ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

A Novel Amorphous CoSn_xO_y Decorated Graphene Nanohybrid Photocatalyst for High-Efficient Photocatalytic Hydrogen Evolution

Chao Kong^{a,b}, Shixiong Min^{a,b}, Gongxuan Lu^{a*}

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

Novel amorphous cobalt tin composite oxides decorated with graphene nanohybrid ($CoSn_xO_y/G$) sensitized by EY exhibited excellent photocatalytic hydrogen evolution activity (974.6 µmol for 3h) under visible light irradiation. The ¹⁰ highest AQE of EY-CoSn_xO_y/G of 20.1% was achieved at 430nm.

Photocatalytic hydrogen evolution is one of the most promising routes for the widespread use of the free and sustainable solar energy to develop renewable and clean energy sources¹. The ¹⁵ photocatalytic hydrogen evolution systems usually contain a metal-based cocatalyst, a photosensitizer and a sacrificial electron donor. Among them, cocatalyst is always an attractive and challenging issue and has got more attentions because it offers the low activation potential active sites for H₂ evolution²⁻⁷. In the

- ²⁰ reported work so far, noble metals³, sulfides of transition metals⁷, transition metal-based molecular complexes and their derivatives⁴⁻⁶ are excellent cocatalyst for hydrogen evolution. However, scarcity of noble metals and instability of molecular complexes are still main obstacles in developing stable high-²⁵ efficient photocatalyst.
- Recently, cobalt tin composite oxide has been extensively studied as a promising candidate for Li-ion battery due to its high reversible capacity. It was reported Co_2SnO_4 prepared by hydrothermal method showed high electrochemical performance
- ³⁰ for Li-ion batteries⁸. Carbon-coated CoSnO₃ nanoboxes also exhibited 400 cycles and high-rate capability as an anode material for lithium-ion batteries.⁹ However, there have been no reports of cobalt tin composite oxides high catalytic activity for photocatalytic hydrogen evolution.
- In the present study, we reported the synthesis of amorphous cobalt tin composite oxides $(CoSn_xO_y)$ decorated graphene composite $(CoSn_xO_y/G)$ by in-situ chemical deposition and photoreduction. After sensitized by dye, this noble-metal-free photocatalyst exhibited excellent photocatalytic hydrogen
- ⁴⁰ production activity under visible light irradiation ($\lambda \ge 420$ nm). In addition, CoSn_xO_y/G nanohybrid photocatalyst was insensitive to the reaction pH. The excellent activity might be ascribed to efficient electron transfer via graphene and good activity of CoSn_xO_y for proton reduction.
- ⁴⁵ Photocatalyst preparation details were described in the Supporting Information. Transmission electron microscopy (TEM) images of $CoSn_xO_y/G$ nanohybrid (Figure 1 A) displayed that the large amounts of amorphous component adhered on the

surface

50

Fig.1 (A) TEM image and (B) HRTEM image for CoSn_xO_y/G nanohybrid; (C) HAADF-STEM (high angle annular dark field scanning transmission electron microscopy) image and elemental mapping images of CoSn_xO_y/G; (D) EDX spectrum of CoSn_xO_y/G, in which the Cu and Br signals originated from the
Cu grid support for TEM observation and EY respectively; (E) X-ray diffraction (XRD) patterns of SnO₂/G, CoSn_xO_y/G and CoSn_xO_y.

of graphene sheet. In high-resolution TEM (HRTEM) image ⁶⁵ (Figure 1B), the crystalline nanoparticles had the lattice spacing of 0.33 and 0.26 nm belonged to (110) and (101) planes of tetragonal SnO₂, indicating that the crystalline SnO₂ nanoparticles

were formed in $CoSn_xO_y/G$ nanohybrid. Figure 1(C) clearly indicated that the distribution of Co, Sn, C and O element was relatively homogeneous in $CoSn_xO_y/G$. The energy dispersive Xray (EDX) measurement confirmed the co-existence of Co, Sn, C

- ⁵ and O elements in CoSn_xO_y/G (Figure 1D). Figure 1(E), which was supported by the X-ray diffraction (XRD) patterns of SnO₂/Graphene (SnO₂/G), CoSn_xO_y and CoSn_xO_y/G. These three samples had typical three weak peaks at 26.6°, 33.9° and 51.8°, which belonged to (110), (101) and (211) planes of tetragonal
- ¹⁰ SnO₂ (JCPDS#77-0447) respectively. The peak centered at 2 θ =23.6° in XRD patterns of SnO₂/G and CoSn_xO_y/G could be assigned to pattern of graphene¹⁰. No other peaks appeared in Figure 1(E). These results indicated amorphous CoSn_xO_y formed in CoSn_xO_y/G nanohybrid and the crystalline SnO₂ nanoparticles ¹⁵ existed in CoSn_xO_y/G and CoSn_xO_y.

