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MeOTf-induced carboannulation of arylnitriles and aromatic 

alkynes for synthesis of indenones has been described under 

metal-free condition. When ortho-substituted benzonitriles 

were used, indeno[1,2-c]isoquinolines were formed. 

Indenones are valuable frameworks in organic and bioorganic 10 

compounds.1 In addition, they have also found applications in 
material chemistry and medicinal chemistry.2 Due to the 
importance of indenones, various synthetic methodologies for 
their synthesis have been reported. Traditional methods to yield 
indenones include intramolecular Friedel–Crafts acylation or 15 

addition of organometallic reagents to 1,3-indandiones. These 
methods usually require multiple steps and/or have limited 
substrate scope.3 Transition metal-catalyzed syntheses of 
indenones have been developed in recent years.4-7 Among them, 
Pd-catalyzed annulation of alkyne with ortho-functionalized 20 

arylcarbonyl or arylnitrile compounds is a powerful strategy 
leading to indenones (Scheme 1, route a).4,5 However, these 
approaches require prefunctionalized arenes and this both time 
and cost consuming in synthetic sequence. Recently, direct 
construction of indenones via Rh-catalyzed annulation of 25 

benzimide or benzaldehyde with alkynes has been reported (route 

b).6 Although significant advances have been made to date, new 
methods for the synthesis of diverse indenones with readily 
available starting materials and simple reaction process under 
metal-free are still highly desirable, particular in the drug 30 

scanning process. Herein, we report the methyltriflate (MeOTf) 
induced annulation of arylnitriles and aromatic alkynes to afford 
indenones under metal-free condition. 

 
Scheme 1 Synthetic strategy leading to indenone. 35 

 Recently, Cu(II)-catalyzed cascade annulation of 

diaryliodoniums, nitriles, and alkynes afforded quinolines, in 
which phenylium (Ph+) generated from Cu(II)-catalyzed 
decomposition of diaryliodonium salt was thought as an 
electrophile to induce formation of N-phenylnitirilium.8 Inspired 40 

by this work, we envisioned that whether a related process could 
be induced by MeOTf which is frequently used in the methylation 
reaction of heteroatom compounds. In this process, MeOTf as an 
electrophile reacts with arylnitrile to give the N-methylnitirilium 
A,9 which is highly reactive species and could react with alkyne 45 

to afford intermediate B. The intermediate B undergoes an 
electrophilic annulation to form indenone after hydrolysis 
(Scheme 2). 

 
Scheme 2 Design of construction of indenones by MeOTf-induced 50 

carboannulation. 

 In the preliminary experiment, heating the mixture of p-
tolunitrile 1a, MeOTf, and diphenylacetylene 2a (1:1:1) in 
dichloroethane at 150 oC for 12 h, the desired indenone 3aa was 
formed in 30% yield after hydrolysis. The byproduct was 55 

pyrimidine which was produced by acid-catalyzed 
cyclotrimerization of alkyne and nitrile.10 This side-reaction was 
inhibited when increasing the amount of MeOTf. Then we tried 
different ratio of substrates, and found it gave the best result 
when the ratio of p-tolunitrile, MeOTf, and diphenylacetylene is 60 

1.5:3:1 (Table 1, entries 2-5). Temperature screening experiments 
(entries 5-7) revealed that the best reaction temperature was 150 
oC (entry 5). When the reaction was conducted in 6 h, the yield 
was 51% (entry 8). When the reaction was treated in CCl4, only 
trace amount of the product was observed (entry 9). 65 

 Having the optimized reaction conditions, we tested various 
alkynes for the annulation reaction (Scheme 3). When 
symmetrical diarylacetylenes were used, the desired indenones 
(3aa - 3ae) were formed in 56% to 70% isolated yields. Trace 
indenone product 3af was observed using 1,2-bis(2-ethylphenyl) 70 

acetylene, wherein the steric hindrance largely may inhibit the 
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reaction. It is noteworthy that when unsymmetrical 4-
methoxyldiphenylacetylene was used, only one product 3ag was 
formed. The yield was modest, which may due to the interaction 
of MeOTf and methoxyl group. When 1-phenylpropyne and 1-
phenylbutyne were employed, indenones 3ah and 3ai were 5 

formed in 45% and 50% isolated yield, respectively. In these 
cases, the alkyl group located at 2-position of indenone ring and 
the phenyl group located at 3-position, which was totally different 
with transition-metal-catalyzed annulation of arenes with aryl 
alkyl acetylenes.6 This regioselectivity may be due to more 10 

stabilized effect of phenyl group in intermediate B. When 
dialkylacetylene such as 5-decyne was used in the same reaction 
condition, the cyclized product didn’t observe and vinylketone 
3aj was formed as final product, which indicates the B as 
intermediate in this reaction. 15 

