This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
β-Hydroxy-γ-lactones as nucleophiles in the Nicholas reaction for the synthesis of oxepene rings.

Enantioselective formal synthesis of (−)-isolaurepinnacin and (+)-rogioloxepane A

Julio Rodríguez-López, Nuria Ortega, Víctor S. Martín* and Tomás Martín*a,b

The enantioselective formal synthesis of (−)-isolaurepinnacin and (+)-rogioloxepane A have been achieved. Key steps are an intermolecular Nicholas reaction with a β-hydroxy-γ-lactone as nucleophile, to form the branched linear ethers, and an olefin ring-closing metathesis to obtain the oxepene core.

Medium-ring oxacycles are a common structural feature present in many ladder ether marine toxins, which have important implications with regard to the biological impact. Furthermore, medium-ring ethers are the structural skeleton of an important group of marine natural products, called lauroxanes. Lauroxanes are a series of nonterpenoid C15–metabolites derived from fatty acid metabolism (acetogenins) that have been isolated from the Laurencia species of red algae, and those marine organisms which feed on them. These compounds display a wide range of biological activity including antitumor, antimicrobial, antifeedant, immunosuppressant, pesticide and (+)-rogioloxepane A have been achieved. Key steps are an olefin ring-closing metathesis to obtain the oxepene core.

Medium-ring oxacycles are a common structural feature present in many ladder ether marine toxins, which have important implications with regard to the biological impact. Furthermore, medium-ring ethers are the structural skeleton of an important group of marine natural products, called lauroxanes. Lauroxanes are a series of nonterpenoid C15–metabolites derived from fatty acid metabolism (acetogenins) that have been isolated from the Laurencia species of red algae, and those marine organisms which feed on them. These compounds display a wide range of biological activity including antitumor, antimicrobial, antifeedant, immunosuppressant, pesticide activity, etc. Their fascinating structures and biological activities have stimulated the imagination and have been a challenge for synthetic chemists. Seven-membered cyclic ethers are less common in lauroxanes and therefore synthetic approaches to them have been limited. The most representative examples of lauroxanes containing oxepene ring are the (−)-isolaurepinnacin (1) and the (+)-rogioloxepane A (2) (Fig. 1).

![Figure 1](image-url)

Fig. 1 Representative examples of lauroxepanes.

Isolaurepinnacin (1) was isolated from Laurencia pinnata Yamada collected at Motutsa point, Hokkaido (Japan) in 1981 by Fukuzawa and Masamune. Rogioloxepane A (2) was isolated from Laurencia microcladia Yamada off the Torrent II Rogiolo in the Mediterranean in 1992 by Pietra’s group. Isolaurepinnacin (1) contained an a,a’-cis-disubstitution oxepene ring and a conjugate trans-ene unit, while Rogioloxepane A (2) has an a,a’-trans-disubstitution pattern and a conjugate cis-ene unit, both compounds have four stereogenic centers (Fig. 1). Up to date there is only one enantioselective synthesis and one stereoselective synthesis reported for each one of these natural products. As part of our continuing program directed to the synthesis of biologically active substances of marine origin and the development of new synthetic methodologies for the construction of medium-ring ethers, we embarked on the enantioselective formal synthesis of (−)-isolaurepinnacin (ent-1) and (+)-rogioloxepane A (2). Recently, we developed a new strategy for the synthesis of medium-ring oxacycles based on an intermolecular Nicholas reaction (interNR) to form unsaturated branched linear ethers and a ring closing olefin metathesis (RCM) to obtain the cobalt complex cyclic ethers. Using this approach we were able to obtain saturated cyclic ethers of seven-, eight- and nine-membered such as (−)-cis- and (−)-trans-lauthisan and (−)-cis- and (−)-trans-obtusan, whose structures represent the basic skeletons present in a number of these naturally occurring non-terpenoid seven-, eight-, and nine-membered ring ethers. Additionally, the methodology was exemplified by the formal synthesis of (−)-laurencin, a lauroxane with an eight-membered cyclic ether.

