This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A photofuel cell comprising titanium oxide and silver(I/0) photocatalysts for use of acidic water as a fuel†

Yuta Ogura,* Seiji Okamoto,† Takaomi Itoi,‡ Yukiko Fujishima,‡† Yusuke Yoshida,* and Yasuo Izumi*‡

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A photofuel cell comprising two photocatalysts of TiO$_2$ and Ag-TiO$_2$ is demonstrated. The open circuit voltage, short circuit current, and maximum electric power of the PFC were 1.59 V, 74 µA, and 14 µW, respectively. The electron flow was rectified due to the Schottky barrier between TiO$_2$ and Ag nanoparticles.

Fossil fuels have been utilized as the essential energy source for industrialization. The industrial CO$_2$ emissions have led to increase in the level of atmospheric CO$_2$ concentration (400 ppm), and the effects of this increase to global warming cannot be underestimated. The development of renewable energy as a replacement for fossil fuels has been slow.1,2 Among the renewable energies, solar energy has the greatest potential. Although silicon solar cell (Si SC) has been commercialized, the technology that can convert solar energy to electricity often needs subsidies to spread more widely.3 Other types of SCs,4 and fuel cells (FCs) that use hydrogen fuel5 potentially obtained using solar energy6 have been extensively investigated. However, all the requisites (sustainability, durability, and an electromotive force of 1–3 V per cell) have not been fully satisfied.

In this study, we demonstrate a new device: a photofuel cell (PFC) utilizing two photocatalysts of TiO$_2$ and silver(0/I)-doped TiO$_2$ on an electrode film, both immersed in acidic solutions separated by a proton-conducting polymer (PCP). The cell mechanism of redox reactions over the photocatalysts and the flow of electrons and protons in the cell facilitates a theoretical electromotive force of 3 V if some reasons (charge recombination in electrodes, electrons confined in Ag, and reverse electron flow from cathode to anode) for overvoltage are not taken into account. Moreover, the use of acidic water as a fuel is inexpensive and sustainable.

The concept of PFC is shown in Scheme 1. The band gap values for anatase- and rutile-type TiO$_2$ are 3.2 and 3.0 eV,7,8 respectively, and charges (holes, electrons) are separated by UV (and minor visible) light irradiation. The holes in TiO$_2$ diffused to the surface to photooxidize water, while the electrons in Ag-TiO$_2$ diffused to the TiO$_2$ surface and then to Ag nanoparticles to photoreduce O$_2$ molecules. Thus, in the cell, electron flow from conduction band (CB) of TiO$_2$ to the valence band (VB) of Ag-TiO$_2$ is obtained. Because the Schottky barrier is formed at the interface between TiO$_2$ and Ag nanoparticles, the electron flow from TiO$_2$ to Ag is rectified.

This concept of PFC comprising two photoelectrodes is different from FCs comprising a photoanode and conventional cathode such as Pt-carbon,9–15 dye-sensitized SC comprising dye on a semiconductor and conventional cathode,3 and combination of two photocatalysts separated by PCP film to produce O$_2$ and H$_2$ independently from water.16–18 Recently, a PFC comprising WO$_3$ photoanode and a Cu$_2$O/Cu photocathode was reported using organic dyes as fuel.19 In this study, (acidic) water is used as a fuel15 and is restored in the PFC cell.

![Scheme 1. The energy diagram of PFC comprising two photocatalyst electrodes.](image)

An Ag-supported TiO$_2$ (Ag-TiO$_2$) sample was calcined at 673 K. The color was light yellow, which indicated the presence of metallic Ag.20 However, the color changed to purple under air after 24 h (Fig. 1A). Silver K-edge extended X-ray absorption fine structure (EXAFS, Fig. 1B-a) demonstrated the dominance of Ag$_3$O based on the interatomic pair of Ag and O at 0.2305 nm by curve-fit analysis (Table S1a). Scanning electron microscopy (SEM, Fig. 2A), transmission electron microscopy (TEM, Fig. 2B) and high-resolution (HR) TEM (Fig. 2D) revealed Ag$_2$O nanoparticles of mean 3.8 nm accompanying lattice intervals between 0.222 and 0.249 nm, corresponding to (002) lattice (a/2 = 0.2361 nm) and not (111) lattice (a/3 = 0.2726 nm).21 The brightness of the high angle annular dark field (HAADF)-scanning TEM (STEM) image was proportional to the square of atomic weight and distinguished Ag and Ti atoms (Figs. 2C, E). Indeed, the distribution of Ag$_2$O nanoparticles on TiO$_2$ was clearly observed (Fig. 2C), and the atomic resolution image of a single Ag$_2$O nanoparticle supported the presence of Ag$_2$O (Fig. 2E), as shown in HR-TEM image (Fig. 2D). A weak peak due to the interatomic pair of Ag and Ag because of metallic Ag was also observed by EXAFS (Fig. 1B-a2); however, the population was small (~10% on atom basis) based on the curve-fit analysis (Table S1a).

