing CO₂ uptake, we further predicted CO₂ uptake using GCMC simulation and found the CO₂ capacity in IRMOF-9-NH₂ is lower than that of IRMOF-9 (See Fig. S13, ESI†). We posit that the decrease in CO₂ uptake observed for the functionalised IRMOF-9 frameworks can be attributed to the blockage of small pores by the attached functional group and presence of pores with larger diameters.

Journal Name

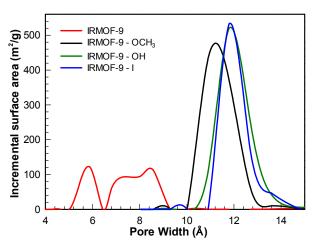
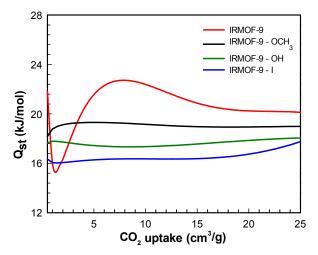



Fig. 3 Pore size distributions based on N_2 isotherms showing different pore sizes in IRMOF-9, but only one distinct pore in functionalised IRMOF-9 frameworks.

Fig. 3 shows the pore size distribution obtained from the N₂ isotherm data of IRMOF-9 and its functionalised forms. As shown in Fig. 3 the pore sizes present in IRMOF-9 are centred around 5.8 Å and 8.0 Å (larger pores not shown in Fig. 3), however, for the functionalised analogues only one distinct pore is present centred at 11 or 12 Å. Presumably, this is because the pendant functional groups enhance the Van der Waal's and electrostatic interactions between the frameworks creating a more uniform pore size. To examine the location of CO_2 in the IRMOFs, density contours of CO_2 obtained from GCMC simulations were prepared (Fig. S14, ESI⁺). In IRMOF-9, the CO_2 is exclusively located in the small pores created by the interpenetration of frameworks where the effective potential energy well-overlap occurs between metal clusters and phenyl linkers. However, in the functionalised IRMOF-9 forms, the CO₂ is mainly located in the larger pores in close proximity to the functional group, as the equivalent small cavities are inaccessible for gas molecules, even for H₂ (See Fig S15 ESI \dagger). In addition, the binding energy of one CO₂ molecule from first principles DFT calculations displayed a similar behaviour implying that the CO₂ uptake correlates well with the CO₂functional group interactions (Fig. S16 and Table S7, ESI⁺).

Fig. 4 shows the predicted isosteric heat of adsorption from the Clausius-Clapeyron equation based on simulated adsorption isotherms at 273 K and 298 K. Consistent with CO₂ adsorption capacity shown in Fig. 2, the heat of adsorption decreases in the order IRMOF-9-OCH₃ > -OH > -I. The key result in this instance is that the increased relevance of small pores in IRMOF-9 supersedes the chemical attraction of functional groups in the derivatised analogues, as these groups are largely occluded within the interpenetrated structure. Secondly, in IRMOF-9, variations of enthalpy strength at low loading are observed. The initial decrease in isosteric heat may attributed to the multiple pore sizes present in IRMOF-9²⁵ (Fig. 3) in which the more energetically favourable and smaller pores are occupied first followed by the less favourable sites as loading increases. As the gas loading is increased, the co-operative interaction between CO₂ molecules is enhanced resulting in a

larger isosteric heat of adsorption. A similar trend has been observed earlier for CO_2 adsorption in C_{168} and N_2 and CO in AlPO₄-5 structures and CO_2 in an interpenetrated MOF.^{24,25} However, we also modelled the heat of adsorption for IRMOF-9 using virial equation methods (Fig. S17). Using this approach the initial enthalpy of adsorption is, also, approximately 22 kJ/mol and decreases slightly over the coverage range. However, the dip at low pressure is absent.

Fig. 4 Isosteric heat of adsorption as a function of simulated CO₂ uptake using Clausius-Clapeyron equation.

In conclusion, we have shown that the general strategies for enhancement of CO₂ uptake, particularly functionalising linkers in non-interpenetrated MOFs do not translate to interpenetrated analogues. The smaller pore size in these species is the dominant factor in the control of CO₂ adsorption capacities. This is because functionalisation increases the inter-framework interactions and in turn blocks the small pores, a critical factor for enhancing CO₂ uptake at low partial pressures. Molecular simulation showed a similar trend in CO₂ uptake, which agrees well with the experimental data, when the inaccessible pore region of the functionalised frameworks was blocked. The smaller pores in IRMOF-9 enhance the CO₂ isosteric heat Q_{st}^0 , and consequently, increase CO₂ uptake. In general, to make use of the small pores created in interpenetrated frameworks utilising a simple linker without any functional groups might be a good choice for enhancing CO₂ uptake, particularly at low pressure.

