Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhance the synergistic effects: A double act for the treatment of multidrug-resistant cancers

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Biomaterials Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>BM-ART-07-2014-000272.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>27-Aug-2014</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Scarano, Wei; University of New South Wales, deSouza, Paul; University of Western Sydney, Stenzel, Martina; University of New South Wales, School of Chemical Sciences and Engineering</td>
</tr>
</tbody>
</table>
Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhance the synergistic effects: A double act for the treatment of multidrug-resistant cancers

Wei Scarano, a Paul De Souza, b Martina H. Stenzel* a

Combinational chemotherapy is often used to prevent drug induced resistance in cancer. Aim of this work is to test if the co-delivery of drugs within one nanoparticle can result in increased synergistic effects of both drugs. Therefore, a micelle system with two different compartments, one for the drug curcumin and one for the conjugation of platinum drugs was designed. A triblock copolymer, based on the biodegradable polycaprolactone PCL, a PEG based shell and an amine bearing polymer as the interphase for the conjugation of platinum drugs was prepared by combination of ring-opening polymerization and RAFT polymerization. Curcumin was incorporated into the self-assembled onion-type micelle by physical encapsulation into the PCL core with an entrapment capacity of 6 wt%. The platinum (IV) drug oxoplatin was reacted with succinic anhydride to yield Pt(NH$_3$)$_2$Cl$_2$[(COOH)$_2$], which acted as the drug and as a crosslinker for the stabilisation of micelles. The size of the dual drug micelles were measured to be 38 nm by DLS, which was confirmed by TEM. The toxicity of the dual drug delivery system was tested against A2780 human ovarian cancer cell lines and compared to the IC$_{50}$ value of micelles that deliver either curcumin or the platinum drug alone. The results were analysed using Calcusyn software. While curcumin and the platinum drug together without a carrier showed already synergies with a combination index ranging from 0.4-0.8, the combined delivery in one nanoparticle could enhance the synergistic effects resulting in a combination index of approximately 0.2-0.35. For comparison, a mixture of two nanoparticles, one with curcumin and one with the platinum drug, were tested revealing a less noticeable synergistic effect compared to the co-delivery of both drugs in one drug carrier.

Introduction

Conventional chemotherapy, if ineffective in eradicating cancer cells can lead to the development of drug resistance over the course of therapy. The development of drug resistance could be due to two major factors: inability to deliver drug to the tumour site and specific genetic alternations in cancer cells. 1 Drug delivery to tumour site can be improved with the use of nanoparticles and delivery systems such as polymeric micelles have been widely used as drug carriers due to their advantageous characteristics such as solubilisation of hydrophobic molecules with high drug loading capacity, low toxicity, high water solubility and high structural stability which ultimately allows prolonged circulation in blood and enhanced accumulation in tumour tissues. 2, 3

To overcome potential drug-induced mutations and drug resistance in tumours, combination chemotherapy may be used. This is where a combination of two or more drugs are employed to disrupt different stages of the cell’s repair and/or reproduction cycle to enhance the apoptosis of cancer cells. In cancer treatment it is common to utilise a combination of chemotherapeutic agents for treatment, 4, 5 however it is important to consider their mechanism of action, the dose ratios between the drugs as well as their induced side effects.

Cisplatin is the one of the commonly used chemotherapeutic agents today; it disrupts cell repair by cross-linking with the DNA strand and ultimately causing apoptosis. 6, 7 However a potential disadvantage of using platinum-based drugs is that the drug is required to enter the cell nucleus first, and then attach to DNA before the apoptosis sequence begins. 8, 9 However, excision repair cross-complementary 1 (ERCC1) a protein involved the process of nucleotide excision repair - is expressed at high levels in cancers and has been associated with resistance to platinum-based chemotherapy. 10 Therefore cisplatin is often used in conjunction with other drugs for cancer treatment, in an
attempt to circumvent this potential mechanism of platinum resistance.

Curcumin is a natural polyphenolic compound extracted from the root of turmeric plant (curcuma longa) and has been used traditionally for centuries in Asia for medicine, culinary, and other purposes. Curcumin exists in mostly β-diketone tautomer form but also exists between the two equilibrates of asymmetric keto-enol tautomer, and it possesses antioxidant, anti-inflammatory, antibacterial and anti-cancer activity. Curcumin has been shown to exhibit therapeutic potential against various types of cancers but has poor bioavailability due to its rapid metabolism in the liver and the intestinal wall. It is understood that the anti-carcinogenic and chemo-preventive effects of curcumin could be due to its action on multiple targets including transcription factors, growth regulators, adhesion molecules, apoptotic genes, angiogenesis regulators and cellular signalling molecules.

The synergistic effect of curcumin and various anticancer agents has been explored previously. However, the efficacy of the drug can also be significantly improved with the use of drug delivery systems. Drug delivery systems consisting of polymeric materials have been used to deliver a wide range of compounds with the potential of the improving the Enhanced Permeability and Retention (EPR) effect on solid tumors. This is where polymeric macromolecular structures of size above 40 kDa are accumulated in solid tumour due to their pathophysiological uniqueness, unlike low molecular weight compounds.