XPS spectra of $CoSn_xO_y/G$ (Figure 2A) exhibited that the $CoSn_xO_y/G$ nanohybrid was mainly consisted of Co, Sn, O and C elements. The binding energies of Co $2p_{3/2}$ (780.9 eV) and Co $2p_{1/2}$ (796.8 eV) in Figure 2(B) indicated Co element was in the

²⁰ +2 oxidation state in $CoSn_xO_y/G$. In Figure 2(C), the peak at 486.5 eV could be assigned to Sn $3d_{5/2}$, while the peak at 494.9 eV could be attributed to Sn $3d_{3/2}$. The presence of both peaks at 486.5 and 494.9 eV indicated Sn element existed in the state of Sn⁴⁺ in CoSn_xO_y/G nanohybrid.

Fig. 2 (A) XPS survey spectra of $CoSn_xO_y/G$. (B) Co 2p scan spectra of $CoSn_xO_y/G$. (C) Sn 3d scan spectra of $CoSn_xO_y/G$. (D) ³⁰ H₂ evolution from EY (1.0 × 10⁻³ mol/L) photosensitized systems catalyzed by G(1), SnO₂/G(2), Co/SnO₂(3), Co(4), $CoSn_xO_y(5)$, Co/G(6), Pt/G(7) and $CoSn_xO_y/G(8)$ in 80 mL of 10% (v/v) TEOA aqueous solution (pH=10) under visible light irradiation ($\lambda \ge 420$ nm).

Figure 2(D) showed the time courses of H₂ evolution catalyzed by graphene (G), SnO₂/G, Cobalt/SnO₂ (Co/SnO₂), Cobalt (Co), CoSn_xO_y, Cobalt/Graphene (Co/G), Pt/Graphene (Pt/G) and CoSn_xO_y/G in 80 mL of 10% (v/v) TEOA aqueous solution under ⁴⁰ visible light irradiation ($\lambda \ge 420$ nm) at pH 10. As can be seen from Figure 2 (D), only trace amounts of H₂ (0.52 and 0.85 µmol) were produced after 3 h of irradiation in EY-graphene and EY-SnO₂/G system respectively, suggesting that graphene and

SnO₂/G were inactive for catalyzing H₂ evolution. The hydrogen 45 productions over EY-Co/SnO₂ and EY-Co were 123.9 µmol and 137.6 μ mol in 3h¹⁰, which revealed that the addition of SnO₂ could not enhance hydrogen production activity of Co. The amount of H₂ evolution was 584.4 µmol over the EY-sensitized $CoSn_xO_v$ photocatalyst which was prepared with 450 µL 50 0.3mol/L CoSO₄ and 450 µL 0.3mol/L SnCl₄ as precursors. The amount of H₂ evolution was 974.6 µmol over the EY-sensitized CoSn_xO_v/G photocatalyst in 3 h, which were 1.67 and 1.4 times higher than that of CoSn_xO_y (584.4 µmol) and Co/G (696.0 µmol) under the same reaction conditions¹⁰. $CoSn_vO_v/G$ also showed 55 higher photocatalytic performance than Pt/G (827.7 µmol) and crystalline CoSn_xO_y/G (614.7 µmol) perpared by the hydrothermal method (Figure S1 and S2, ESI⁺). The high photocatalytic performance of CoSn_xO_v/G might be due to the photocatalytic activity of CoSn_xO_y and the electron transfer and 60 separation function of graphene.⁷ The optimized CoSn_xO_y/G catalyst was prepared via 5 mg of GO, 450µL of 0.3mol/L CoSO₄ and 450 µL of 0.3mol/L SnCl₄ (Figure S3, ESI[†]). CoSn_xO_v/G always showed good hydrogen evolution performance when mole ratio of Co^{2+} to Sn^{4+} varied in range of 0.5 to 2 (Figure S4, ESI[†]). 65 The dependence of H₂ evolution activity on pH value indicated $CoSn_xO_y/G$ nanohybrid was insensitive to the reaction pH, which exhibited high photocatalytic hydrogen evolution activity in a wide pH range from 8 to 11, and the amount of H₂ evolution was highest at pH 10 (Figure 3A). The small amounts of H₂ (377.3 70 and 2.05 µmol) were observed when the pH value of the solution was adjusted to 7 and 12. The likely reason was that the concentration of free TEOA to reductively quench EY^{3*} might become low due to the protonation of TEOA in more acidic solutions, while the carboxyl groups of EY might deprotonate in 75 the strong basic solution and the dye could not adsorb on graphene effectively because of the electrostatic repulsion force¹¹⁻