Notes and references

This research is supported by the Science and Industry Endowment Fund (SIEF). CJD and CJS would like to acknowledge the Australian Research Council for funding FT100100400 and FT0991910, respectively.

^{a.} CSIRO Division of Materials Science and Engineering., Clayton South MDC, VIC3169, Australia. Fax: (+) 61 3 9545 2837; Tel: (+) 61 3 9545 2943; E-mail: <u>matthew.hill@csiro.au</u>, <u>ravichandar.babarao@csiro.au</u>

^{b.} School of Chemistry & Physics, The University of Adelaide, Adelaide, Australia. Fax: +61 8 8313 4358; Tel: +61 8 8303 5770, +61 8 8313 7406; E-mail: <u>christian.doonan@adelaide.edu.au</u>

^{c.} Institute for Integrated Cell-Material Sciences, Kyoto University, Japan

† Electronic Supplementary Information (ESI) available: Experimental

- and simulation details and additional results. See DOI: 10.1039/b000000x/
 - P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, *Nature*, 2013, 495, 80.
 - 2 T. M. McDonald, D. M. D'Alessandro, R. Krishna and J. R. Long, *Chem. Sci.*, 2011, **2**, 2022.
 - 3 T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong and J. R. Long, *J. Am. Chem. Soc.*, 2012, **134**, 7056.
 - 4 A. W. Thornton, D. Dubbeldam, M. S. Liu, B. P. Ladewig, A. J. Hill and M. R. Hill, *Energy Environ. Sci.*, 2012, 5, 7637.
 - 5 S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake and M. Schroeder, *Nat. Mater.*, 2012, **11**, 710.
 - 6 R. Babarao, S. Dai and D. Jiang, Langmuir, 2011, 27, 3451.
 - 7 S. Biswas and P. Van der Voort, Eur. J. Inorg. Chem., 2013, 2154.
- 8 A. Das, M. Choucair, P. D. Southon, J. A. Mason, M. Zhao, C. J. Kepert, A. T. Harris and D. M. D'Alessandro, *Micropor. Mesopor. Mater.*, 2013, **174**, 74.
- 9 A. Demessence, D. M. D'Alessandro, M. L. Foo and J. R. Long, J. Am. Chem. Soc., 2009, 131, 8784.
- 10 W. Mu, D. Liu, Q. Yang and C. Zhong, *Micropor. Mesopor. Mater.*, 2010, **130**, 76.
- 11 N. Planas, A. L. Dzubak, R. Poloni, L.-C. Lin, A. McManus, T. M. McDonald, J. B. Neaton, J. R. Long, B. Smit and L. Gagliardi, *J. Am. Chem. Soc.*, 2013, **135**, 7402.
- 12 D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang and G. Maurin, *Langmuir*, 2012, 28, 12094.
- 13 S. S. Han, D.-H. Jung and J. Heo, J. Phys. Chem .C, 2013, 117, 71.
- 14 H.-L. Jiang, T. A. Makal and H.-C. Zhou, Coord. Chem. Rev., 2013, 257, 2232.
- 15 P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, J. Mater. Chem., 2011, 21, 17737.
- 16 D. Rankine, A. Avellaneda, M. R. Hill, C. J. Doonan and C. J. Sumby, *Chem. Commun.*, 2012, **48**, 10328.
- 17 N. C. Burtch, H. Jasuja, D. Dubbeldam and K. S. Walton, J. Am. Chem. Soc, 2013, 135, 7172.
- 18 L. Liu, K. Konstas, M. R. Hill and S. G. Telfer, J. Am .Chem. Soc, 2013, 135, 17731.
- 19 A. Schoedel, W. Boyette, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, J. Am .Chem. Soc, 2013, 135, 14016.
- 20 K. L. Mulfort, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis and J. T. Hupp, *Chem. Eur. J*, 2010, **16**, 276.
- 21 A. D. Burrows, C. G. Frost, M. F. Mahon and C. Richardson, *Angew. Chem. Int. Ed.*, 2008, **47**, 8482.
- 22 A. D. Burrows, C. G. Frost, M. F. Mahon and C. Richardson, *Chem. Commun.*, 2009, 4218.
- 23 T.-H. Park, K. Koh, A. G. Wong-Foy and A. J. Matzger, *Cryst. Growth Des.*, 2011, **11**, 2059.
- 24 R. Babarao, Z. Hu, J. Jiang, S. Chempath and S. I. Sandler, *Langmuir*, 2007, **23**, 659
- 25 Zhang, S. Xiang, K. Hong, M. C. Das, H. D. Arman, M. Garcia, J. U. Mondal, K. M. Thomas and B. Chen, *Inorg. Chem.*, 2012, **51**, 4947.