Therefore delivering curcumin using a polymeric drug delivery system could also improve its activity. Further, curcumin is able to enhance the anti-proliferative properties of platinum complexes. The use of liposomes to deliver both platinum and curcumin can result in a greater growth inhibition and apoptotic effect with virtually no side effects in animals. However, it has never been quantified if there is an advantage (or synergistic effect) of co-delivering both drugs.

We hypothesized therefore, that the use of a polymeric micelle delivery system to co-deliver curcumin and platinum complexes would result in improved drug efficacy. Both drugs have very different requirements in regards to an optimized drug carrier design. While curcumin is best delivered using a hydrophobic polymer, platinum drugs are typically conjugated to the polymer. The design of nanocarriers with various compartment of different natures are therefore paramount. Onion-type polymeric micelles based on triblock copolymers with their tuneable characteristics fit the specific requirements. This triblock copolymer needs to satisfy three criteria: a hydrophobic part, which will form the core of the micelle, for the encapsulation of curcumin, a reactive block for the platinum drug conjugation and a water-soluble part that will build up the shell, which determines the interaction with the biological environment. The polymer will therefore compromise the biodegradable and hydrophobic polymer polycaprolactone as the core. PEG-based polymer as shell and amine-bearing polymers in the interphase allowing efficient modification for the attachment of desirable molecules.

Experimental

Materials

2-Mercapto ethanol (Aldrich, 99%), benzyl bromide (Aldrich, 98%), carbon disulfide (Aldrich, 99%), potassium phosphate, 3-amino-1-propanol (Aldrich, 99%) di-tert-butyl-dicarbonate, acryloyl chloride (Aldrich, 97% with <210 ppm MEHQ as stabilizer), ε-caprolactone (Aldrich, 97%), lipase acrylic resin (Aldrich, ≥5,000 U/g), fluorescein OFmethacrylate (Aldrich, 97%), cis-diammineplatinum (II) dichloride (CDDP; Sigma Aldrich, 99.9%), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC; Aldrich, 98%), N-hydroxysuccinimide (NHS; Aldrich, 98%), succinic anhydride (Fluka, 97%), curcumin (Fluka, analytical standard), L-ascorbic acid (Aldrich, 99%), toluene (Aldrich; purum), N,N-dimethyl acetamide (DMAC; Aldrich, 99.9%), N,N-dimethylformamide
(DMF; Aldrich), diethyl ether (Et2O; Ajax Fine Chem, 99%), ethyl acetate (EtOAc; Ajax Finechem, 99.5%), methanol, anhydrous tetrahydrofuran (THF; Aldrich, >99%), n-hexane (Ajax Fine Chem, 95%), hydrochloric acid (HCl; Ajax Fine Chem, 32%), hydrogen peroxide (H2O2; Ajax Fine Chem, 30 % w/v), 1,4-dioxane (Ajax Fine Chem, 99%), triethylamine (TEA; Ajax Fine Chem, 99%), potassium phosphate (K3PO4; Ajax Fine Chem, 99%) were used without any further purification.

Oligo(ethylene glycol) methyl ether acrylate (OEGMEMA, $M_n= 480$ g mol⁻¹; Aldrich) were destabilized by passing them over a column of basic alumina and stored at -70°C. 2,2-Azobisisobutyronitrile (AIBN; Fluka, 98%) was purified by recrystallization from methanol. Deionized (DI) water produced 17.9 mΩ/cm.

The magnesium sulphate was filtered and the solvent was yellow oil. Yield: 19.78 g, 92%.

This journal is © The Royal Society of Chemistry 2012

Benzyl 2-hydroxyethyl carbonothioate (BHCT)

Benzyl 2-hydroxyethyl carbonothioate (BHCT) was prepared according to literature. 2-mercaptoethanol (1.00 g, 12.82 mmol) was added to a stirred suspension of K₂PO₄ (2.71 g, 12.82 mmol) in acetone (20 ml) and was left to stir for ten minutes. CS₂ (2.92 g, 38.46 mmol) was added and the solution turned bright yellow. After stirring for fifteen minutes benzyl bromide (2.19 g, 12.82 mmol) was added to the reaction to form a precipitate of KBr. The reaction was left to stir for overnight at room temperature and the suspension was filtered and the cake was washed with acetone (2 x 20 mL). The filtrate was collected and solvent removed under reduced pressure on rotary evaporator to give a yellow viscous oil residue. The product was then purified by column chromatography on silica using 3:1 hexane: ethyl acetate mixture. Yield: 88%. 1H-NMR (CDCl₃) δ (ppm): 7.40-7.28 (5H, m, Ph), 4.69 (2H, s, H1), 3.91 (2H, t, H2), 3.66 (2H, t, H3), 2.38 (1H, br, s H4).