The photocurrent generation of PFC comprising TiO$_2$ and Ag-TiO$_2$, both placed on an indium tin oxide (ITO)-coated Pyrex glass electrode, was tested under N$_2$ and O$_2$ gas flows,
respectively, separated by a PCP film. When the Ag-TiO$_2$ film on electrode was immersed in a HCl solution with a pH of 2.0, the color of film changed to light yellow within 5 s (Fig. 1A, Right). The interatomic pair distance between Ag and Cl at 0.262 nm obtained by EXAFS (Fig. 1B-b2, Table S1b) demonstrated that outer layers of Ag$_2$O transformed to colorless Ag(I) chloride (Fig. 1A, Right). The light yellow color was due to small number of inert Ag0 nanoparticles.

The interatomic pair distance between Ag and Cl at 0.262 nm (Fig. 1B–b2, Table S1b) demonstrated that outer layers of Ag$_2$O transformed to colorless Ag(I) chloride (Fig. 1A, Right). The light yellow color was due to small number of inert Ag0 nanoparticles.

When the Ag-TiO$_2$ on the electrode immersed in HCl solution at pH of 2.0 was irradiated by UV-visible light, the yellow color changed to ochre within 10 s (Fig. 1A, Top). For the EXAFS data, the interatomic pair of Ag and Ag became predominant and the distance was 0.287 nm (Fig. 1B-c2, Table S1c). Therefore, all of the outer layer AgCl and a part of inner layer Ag$_2$O were transformed to metallic yellow Ag0 due to the reduction by photogenerated electrons diffused from TiO$_2$.

In response to the UV-visible irradiation, the photocurrents increased and stabilized within 6–9 min at pH 3.0 (Fig. 3A1). In five light on/off cycles, the photocurrents converged to 11.8–12.7, 17.6–18.8, and 26.0–26.7 µA using Ag-TiO$_2$ of 0.33%, 1.0, and 3.0 wt% Ag, respectively, on a photocathode. The converged photocurrent values were plotted as a function of the Ag content in the Ag-TiO$_2$ photocatalysts (Fig. 3A2), and they increased proportionally to the cube root of the Ag content.

Next, the dependence of photocurrents on the pH of electrolyte solution was investigated for the PFC comprising TiO$_2$ and Ag-TiO$_2$ (3.0 wt% of Ag) at the pH values between 2.0 and 4.0 (Figs. 3B1, 2). Throughout this study, the pH values changed negligibly (within the variation of 0.02) over 5 h. The photocurrents stabilized within 1–11 min of irradiation and converged to 26.0–26.7 µA at pH 3.0. The current gradually increased from 43.7 to 60.5 µA in five cycles at pH 2.0 (Fig. 3B1); in contrast, the current gradually decreased from 3.2 to 2.6 µA at pH 4.0 (B2).

The photocurrents quickly decreased to zero over 6 min at pHs of 2.0 and 3.0 when the UV-visible light was off, while the currents decreased more slowly (30–43 min) at pH 4.0. This suggested limited diffusion at lower proton concentrations. The converged PFC photocurrent values were plotted as a function of electrolyte solution proton concentrations (Fig. 3B3). The values increased proportionally to the square root of the proton concentrations.

The current (i)–voltage (V) characteristic was also studied for the TiO$_2$ and Ag-TiO$_2$ of 3.0 wt% Ag PFC at pH 2.0 (Fig. 3C). The i value gradually increased as the cell voltage decreased, starting from open circuit voltage (V_{OC}, 1.59 V), which is similar to the i–V dependence for the SCs. When the voltage was less than 0.45 V, the current increased linearly from 20 to 74 µA (short circuit current, I_{SC}). The maximum electric power was 14 µW (1.1 V × 13 µA) among the three runs using the photocatalyst film area of 1.3 cm2. As a comparison test, Ag mesh (150 µm–, 40 lines in 2.54 cm) was used as electrodes instead of ITO-coated glass. The V_{OC} (0.52 V) and I_{SC} (107 µA) obtained for PFC using Ag mesh were quite different from that using ITO-coated glass (1.59 V, 74 µA; Fig. 3C), suggesting the interface between photocatalysts and electrode (In/Sn oxide, Ag) was also critical for the characteristic of PFC.