Fig. 3 (A) Effect of pH value on photocatalytic activity of $CoSn_xO_y/G$ for hydrogen evolution; (B) Stability test of H₂ evolution over EY sensitized $CoSn_xO_y/G$ The reaction was continued for 720 min, with evacuation every 180 min: (1) first run; (2) add EY and evacuation; (3) $CoSn_xO_y/G$ was collected by centrifuging from reaction mixture. The recycled $CoSn_xO_y/G$ was ss mixed with TEOA solution and fresh EY, and evacuation; (4) add EY and evacuation.

Hydrogen evolution process usually occurred *via* three steps, including H⁺ adsorption, H⁺ reduction and H atom desorption in ⁹⁰ sequence. The adsorption strength of H atom on cocatalyst surface was the key factor for hydrogen evolution reaction, which decided the adsorption and desorption rate of H and formation rate of H₂ molecule over cocatalyst. The H adsorption on Sn⁴⁺ site was weak while the H adsorption on Co²⁺ was strong, so Co²⁺

35

showed high hydrogen generation activity because of its strong adsorption to H¹³. CoSn_xO_y showed the weak adsorption strength of H due to the existence of Sn¹⁴⁻¹⁵, and which should lead to lower photocatalytic activity. However, CoSn_xO_y showed high s photocatalytic performance in EY-CoSn_xO_y hydrogen evolution

system. There might be related to the hydrogen atom interfacial transfer between Co^{2+} and Sn^{4+} sites in photocatalyst. H⁺ might first attach to Co^{2+} site and then gained electron to form H atom, which then transfered from Co^{2+} to Sn^{4+} site, and desorbed to

 $_{10}$ produce $\rm H_2$ quickly due to the low strength of Sn^{4+}-H. Therefore, $\rm CoSn_xO_y$ showed high photocatalytic activity for H_2 generation.

The stability results of $CoSn_xO_y/G$ was shown in Figure 3(B). The dropping of activity was due to decomposition of photosensitizer during photocatalysis with increasing reaction time in the results rune (Figure S5 ESIT). The H exclusion

¹⁵ time in the recycle runs (Figure S5, ESI†). The H₂ evolution activity of $CoSn_xO_y/G$ could be revived at 98.8% by addition of dye and TEOA. These results showed $CoSn_xO_y/G$ nanohybrid was stable during the photocatalytic H₂ evolution processes. Apparent quantum efficiencies (AQEs) from 430 to 550 nm were

- ²⁰ measured. The highest AQE of EY-CoS_x/G was 20.1% at 430nm (Figure 4A). In Figure 4(B), the higher photocurrent of EY-CoSn_xO_y/G indicated the fast electron transfer from EY⁻ to CoSn_xO_y/G, after that, the excited state dye can be reductively quenched by the TEOA to form EY⁻ species. The graphene ²⁵ induced the fast electron transfer and separation, and as a result,
- photocatalytic H_2 evolution activity of $CoSn_xO_y/G$ was improved⁷.