TERT-BUTYL (3-HYDROXYPROPYL)CARbamate (BAP)

3-amino-1-propanol (10 mL, 133 mmol), di-tert-butyldicarbonate (43.49 g, 199 mmol) and triethylamine (5mL) was dissolved in methanol (100 ml). The reaction mixture was stirred at 50 °C in an oil bath for 1 h and then was further reacted in room temperature for 3 h. The solvent was then removed under reduced pressure on a rotary evaporator. Water (50mL) was then added to the pale yellow oil and the product was extracted using 3 x diethyl ether (30 mL), the diethyl ether layer was then combined and dried over magnesium sulphate. The magnesium sulphate was filtered and the solvent was removed from the filtrate via rotary evaporation to yield pale yellow oil. Yield: 19.78 g, 92%. 1H-NMR (CDCl₃) δ (ppm): 4.74 (br, 1H, H), 4.26 (t, 2H, H), 3.26 (m, 2H, H), 1.92 (t, 2H, H), 1.47 (s, 9H, H).

3-((TERT-BUTOXYCARBONYL)AMINO)PROPyl ACrylate (ABPA)

Boc protected 3-amino-1-propanol (BAP) (4g, 22.85 mmol) and triethylamine (3.17 mL) was dissolved in anhydrous THF (10 mL) and the reaction mixture was cooled to 0 °C in an ice bath before acryloyl chloride (1.85 mL, 23 mmol) was added drop wise while stirring. The reaction was left to stir in the ice bath for 2 h then left to react further at room temperature overnight. Any solid was filtered off and the solvent of the filtrate was removed under reduced pressure on a rotary evaporator. The product was purified via gel column chromatography using chloroform as eluent. The second fraction was collected to obtain clear oil. Yield: 4.1g, 85%. 1H-NMR (CDCl₃) δ (ppm): 6.44 (dd, 1H, H1), 6.12 (dd, 1H, H2), 5.87 (dd, 1H, H3), 4.74 (br, 1H, H4), 4.26 (t, 2H, H5), 3.26 (m, 2H, H6), 1.92 (t, 2H, H7), 1.47 (s, 9H, H8).

POLYMERISATION OF E-caprolactone VIA Ring Opening POLYMERisation (ROP)

Under nitrogen atmosphere, a mixture of BHCT (100 mg, 0.39 mmol), e-caprolactone (2 g, 17.54 mmol), toluene (3 mL) and lipase acrylic resin (100 mg) were placed in a dry schlenk flask. The solution was stirred at 70 °C for 1.5 h. After cooling down to room temperature, the lipase acrylic resin was removed by filtration. The polymer was precipitated from the filtrate in a cold mixture of diethylther/n-hexane (1:1). Yield: 50 repeating units of e-caprolactone. 1.94g, GPC (THF): Mn = 5300 g.mol⁻¹, PDI₂₀ = 1.85.

RAFT POLYMERISATION WITH POLYETHYLENEGLYCOL METHYLEther ACrylate (OEGMEA) USING POLY E-caprolactone BHCT (PCL-b-POEGMEA)

OEGMEA (1 g, 2 mmol), fluorescein O-methacrylates (3 mg, 7.5 x 10⁻³ mmol), AIBN (2.18 mg, 1.3 x 10⁻² mmol) and poly ε-caprolactone BHCT (216 mg, 4.1 x 10⁻² mmol) was dissolved in toluene (1.5 mL). The reaction mixture was placed in an ice bath and purged with nitrogen for 30 minutes then the reaction vial was immersed in a preheated oil bath at 65 °C for 2.5 h. The polymerization was terminated by placing the samples in an ice bath for 5 min and the polymer was purified by precipitation in cold diethyl ether. After centrifugation (7000 rpm for 10 min), the polymer was dried under reduced pressure at room temperature. The samples were stored in a freezer prior to any modifications. By comparing the intensity of vinyl proton peaks (6.1 and 5.6 ppm) to that of aliphatic proton peaks (1.1-1.3 ppm), the conversion of monomer during the course of polymerization was determined. The monomer conversion was calculated to be 35 % from 1H-NMR yielding 37 repeating units of OEGMEA with $M_\text{theo}= 22960$ g mol⁻¹ ($M_\text{SEC DMAc}= 23500$ g mol⁻¹) PCL-50-b-POEGMEA₃₇ was used for chain extension in future reactions.