The i–V characteristic can be explained based on the equivalent SC circuit comprising a diode, a series resistance

![Fig. 1](image)

![Fig. 2](image)

![Fig. 3](image)
(R\text{series}) and a shunt resistance (R\text{shunt}). The current i can be expressed as follows
\[i = i_{\text{photo}} - i_{\text{diode}} \left[\exp \left(\frac{e(V + iR_{\text{series}})}{nkT} \right) - 1 \right] \frac{V + iR_{\text{series}}}{R_{\text{shunt}}} , \] (1)
where \(i_{\text{photo}} \) is photoelectric current, \(i_{\text{diode}} \) is saturated current of diode, \(e \) is elementary charge, \(k \) is Boltzmann constant, and \(T \) is the temperature. The \(R_{\text{series}} \) and \(R_{\text{shunt}} \) values were calculated to be 35 and 5.9 kΩ cm\(^2\), respectively, based on the tangent lines from \(V_{\text{OC}} \) and \(I_{\text{SC}} \) (Fig. 3C). Compared to the general requirement for ideal Si SCs (\(R_{\text{series}} < 1 \) Ω cm\(^2\), \(R_{\text{shunt}} > 1 \) kΩ cm\(^2\)), the resistance in photocatalysts and that at the interface between photocatalysts and electrodes needs to be improved for PFCs to decrease the \(R_{\text{series}} \) value.

The PFC photocurrents are generated by the balance of photoexcitation and charge recombination in TiO\(_2\) and Ag-TiO\(_2\) photocatalysts, and the reaction rates of water photooxidation and O\(_2\) photoreduction (Scheme 1) analogous to dye-sensitized SCs, in which dye attached to TiO\(_2\) is photooxidized and redox mediator is reduced at the cathode.

The allowed indirect band gap electronic transition\(^{24}\) leads to the separation of electrons and holes in TiO\(_2\). The equilibrium constants of charge separation (\(K_1 \) and \(K_2 \)) are assumed in the experiments of Ag-TiO\(_2\) photocatalysts, respectively. The electrons excited to CB for Ag-TiO\(_2\) may be favorably trapped at the Ag sites\(^{29}\) owing to the Schottky barrier between TiO\(_2\) and Ag nanoparticles.

The photooxidation over TiO\(_2\) was essentially irreversible in the N\(_2\) flow. The rate and constant were denoted as \(r_{\text{ox}} \) and \(k_{\text{ox}} \) respectively. The O\(_2\) photoreduction at Ag-TiO\(_2\) was in equilibrium with the product (water) and the constant is denoted as \(K_{\text{red}} \). The forward electron flow rate from TiO\(_2\) to Ag-TiO\(_2\) via the external circuit should be proportional to both the excited electron concentration in TiO\(_2\) and the hole Ag-TiO\(_2\) concentration based on the principle of PFC as shown in Scheme 1. The reverse electron flow rate should be proportional to both the unreacted trapped electron concentration at Ag-TiO\(_2\) and the unreacted hole concentration at TiO\(_2\). Thus, the effective electron flow rate (photocurrent \(i \)) is formulated in equation 2. The derivation is shown in equations S1–S4 (ESI\(^+\)).

\[i = k K_1 c_e \left(c_{\text{ox}} \right)^{\frac{1}{2}} \left(c_{\text{oi}} \right)^{\frac{1}{2}} \left([\text{H}^+] \right)^{\frac{1}{2}} - k K_2 c_e \left(c_{\text{ox}} \right)^{\frac{1}{2}} \left(c_{\text{oi}} \right)^{\frac{1}{2}} \left([\text{H}^+] \right)^{\frac{1}{2}} , \] (2)
where \([\text{O}_2]\) and \([\text{H}^+]\) with a subscript “e” denote the concentrations of \(\text{O}_2 \) and \(\text{H}^+ \) in acidic solution around the cathode, and rate and equilibrium constants with the prime symbol denote the constants multiplied with essentially constant concentrations for predominant species in acidic solution/photocatalysts (See ESI\(^+\) for a detailed definition).

The experimental data fit of pH dependence in equation 2 is presented in Fig. 3B3 (upper x-axis). The second term was negligible in the fit (\(i = 626.7 \) [\text{H}^+]\(^{1/2} \) – 0.0099777 [\text{H}^+]\(^{-1/2} \), demonstrating that the reverse electron flow from Ag to VB of anodic TiO\(_2\) via external circuit was minimal. Moreover, the net photocurrents were essentially proportional to \([\text{H}^+]\)\(^{1/2} \) (Fig. 3B3, lower x-axis; the first term of equation 2). In this study, PFC was advantageous for rectifying the electron flow direction owing to the Schottky barrier between TiO\(_2\) and Ag nanoparticles.

Moreover, the suppression of reverse reaction at anodic TiO\(_2\) by purging the resultant \(\text{O}_2 \), analogous to the suppression of dye reduction by electron transfer form CB of TiO\(_2\) to dye in dye-sensitized SC.\(^{22}\) In addition, total current generated in Fig. 3B1 (pH 2.0) corresponded to 4.9 \(\mu \text{mol}-\text{e}^- \) versus the Ag amount mounted on cathode was 1.4 \(\mu \text{mol} \). Therefore, major part of forward electron flow to Ag on cathode should be consumed to reduce \(\text{O}_2 \).