Table 1 Reaction optimizationa 

 
aThe reaction was performed with 0.5 mmol diphenylacetylene in 2 mL 
DCE in sealed tube for 12 h under nitrogen. b1H NMR yield, isolated yield 
was given in parentheses. cReaction time for 6 h. dCCl4 as solvent. 20 
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Scheme 3 Substrate scope of alkynes. 

 Next we investigated the scope of the arylnitriles (Scheme 4). 
Simple benzonitrile 1b afforded indenones 3ba-3bi in lower 
yields compared with p-tolunitrile. When benzonitriles with para-25 

substituents such as bromo, chloro, and phenyl group were 
employed, the corresponding indenones 3ca-3da were formed in 
67% to 72% isolated yields. It is noteworthy that utilization of p-
methoxylbenzonitrile afforded not only the desired indenone 3ha 
in 22% yield, but also rearrangement isomer 3ka in 10% yield 30 

(for possible formation of this isomers, see ESI). Again, the low 
yield may be attributed to the interaction of MeOTf and methoxyl 
group. Benzonitriles with strong electron withdrawing group such 
as fluoro and trifluoromethyl group in the para-position afforded 
the corresponding indenones in trace amount and the alkyne 35 

remained. Benzonitriles with meta-substituented methyl or bromo 
group afforded the corresponding indenones as two isomers (3ia 
and 3ia′, 3ja and 3ja′), respectively. Notably, when m-
methoxylbenzonitrile was used, indenone 3ka was formed in 
31% isolated yield. In this case, we didn’t observe other isomer. 40 

3,5-Dimethylbenzonitrile afforded 3la in 68% isolated yield. 2-
Naphthonitrile gave benzo[e]indenone 3ma in 46% isolated yield 
as a single product. 
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Scheme 4 Substrate scope of arylnitriles. 45 

 When o-chlorobenzonitrile was employed under the same 
reaction condition, the reaction didn’t afford indenone product 
but indeno[1,2-c]isoquinoline 4a formed in 46% isolated yield. 
The structure of 4a was further confirmed by its X-ray diffraction 
analysis.‡ The structure of 4a contains two molecules of o-50 

chlorobenzonitrile and one molecule of diphenylacetylene. 
Methylene and methyl group derived from methyl triflate. The 
reaction of benzonitriles with ortho-bromo or iodo substituent 
were similar, and the corresponding indeno[1,2-c]isoquinoline 4b 
and 4c were isolated in 39% and 43% yield, respectively (Scheme 55 

5). When o-tolunitrile was employed as substrate, the reaction 
yielded a mixture of indenones and indeno[1,2-c]isoquinoline 
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(see ESI). 

 

 
Scheme 5 Reaction of ortho-substituted benzonitrile, MeOTf, and 

diphenylacetylene and X-ray structure of 4a. 

 For the reaction of ortho-substituted benzonitrile, MeOTf, and 5 

diphenylacetylene, a plausible mechanism is proposed as follows 
(Scheme 6): First, methylation of nitrile by MeOTf affords 
nitrilium 5. Then alkyne attacks the carbon atom of nitrilium to 
afford intermediate 6 which undergoes Friedel–Crafts reaction to 
give indenone imine 7. Then indenone imine 7 attacks another 10 

molecular of nitrilium to yield cation 8 or its resonance 8′. 
Subsequent 1,3-H shift and double bond migration of cation 8′ 
affords intermediate 10 through 9. Finally, intramolecular 
Friedel–Crafts reaction of 10 affords product 4. 

 15 

Scheme 6 Plausible mechanism. 

 In conclusion, we have developed a MeOTf-induced 
annulation between arylnitriles and aromatic alkynes. A range of 
functionalized indenone products are obtained. Under the same 
reaction condition, ortho-substituted benzonitriles afforded 20 

indeno[1,2-c]isoquinolines with construction of one carbocycle 
and one heterocycle. Further investigations are still in progress in 
this area. 
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