SYNTHESIS OF PCL-b-PABA-b-POEGMEA

PCL-50-b-POEGMEA₃₇ (0.44 g, 0.019 mmol), AIBN (0.20 mg, 1.22 x10⁻³ mmol) and ABPA 200 mg, 0.92 mmol) was dissolved in toluene (0.625 mL). The reaction mixture was placed in an ice bath and purified with nitrogen for 30 minutes then the reaction vial was immersed in a preheated oil bath at 65 °C for 2.5 h. The polymerization was terminated by placing the sample in an ice bath for 5 minutes and open to air. The polymer was then purified by precipitation in cold diethyl ether. After centrifugation (7000 rpm for 10 min), the polymer was dried under reduced pressure at room temperature. The samples were stored in a freezer prior to any modifications. By
comparing the intensity of the vinyl proton peaks at (6.44-6.12 ppm) to that of the tert butyl proton peaks at (1.47 ppm), the conversion of monomer during the course of polymerization was determined. The monomer conversion was calculated to be 65% with 38 repeating units of ABPA giving $M_{n\text{theo}} = 31054$ g mol$^{-1}$ ($M_{n\text{SEC DMAc}} = 30000$ g mol$^{-1}$). The polymer PCL$_{50}$b-ABPA$_{38}$-b-POEGMEA$_{17}$ was stored in dark and dry area for future reactions.

DEPROTECTION OF PCL-b-PABPA-b-POEGMEA INTO PCL-b-PAPA-b-POEGMEA

PCL-b-ABPA-b-POEGMEA (20 mg, mmol) was dissolved in DMF (3 mL) and 2 drops of hydrochloric acid (32 %) was added to the reaction mixture and was left to stir overnight at room temperature. The polymer was then precipitated in cold diethyl ether and dried in a vacuum oven at 40 °C. By comparing the disappearance of the tert. butyl peaks (1.48-1.5 ppm) the success of the deprotection was confirmed.

PREPARATION OF BLANK POLYMERIC MICELLES

PCL-b-PABPA-b-POEGMEA (10 mg) or PCL-b-APA-b-POEGMEA (10 mg) was dissolved in DMF (2 mL) and water (2.5 mL) was added drop wise over the period of 3 hours. The solution was dialyzed against water for 48 h with constant water change using a tubular dialysis membrane (MWCO3500).

SYNTHESIS OF CURCUMIN LOADED MICELLES (M2 Pt)

PCL$_{50}$b-ABPA$_{38}$-b-POEGMEA$_{17}$ (15 mg, 5.437 10^{-4} mol) was dissolved in 1,4-dioxane (2 mL) and water (2.5 mL) was added drop wise over period of 1 hour. In another vial N-hydroxysuccinimide (5 mg, 4.34 10^{-5} mol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide EDC (5 mg, 3.22 10^{-4} mol) and Pt(IV) (9 mg, 1.69 10^{-3} mol) was left to react in DI water (1 mL) overnight before adding it to the solution of polymeric micelles. The reaction mixture was then left to stir for 48 h, followed by dialysis against DI water using tubular membranes (MWCO 3500).

SYNTHESIS OF CURCUMIN LOADED AND PLATINUM CROSSLINKED MICELLES (M3)

DEP PCL$_{50}$b-ABPA$_{38}$-b-POEGMEA$_{17}$ (15 mg, 5.437 10^{-4} mol) and curcumin (1, 2 or 5 mg) was dissolved in 1,4-dioxane (2 mL) and water (2.5 mL) was added drop wise over the period of 3 hours. In another vial N-hydroxysuccinimide NHS (5 mg, 4.34 10^{-5} mol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide EDC (5 mg, 3.22 10^{-5} mol) and cis,cis,trans-Diaminedichlorodisuccinatoplatinum (Pt IV[COOH]$_2$) (9 mg, 1.69 10^{-5} mol) was left to react in DI water (1 mL) for overnight before added to the reaction mixture containing polymer and curcumin. The reaction mixture was left to stir for 48 h and followed by dialysis against DI water for 8 h with hourly water change using membrane (MWCO 3500). The curcumin that was not encapsulated in the micelles precipitated out and removed by centrifugation at 3000 rpm for 5 minutes. The supernatant was extracted for further use. Note: The ratio between COOH and NH$_2$ functional groups are 2:1 respectively.

REDUCTION OF PLATINUM(IV) DRUG INCORPORATED IN PCL-b-ABPA-b-POEGMEA CROSSLINKED MICELLES IN THE PRESENCE OF SODIUM ASCORBATE

The reduction of Pt(IV) complex incorporated in the polymeric micelle was carried out in DI water instead of buffer solution to avoid buffer coordination to platinum. The concentration of the stock sodium ascorbate is 5 mM. The concentration of micelles for this experiment is at 1 mg mL$^{-1}$. The reduction of Pt(IV) complex incorporated micelle by sodium ascorbate was monitored over a week at 37 °C using an incubator. After each time interval 100 µL of sample was taken out from the dialysis bag and is then diluted up to 10 mL of aqua regia (2 v/v %).
followed by heating the solution at 90°C for 5 h. ICP-MS was then used to determine the platinum concentration in the solution.