Our initial synthetic approach is envisaged in Scheme 1. Key features of the route included: First, the synthesis of the branched linear ethers by an interNR using the acetylenic cobalt complex 9 as electrophile and the enantioenriched monoprotected diol 8 as nucleophile. It should be mention that bromide 9 is a very convenient synthetic equivalent of enyne 7 during the interNR coupling to avoid elimination of the alcohol. Afterwards, we planned that the unsaturated branched ethers 6 would be obtained through a simple reaction sequence: decokplexation and elimination of the bromide. Second, the RCM would provide the oxepenes 5, which can be used as precursor for the synthesis of the compounds 3 and 4. Oxepene 3 is the enantiomer of an advanced intermediate in the formal synthesis of (−)-isolaurepinnacin (1) reported by Suzuki and coworkers. Furthermore, oxepene 4 is an advance intermediate in the total synthesis of (−)-rogioloxepane A (2) developed by Crimmins and coworkers.
After several fruitless attempts to achieve the interNR using monoprotected diol 8, we pondered the use of β-hydroxy-γ-lactone 10 as its synthetic equivalent.10 Our thoughts were based on that 10 introduces the correct stereochemistry in two stereocenters and would be a less sterically hindered and more conformationally constrained nucleophile. The synthesis began with the commercially available methyl trans-3-hexenoate, which was submitted to a Shi asymmetric epoxidation.11 Then, the obtained epoxide was treated with acid aqeous solution to afford the γ-lactone 10 in good yields, albeit with an enantiomeric ratio (er) of 87:13 (Scheme 2).12 From the synthetic standpoint, the relative low er of the compound 10 does not represent a major problem for the enantiomeric purity of the final products, because another asymmetric epoxidation has been planned in a later stage of the synthetic route (vide infra). The next step was the interNR between the γ-lactone 10 and the cobalt complex 9$^{\text{cis}}$ to afford in good yields the doubly branched ethers syn-12 and anti-12, as an equimolecular epimeric mixture in the newly created stereocenter. These hexacarbonyl dicobalt complexes were easily separated by column chromatography on silica gel. At this point of the synthesis, we were unable to determine which one was the syn complex, and which one was the anti. Therefore, the stereochemistry determination was postponed to more advanced intermediates. Deprotonation of the Co$_2$(CO)$_6$-complexes of syn-12 and anti-12 and further bromide elimination using a variant of the Grieco reaction provided the terminal alkenes in one of the branches.13 The synthesis of the dienes syn-6 (P = H) and anti-6 (P = H) were accomplished by two consecutive steps: reduction with one equivalent of DIBAL-H and one-carbon homologation by the Wittig-olefination of the lactol obtained. Interestingly, when water was used to quench the Wittig reaction the TMS group was removed from the terminal alkyne.

Before the cyclization step by RCM, the complexation of the alkyne groups were carried out with Co$_3$(CO)$_6$, affording the cobalt-complexes. This complexation generated a series of advantages: first, the cobalt complex should avoid the undesirable participation of the triple bond in the metathesis process,14 and second, the Co$_3$(CO)$_6$-alkyne can be used as a stereochemical control agent for an isomerization process. With the diene complexes in hand, closure of the oxepenes with the second-generation Grubbs’ catalyst was performed. Thus, exposure of diene cobalt-complexes to 30 mol % of the catalyst in dichloromethane (0.004 M) at reflux, cleanly produced the desired and easily separable cycle-complexes cis-13 and trans-13 with excellent yields. Cleavage of the hexacarbonyl dicobalt from complexes cis-13 and trans-13 provided the oxepenes cis-5 (P = H) and trans-5 (P = H), which were used to establish the stereochemistry of both isomers by NOE studies.15 At this stage of the synthesis, we pondered also the possibility of performing an isomerization of the trans-isomer to the cis-isomer considering that such stereoisomer is thermodynamically more stable. It was successfully performed under acidic condition using boron trifluoride diethyl etherate as the acid.16

The next step was the protection of the secondary alcohol of the compound 6 with acid aqueous solution to afford the hydroxy-alcohol 7 in good yields, 81% after 2 steps; (c) BF$_3$·OEt$_2$, CH$_2$Cl$_2$, 0 °C, 94%; (k) CAN, acetone, 0 °C, 95%.

Scheme 2 Reagents and conditions: (a) Ozone, K$_2$CO$_3$, CH$_3$CNbuffer pH = 10.5 (1:1), 11, 0°C; (b) 3% H$_2$SO$_4$ (aq), 81% after 2 steps; (c) BF$_3$·OEt$_2$, CH$_2$Cl$_2$, 0 °C, 94%; (d) CAN, acetone, 0 °C, 97%; (e) 1+n-NO$_2$PhSeCN, NaBH$_4$, EtOH, rt, 2; 30% H$_2$O$_2$, 0°F, quantitative; (f) DIBAL-H (1 equiv), THF, –78°C; (g) CH$_2$PPh$_2$Br', n-BuLi, THF, –78°C→–20°C, 3 h, 89% after 2 steps; (h) Co$_4$(CO)$_8$, CH$_2$Cl$_2$, rt; (i) 2° generation Grubbs’ catalyst, CH$_2$Cl$_2$, 40°C, 84% after 2 steps; (j) BF$_3$·OEt$_2$, CH$_2$Cl$_2$, 0° C, 94%; (k) CAN, acetone, 0°C, 95%.

Scheme 1 Retrosynthetic analysis.
a powerful synthetic methodology to address the synthesis of the most representative lauroxanes with a seven- membered ring.

Regional Development Fund (ERDF) (CTQ2011-28417-C02-01 and CTQ2011-22653) and IMBRAIN project (FP7-REGPOT-2012-CT2012-31637-IMBRAIN), funded under the 7th Framework Programme (CAPACITIES) by financial support.

Notes and references

The enantioemic excess was determined by Mosher’s ester analysis. See Supplementary Information.

See Supplementary Information.

Milder acids such as montmorillonite K-10 were fruitless, F. R. P. Crisóstomo, R. Carrillo, T. Martín, V. S. Martín, *Tetrahedron Lett.*, 2005, 46, 2829–2832.

The asymmetric epoxidation of the allylic alcohol provided two diastereoisomers, which were easily separated by column chromatography on silica gel. The major diastereomer (84% yield) has...
the correct configuration of all the stereocenters, and the other (=12\% yield) displays the correct configuration on the 2,3-epoxide, but the other three stereogenic centers are inverted, this is because the \(\gamma \)-lactone 10 is not optically pure. See Supplementary Information.