Fig. 4 (A) AQEs of H2 evolution for EY $(1.0 \times 10^{-3} \text{ mol/L})$ photosensitized systems catalyzed by the recycled $CoSn_xO_y/G$ nanohybrid. The system was irradiated by a 300-W Xe lamp with
a cutoff filter of 420 nm and a bandpass filter. (B) Transient
photocurrent-time profiles of EY- $CoSn_xO_y$ and EY- $CoSn_xO_y/G$
coated on ITO glass in mixed solution of 10% (v/v) TEOA and
 $0.1 \text{ mol/L } Na_2SO_4.$

Scheme 1. The proposed photocatalytic mechanism for hydrogen 40 evolution over EY-CoSn_xO_y/G photocatalyst under visible light irradiation. The reaction process of photocatalysis H₂ evolution in EY-CoSn_xO_y/G system can be explained as Scheme 1. Under visible ⁴⁵ light irradiation, the EY on the surface of graphene sheets and CoSn_xO_y absorbs light photon to form singlet excited state EY^{1*}, and then produces the lowest-lying triplet excited state EY^{3*} *via* an efficient intersystem crossing. EY^{3*} can be reductively quenched by TEOA and produce EY⁻ and oxidative donor ⁵⁰ (TEOA⁺) ¹⁰⁻¹¹. These EY⁻ species preferentially transfer their electrons to CoSn_xO_y cocatalyst directly or graphene sheets due to its electron transport characteristics. The accumulated electrons on the graphene sheets will transfer to the CoSn_xO_y cocatalyst, finally H⁺ obtain electrons from CoSn_xO_y to form hydrogen. The ⁵⁵ graphene functions as an electron acceptor and transporter to improve the charge separation efficiency, thereby enhancing the catalytic H₂ evolution activity of CoSn_xO_y/G nanohybrid.

In summary, $CoSn_xO_y/G$ nanohybrid was synthesized by insitu chemical deposition and photoreduction via Eosin Y ⁶⁰ photosensitizer, which exhibited excellent photocatalytic performance in a broader pH range from 8 to 11. In addition, $CoSn_xO_y/G$ showed higher catalytic activity than Pt/G. $CoSn_xO_y/G$ might be a promising alternative for noble metal catalysts in photocatalysis proton reduction.

⁶⁵ This work is supported by the 973 and 863 Programs of Department of Sciences and Technology of China (2013CB632404, 2012AA051501, 2009CB220003) and the NSF of China (grant no. 21173242), respectively.

Notes and references

⁷⁰ ^aState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China

^bUniversity of Chinese Academy of Science, Beijing 10080, China.

75 *Corresponding author: E-mail: gxlu@lzb.ac.cn.

Tel.: +86-931-4968 178. Fax: +86-931-4968 178.

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- S. Jasimuddin, T. Yamada, K. Fukuju, J. Otsuki, K. Sakai, *Chem. Commun.*, 2010, 46, 8466-8468.
- 2 K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, J. Catal., 2006, 243, 303-308.
- 85 3 H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li, *J Catal*, 2009, **266**, 165-168.
 - 4 J.P. Bigi, T.E. Hanna, W.H. Harman, A. Changa , C. J. Chang, *Chem. Commun.*, 2010, **46**, 958-960.
- 5 O. Pantani, S. Naskar, R. Guillot, P. Millet, E. A. Mallart, A. Aukauloo, *Angew. Chem. Int. Ed.*, 2008, **47**, 9948-9950.
- 6 L.A. Berben, J.C. Peters. Chem. Commun., 2010, 46, 398-400.
- 7 S. Min, G. Lu, J Phys Chem C, 2012, 116, 25415-25424.
- 8 G. Wang, X.P. Gao, P.W. Shen, J. Power Sources, 2009, 192, 719-723.
- 9 Z.Y. Wang, Z.C.Wang, W.T Liu, W. Xiao, X.W. Lou, *Energy Environ.* Sci., 2013, 6, 87-91.
- 10 C. Kong, S. Min, G. Lu, Int. J. Hydrog. Energy., 2014. DOI:10.1016/j.ijhydene.2014.01.089.
- 11 S. Min, G. Lu, J. Phys. Chem. C, 2011, 115, 13938-13945.
- 12 T. Lazarides, T. McCormick, P. W. Du, G. G. Luo, B. Lindley, R. Eisenberg, *J. Am. Chem. Soc.*, 2009, **131**, 9192-9194.
 - 13 G. Jerkiewicz, Prog. Surf. Sci., 1998, 57, 137-186.
 - 14 H. Yamashita, T. Yamamura K. Yoshimoto, J. Electrochem. Soc., 2012, 37, 17899-17909.

15 B.M. Jovic, U.C. Lacnjevac, N.V. Krstajic, V.D. Jovic, *Electrochimica* Acta, 2013,**114**, 813-818.