MEASUREMENT OF THE RELEASE OF CURCUMIN IN CROSSLINKED AND UNCROSSLINKED MICELLES

Three separate micelle solutions at concentration of 1 mg mL⁻¹ of polymer were used for this experiment: one uncrosslinked micelle solution containing no platinum crosslinker and other two with platinum crosslinker (mg mL⁻¹). Samples were kept in three separate dialysis bags (MWCU 3500). Uncrosslinked micelle containing curcumin only (M1 curc) was dialysed against PBS (0.1 M) at pH 7.4, the crosslinked micelle sample containing both curcumin and platinum (M3) was dialysed against PBS (0.1 M) at pH 7.4 as well as water containing 5 mM of sodium ascorbate. 100 µL samples were taken from inside the dialysis bag and were then diluted with 1900 µL of DMF (total volume 2 mL). The samples were measured using UV-VIS spectrometry at wavelength of 428 nm. Concentration of curcumin was then calculated from a standard curve.

CELL CULTURE

The A2780 cell lines were grown in a ventilated tissue culture flask T-75 using Roswell Park Memorial Institute (RPMI-1640) media containing 10% Foetal Bovine Serum (FBS) and antibiotics. The cells were incubated at 37°C in a 5% CO₂ humidified atmosphere and passaged every 2-3 days when monolayers at around 80% confluence were formed. Cell density was determined by counting the number of viable cells using a trypan blue dye (Sigma-Aldrich) exclusion test.

CELL VIABILITY

The cytotoxicity of PCL-b-PABPA-b-POEGMEA, cisplatin, oxaplatin, Pt IV(COOH)₂ and curcumine/platinum (IV) incorporated micelles (M3) was measured by a standard sulforhodamine B colorimetric proliferation assay (SRB assay). The SRB assay was established by the U.S. National Cancer Institute for rapid, sensitive, and inexpensive screening of antitumor drugs in microtiter plates. The cells were seeded at density of 5000 cells per well in 96-well plates containing 200 µL of growth medium per well and incubated for 24 h. The medium was then replaced with fresh medium (200 µL) containing various concentrations of the material being tested. After 48 h incubation, cell were fixed with trichloroacetic acid 10% w/v (TCA) before washing, incubated at 4°C for 1h, and then washed five times with tap water to remove TCA, growth medium, and low molecular weight metabolites. Plates were air dried and then stored until use. TCA-fixed cells were stained for 30 min with 0.4% (w/v) SRB dissolved in 1% acetic acid. At the end of the staining period, SRB was removed and cultures were quickly rinsed five times with 1% acetic acid to remove unbound dye. Then the cultures were air dried until no conspicuous moisture was visible. Bound dye was shaken for 10 min. The absorbance at 570 nm of each well was measured using a microtiter plate reader scanning spectrophotometer BioTek'sPowerWave™ HT Microplate Reader and KC4™ Software. All experiments were repeated three times. Dose–response curves were plotted (values expressed as percentage of control, medium only) and IC50 inhibitory concentrations were obtained using the software Graph Pad PRISM 6.

Analysis

SIZE EXCLUSION CHROMATOGRAPHY (SEC)

SEC was implemented using a Shimadzu modular system comprised of a DGU-12A degasser, LC-10AT pump, SIL-10AD automatic injector, CTO-10A column oven, RID-10A refractive index detector, and SPD-10A Shimadzu UV/vis detector. A Phenomenex 50 × 7.8 mm guard column and four Phenogel 300 × 7.8 mm linear columns (500, 10³, 10⁴, and 10⁵ Å pore size, 5 µm particle size) were used for the analyses. N,N-dimethylacetamide (DMAc; HPLC grade, 0.05% w/v LiBr, 0.05% w/v 2,6-dibutyl-4-methylphenol (BHT) or tetrahydrofuran (THF; HPLC grade) with a flow rate of 1 mL min⁻¹ and a constant temperature of 50°C was used as the mobile phase with an injection volume of 50 µL. The samples were filtered through 0.45 µm filters. The unit was calibrated using commercially available linear polystyrene standards (0.5-1000 kDa, Polymer Laboratories). Chromatograms were processed using Cirrus 2.0 software (Polymer Laboratories).

NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY.

¹H NMR spectra were recorded using a Bruker ACF300 (300 MHz) spectrometer, using (CD₃)₂SO, CD₂OD, or CDCl₃ as solvents. All chemical shifts are stated in ppm (δ) relative to tetramethylsilane (δ = 0 ppm), referenced to the chemical shifts of residual solvent resonances.

Dynamic Light Scattering (DLS)

The average hydrodynamic diameters and size distribution of prepared micelle solution in an aqueous solution at concentration of 1 mg mL⁻¹ were obtained using Malvern Nano-ZS as particle size analyzer (laser, 4 mW, λ=632 nm; measurement angle 12.8° and 175°). Samples were filtrated to remove dust using a microfilter 0.45 µm prior to the measurements and run for at least three times at 25°C.