The effects of Ag (electron trap and electron transfer to O\(_2\)-derived species) are related to the charge separation equilibrium \(K_1 \) (or \(K'_1 = K \left(\text{Ag}^+ \right)^\frac{1}{2} [\text{O}_2^- \right]^\frac{1}{2} \), ESI\(^+\)) that appeared in equation 2. The weight (\(\nu \)) of sphere-like Ag nanoparticles (Fig. 2) is proportional to the cube of average radius \(\left(\nu = N \frac{4}{3} \pi \left(\frac{\rho}{\mu} \right)^3 \right) \), where \(N \) is number of Ag nanoparticles, \(\rho \) the density\(^{30}\). The effective charges trapped in Ag for photocatalysis should be related to the surface area of Ag nanoparticles, \(4N\pi \left(\frac{\rho}{\mu} \right)^2 \) (Fig. 2(3)) takes into account the square root dependence of the first term in equation 2 on \(K'_1 \) (2/3 \(\times 1/2 \)). Thus, the cube root dependence of photocurrents on Ag content (Fig. 3A2) can also be explained.

In the cyclic voltammetry (CV) measurements for Ag-TiO\(_2\) (3.0 wt% of Ag) in HCl aqueous solution of pH 4.0, only the redox reactions of AgCl (\(\text{AgCl} + e^- + \text{Ag}^0 + \text{Cl}^- \)) and H\(_2\) formation (2\(\text{H}^+ + 2e^- \rightarrow \text{H}_2 \)) occurred under N\(_2\) dark (Fig. 4d, Table S2). When the Ag-TiO\(_2\) was irradiated by UV-visible light, the redox reactions of Ag-O\(_2\) (\(\text{Ag}^0 + 2\text{H}^+ + 2e^- \rightarrow 2\text{Ag}^0 + \text{H}_2 \)) also occurred (Fig. 4c). Under O\(_2\), the reduction reaction peak from Ag-O\(_2\) to Ag\(^0\) at 0.35 V (versus SHE) was more intense, as seen in Fig. 4a, when irradiated by UV-visible light compared to Fig. 4b, which is the reduction peak in the dark. This result is in accordance with the Ag photoreduction as monitored using EXAFS (Figs. 1B-c). If the photoreduction of Ag is coupled with simple oxidation of Ag by \(\text{O}_2 \) (\(4\text{Ag} + \text{O}_2 \rightarrow 2\text{Ag}_2\text{O}_3 \)), \(\text{O}_2 \) photoreduction at the cathode of the PFC can be explained (Fig. 4a, Bottom inset chemical formula). In contrast, no distinct peaks appeared in any of the conditions employed for TiO\(_2\).
counter electrode of glassy carbon in HCl aqueous solution of pH 4.0 in O$_2$ flow (a, b) or N$_2$ flow (c, d) under the irradiation by UV-visible light (a, c) or in dark (b, d).

Conclusions
5 The feasibility of PFCs comprising two photoelectrodes was demonstrated using TiO$_2$ and Ag-TiO$_2$ immersed in HCl solution of pH 2, separated by a PCP film. The V_{OC}, I_{SC}, and maximum power were 1.59 V, 74 µA, and 14 µW, respectively. TiO$_2$ photooxidized water under N$_2$ flow, while Ag-TiO$_2$ photoreduced O$_2$. The kinetic model successfully explained the photocurrent dependences on pH values and the amount of Ag. The quantum efficiency was evaluated to be 20% both for photooxidation and photoreduction (ESI†) and that of PFC should be the product (4%). The quantum efficiency needs to be improved by the optimization of photocatalysts on cathode and the thickness, packed density, and the serial resistance for photocatalysts on electrodes.

Notes and references
9 Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan., Fax: +81-43-290-2783; Tel: +81-43-290-3696; E-mail: yizumi@faculty.chiba-u.jp
10 Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan.
11 Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 163-8601, Japan.
† Electronic Supplementary Information (ESI) available: The derivation of equation 2 for photocurrents of PFC, Experimental methods, EXAFS curve-fit results, CV peak positions, and supplementary EM images. See DOI: 10.1039/b000000x/
‡ The authors are grateful for the financial supports from the Feasibility Study Stage of A-STEP (AS251Z00906L, AS231Z01459C) from the Japan Science and Technology Agency, the Iwatai Naoji Foundation (2011-2012), and the Grant-in-Aid for Scientific Research C (22550117) from MEXT (2010–2012). X-ray absorption experiments were conducted under the approval of the Photon Factory Proposal Review Committee (2013G159).