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Caoa,* 
 

 

We report a facile method for the synthesis of Li0.3La0.57TiO3 
by forming a coagulated precursor solution which contains 
Li+, La3+, and TiO2 nanoparticles mixed highly 
homogeneously. The grain and overall conductivities of the 
synthesized Li0.3La0.57TiO3 are comparable to the values in 
literature for the material prepared by other methods. 

There is an increasing demand for solid state electrolytes for 
use in lithium batteries to replace the currently widely used 
liquid electrolytes in recent years. Compared to liquid 
electrolytes, solid state electrolytes possess advantage in 
providing lithium batteries with much safer operation1, 2 and 
making the manufacture easier thus resulting in significant 
reduction of battery cost. In some cases, to use solid state 
electrolytes has become an essential requirement. For instance, 
in lithium ion batteries, solid state electrolytes have been 
expected to replace the liquid electrolytes with the 
consideration of blocking the growth of lithium dendrites 
through charge/discharge cycles; such lithium dendrites may 
connect the anode and cathode ultimately causing an internal 
short circuit of the battery.3-5 Solid state electrolytes are also 
desired for lithium air battery applications, where they serve as 
a membrane to separate the organic electrolyte from the 
aqueous electrolyte. The organic electrolyte is adopted to 
protect the lithium anode from reacting with water, while the 
aqueous electrolyte is used to facilitate the dissolution of 
lithium oxides (particularly lithium peroxide, Li2O2) formed at 
the cathode during discharge, which are insoluble in organic 
electrolytes and may therefore cause either passivation or pore 
blocking of the cathode, which is typically made of porous 
carbon.6, 7 In addition, solid state electrolytes are also an 
integral component for the construction of lithium batteries to 
operate at temperatures below -10 °C or above 60 °C, which are 
the temperature limit for most liquid electrolytes.8  
 Many  efforts  have   been   made   to   develop   solid   state 
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electrolyte, including the use of both inorganic materials and 
polymers.9-11 The advantage of polymer-based electrolytes is 
that they are bendable and therefore can work with flexible 
substrates and are compatible with the roll-to-roll technology. 
However, the polymer-based electrolytes suffer from a poor 
chemical stability especially when taking the heat generation 
which occurs during the battery operation into account. 
Compared to polymer-based electrolytes, inorganic electrolytes 
demonstrate much better chemical stability and, more 
importantly, present significantly higher lithium ionic 
conductivity, typically on the orders of 10-5-10-3 S/cm, 
compared to 10-8-10-6 S/cm for most polymer electrolytes.12-14 
Among the existing inorganic electrolytes, lithium lanthanum 
titanate (LLTO) has been identified as the most promising one 
in view of its high lithium ionic conductivity, typically on the 
orders of 10-4-10-3 S/cm (for single crystalline grains).10, 15-18 
Such a conductivity level is averagely higher than that for Na 
super-ionic conductor structure phosphate salts – which is 
another inorganic solid state electrolyte with great potential,10, 

19-21 and is apparently 1~2 orders of magnitude higher than the 
conductivities for other inorganic solid electrolytes, such as 10-

6-10-4 S/cm for garnet structure materials,22-24 and 10-5-10-3 
S/cm for Li2S-based oxysulfide glasses.25, 26 In addition to the 
advantage of having high conductivity, good thermal stability 
and the use of nontoxic elements are also amongst the merits of 
lithium lanthanum titanate over other inorganic solid state 
electrolytes. 
 Lithium lanthanum titanate is a ceramic material possessing 
ABO3 perovskite structure, in which A represents Li and La, and 
B represents Ti, forming a lithium-lanthanum-titanium oxide 
with the formula of Li3xLa2/3-xTiO3 (0.21≤3x≤0.50). In lithium 
lanthanum titanate, the migration of lithium ions is based on a 
hopping process, through which the lithium ions move in a 
three-dimensional network of vacancy defects located at A 
sites. Lithium ion conduction within lithium lanthanum titanate 
is very sensitive to the concentration of lithium, in other words, 
the stoichiometric ratios of the Li+ to La3+ and TiO3

2+. It has 
been found that Li3xLa2/3-xTiO3 in the case of x=0.1, i.e., 
Li0.3La0.57TiO3, may give the highest lithium ionic conductivity, 
which is generally on the orders of 10-4-10-3 S/cm. However, 
the performance of Li0.3La0.57TiO3 for lithium ion conduction is 
largely dependent on the method for synthesis, which affects 
the Li0.3La0.57TiO3 in terms of its composition, the morphology, 
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