TRANSMISSION ELECTRON MICROSCOPY (TEM)

The TEM micrographs were obtained using a JEOL 1400 transmission electron microscope. The instrument operates at an accelerating voltage of 100 kV. The samples were prepared by casting the micellar solution (1 mg mL⁻¹) onto a formvar-coated copper grid. No staining was applied.

THERMOGRAVIMETRIC ANALYSIS (TGA)

TGA studies were carried out in an air atmosphere and the heating rate was fixed at 5°C min⁻¹ on a thermal analyzer TGA 2950HR V5.4A. The temperature profile for analysis ranged between 50–1000°C with a five minute isothermal at 100°C. The mass of the samples used in this study was 10 mg.

UV-VIS SPECTROPHOTOMETRY

All measurements are performed using standard glass cuvette with Varian Cary 300 UV-VIS Spectrophotometer. The machine scans in the range of wavelength between 190-900 nm with a wavelength accuracy of ±0.2 nm. The measurements are obtained with a scan rate of 3000 nm.min at standard temperature of 25°C.
Results and Discussions

Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation is a commonly used technique used for the synthesis of complex polymer architectures. In particular it can be easily combined with other techniques to generate polymer architectures that have degradable properties. Several approaches are described in literature to marry polymers prepared by ring-opening polymerization and RAFT polymerization with the initiation of the ring-opening polymerization using a functional RAFT agent being one of them. Polycaprolactone was chosen as one of the materials for the drug delivery carrier due to its biodegradability and biocompatibility. This allows the matrix material to be decomposed into non-toxic and low molecular weight molecules and then metabolized or absorbed by the organism. Polycaprolactone was synthesized via ring-opening polymerization (ROP) of ε-caprolactone which was carried out according to literature. The reaction was performed under enzymatic condition at 70 °C in the presence of lipase resin and benzyl 2-hydroxyethyl carbonitrithioate (BHCT) RAFT agent as the initiator (Scheme 1). The conversion of this reaction was determined by the gravimetric analysis and is further confirmed by the H NMR spectra (See Supporting Info Figure S1) revealing a PCL block with approximately 50 repeating units and is determined by comparing peak at 4.633 ppm which belongs to the BSPA RAFT and peak at 4.097-4.053 ppm of the polymerization using a functional RAFT agent being one of the polymerization with the initiation of the ring-opening polymerization and RAFT by the benzyl 2-hydroxyethyl carbonitrithioate (BHCT) RAFT agent (BHCT) RAFT polymerisation (ROP) of ε-caprolactone which was carried out according to literature. The reaction was performed under enzymatic condition at 70 °C in the presence of lipase resin and benzyl 2-hydroxyethyl carbonitrithioate (BHCT) RAFT agent as the initiator (Scheme 1). The conversion of this reaction was determined by the gravimetric analysis and is further confirmed by the H NMR spectra (See Supporting Info Figure S1) revealing a PCL block with approximately 50 repeating units and is determined by comparing peak at 4.633 ppm which belongs to the BSPA RAFT and peak at 4.097-4.053 ppm of the caprolactone repeated units. (Table 1, See Supporting Info Figure S3)

The PCL macroRAFT agent was used for the polymerisation of OEGMEA. The monomer oligo (ethylene glycol) methyl ether acrylate (OEGMEA) was chosen as the hydrophilic shell of the micelle due to its water solubility and the resemblance to PEG. The monomer OEGMEA had to be polymerized prior to the amine bearing monomer to generate a micelle with a protective water-soluble shell. This was necessary due to the nature of the RAFT agent that carried PCL as part of the Z-group, which led to the monomer insertion close to the PCL block. The resulting block polymer, coined PCL1, had a molecular weight close to the expected value (Table 1, See Supporting Info Figure S2).

For the synthesis of the third block a new amine bearing monomer had to be prepared. Purpose of this block was to act as functional handle for the conjugation of the platinum (IV) crosslinker while enhancing the structural integrity of the polymeric micelle by crosslinking at the nexus. The amine functionality is not only highly reactive, but the resulting amide bond after reaction with the carboxylate-based Pt(IV) crosslinker is also stable in a typical biological environment preventing premature disassembly of the micelle. The protection of amine functional groups is essential prior to the RAFT polymerisation reaction at neutral pH. This is due to the fact that amines would attack the dithioester functional group of the RAFT agent via nucleophilic substitution reaction and thus destroying or interfering with the functionality of the RAFT agent itself. Di-tert-butyl dicarbonate was used for the protection of 3-amino-1-propanol and the tert-butyl carbamates can be easily cleaved under an acidic condition. The monomer was synthesised by reacting acryloyl chloride and BOC protected 3-amino-1-propanol in the presence of auxiliary base, in this case triethylamine, in anhydrous THF solvent (Scheme 2). The final product was purified via gel column chromatography and is soluble in many solvents such as methanol, toluene, dioxane. Moreover, the monomer was stable, not air sensitive and even after storage in the freezer at -10 °C over several weeks showed no signs of decomposition. The structure of the monomer was confirmed using H NMR (See Supporting Info Figure S3)

![Scheme 2: Synthesis route of ABPA monomer from 3-amino-1-propanol](image)

The PCL-b-PEGMEA macroRAFT agent was employed for further chain extension with ABPA to yield the triblock copolymer PCL-b-PABPA-b-PEGMEA. The molecular weights of the block copolymers are listed in Table 1 and the overlay of SEC chromatograms are shown in the supporting info Figure S2. Their measured values are close to the theoretical value. In addition, the molecular weight distribution is narrow.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Polymer</th>
<th>Conv</th>
<th>M_n^{obs} (g mol$^{-1}$)</th>
<th>M_n^{SEC} (g mol$^{-1}$)</th>
<th>PDI$_{SEC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL</td>
<td>PCL$_{50}$</td>
<td>95 %</td>
<td>5900</td>
<td>5200</td>
<td>1.85</td>
</tr>
<tr>
<td>PCL</td>
<td>PCL${50}$-b-POEGMEA${37}$</td>
<td>35 %</td>
<td>22960</td>
<td>23500</td>
<td>1.37</td>
</tr>
<tr>
<td>M1</td>
<td>PCL${50}$-b-PABPA${36}$-b.</td>
<td>65 %</td>
<td>31054</td>
<td>30000</td>
<td>1.35</td>
</tr>
</tbody>
</table>
The subsequent removal of the BOC protective group can be easily achieved using strong acids such as hydrochloric acid or trifluoroacetic acid. The polymer was dissolved in an organic solvent such as DMF or dioxane and HCl (2 M in diethyl ether) was added to the reaction and was left to stir overnight to yield the deprotected PCL₅₀-b-PAPA₃₈-b-POEGMEA₃₇. The polymer was then purified via dialysis against acetone or water to remove unwanted side products. H-NMR proves the complete removal of the tert-butyl carbamate protection group (See Supporting Info Figure S4) while SEC analysis confirms that during deprotection no side reaction occurred that might have led to crosslinking or loss of PCL (see Supporting Info Figure S5).

Two types of block copolymers were used for the synthesis of micelle prior to drug loading: PCL₅₀-b-ABPA₃₈-b-POEGMEA₃₇ (M1) with BOC protection group and PCL₅₀-b-APA₃₈-b-POEGMEA₃₇ (M2) without BOC protection group. The size distribution of the nanoparticles is shown in Table 2 with a relative narrow distribution (PDI = 0.104) for PCL₅₀-b-ABPA₃₈-b-POEGMEA₃₇, and an average size of 183 nm for PCL₅₀-b-PAPA₃₈-b-POEGMEA₃₇ with a PDI of 0.117. The obvious size difference between M1 and M2 is due to the removal of BOC protective group on the polymer backbone to give primary amines. The repulsive forces of the positively charged amino groups lead to swelling and chain stretching and therefore an increase micelle size.

<table>
<thead>
<tr>
<th>Code</th>
<th>Copolymer</th>
<th>Dₘ (d, nm)</th>
<th>PDI DLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>PCL₅₀-b-PAPA₃₈-b-POEGMEA₃₇</td>
<td>118.2</td>
<td>0.104</td>
</tr>
<tr>
<td>M2</td>
<td>PCL₅₀-b-PAPA₃₈-b-POEGMEA₃₇</td>
<td>183.4</td>
<td>0.117</td>
</tr>
<tr>
<td>M3</td>
<td>PCL₅₀-b-PAPA₃₈-b-POEGMEA₃₇, Cuc + Pt</td>
<td>28.7</td>
<td>0.389</td>
</tr>
<tr>
<td>M4</td>
<td>PCL₅₀-b-PAPA₃₈-b-POEGMEA₃₇, Cuc + Pt (Freeze dried and redissolved in DMAC)</td>
<td>68.8</td>
<td>0.386</td>
</tr>
<tr>
<td>M1 Cuc</td>
<td>PCL₅₀-b-PABA₃₈-b-POEGMEA₃₇</td>
<td>78.5</td>
<td>0.242</td>
</tr>
<tr>
<td>M2 Pt</td>
<td>PCL₅₀-b-PAPA₃₈-b-POEGMEA₃₇, Cuc + Pt</td>
<td>155</td>
<td>0.399</td>
</tr>
</tbody>
</table>

A series of curcumin loaded micelles formulated with different amounts of curcumin (w/w % of polymer) was prepared to study the curcumin encapsulation efficiency. The successful encapsulation was made visible by the clear yellow solution of curcumin loaded into micelles compared to free curcumin (Figure 1). The encapsulation of curcumin is determined using UV-VIS spectrophotometer where 100 µL of the 1 mg mL⁻¹ solution was diluted to 2 mL in DMF and a standard curve was set up as a guideline. The encapsulation efficiency of curcumin is shown in Table 3. The results showed that with a constant amount of polymer used the maximum entrapment efficiency was limited between 6-7 w%. Hence, more curcumin led to a decrease in encapsulation efficiency.

Table 3 Loading of curcumin in M1 micelles with different amount used

<table>
<thead>
<tr>
<th>Polymer Used (mg)</th>
<th>Curcumin added (mg)</th>
<th>Encapsulation efficiency (%)</th>
<th>Entrapment efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1</td>
<td>87</td>
<td>5.8</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>53</td>
<td>6.9</td>
</tr>
<tr>
<td>15</td>
<td>5.5</td>
<td>19</td>
<td>6.3</td>
</tr>
</tbody>
</table>

At this stage, the Pt(IV) drug for conjugation to the polymer was prepared. Various deactivation pathways of Pt (II) anticancer drugs can be avoided using Pt (IV) compounds as produgs. The Pt (IV) complex used in this project is based on the idea that the drug itself can be used as a crosslinker to strengthen the micelle’s integrity preventing premature breakdown and reducing burst release of curcumin. In addition, this dual drug carrier was designed to sufficiently carry both drugs through the bloodstream and release a cytotoxic dose of cisplatin up on intracellular reduction once inside a tumour cell; at the same time curcumin would be released with the breakdown of the micelle. The synthesis of the platinum (IV) crosslinker requires a two-step reaction. First step involves the oxidation of cisplatin using hydrogen peroxide solution (30%) and heat, followed by the ring opening reaction with succinic anhydride. The final product was readily soluble in water and as well as DMF therefore unreacted complex can be easily removed via dialysis. The attachment of platinum (IV) crosslinker was performed in conjunction with the incorporation of curcumin. This minimises the loss of curcumin via diffusion during dialysis with water. The conjugation reaction was carried out at room temperature for 48 hours, and EDC and NHS was used for the esterification as the coupling agent and catalyst respectively. The reason EDC was chosen as oppose to DCC is due to the solubility of EDC in water and can be easily removed via dialysis.

The attachment of platinum (IV) crosslinker was performed in conjunction with the incorporation of curcumin. This minimises the loss of curcumin via diffusion during dialysis with water. The conjugation reaction was carried out at room temperature for 48 hours, and EDC and NHS was used for the esterification as the coupling agent and catalyst respectively. The reason EDC was chosen as oppose to DCC is due to the solubility of EDC in water and can be easily removed via dialysis. Once the curcumin had been encapsulated and the micelles were crosslinked with platinum (IV) compound, the size of the micelles (M3) were measurements by DLS and results showed the average size of these micelles has dropped dramatically to 38 nm and the size is confirmed by TEM (Figure 1). The significant reduction in size can be explained by the loss of
cationic charges during crosslinking and the force that contracts the micelle when crosslinking.

The solution was then freeze dried and redissolved in DMAc in order to evaluate the stability of these micelles in a good solvent that can dissolve all blocks. Structural integrity under these conditions confirms the success of the crosslinking process. The hydrodynamic diameter (M4) measured in DMAc is about 68.8 nm. The increase in size is expected since the micelle would start swelling under these conditions, but not disintegrate, which is proof of evidence that crosslinking indeed occurred. The overlay of the average size distribution of micelles as measured by DLS can be found in Supporting Info Figure S6.

Figure 2 TEM image of M3 micelles (loaded with cuc and crosslinked with Pt) (concentration of micelles 1mg mL⁻¹ in water): A (scale bar = 200 nm) and B (scale bar = 50 nm).

To determine the amount of platinum crosslinker conjugated to the micelle PCL₅₀-b-APA₃₈-b-POEGMEA₁₇ was used to synthesis of blank micelles (concentration = 1 mg mL⁻¹) without the encapsulation of curcumin. The ratio between the Pt(IV)[(COOH)₂] carboxyl and the polymer amine functional group was set to 2:1, which would in theory led to polymers with pendant, non-crosslinked platinum drugs as depicted in Scheme 3 on the right. The ratio was chose to ensure that all amine groups have the possibility to react to eliminate potentially toxic cationic charges. After reaction, the polymer was dialysed to remove unreacted Pt(IV)[(COOH)₂]. ICP-MS was used to determine the amount of platinum attached revealing a consumption of 79 % of the initial drug. Assuming all amine functional groups have reacted, further calculations disclose that out of the 38 repeating units of amine containing monomer 41% are crosslinked and that 59% are conjugated to a platinum unit but not crosslinked (Scheme 3).

The release of curcumin was performed in three different scenarios to evaluate the rate of release with and without the crosslinking as well as comparing to the decomposition of the platinum crosslinker. The amount of platinum released was determined by UV-Vis spectroscopy since the absorbance is not affected by the presence of platinum drugs. Firstly, M1 was used for the encapsulation of curcumin and the micelles were dialysed against water to measure the release of curcumin without the presence of the platimated crosslinker. In another experiment, two M3 solutions (5 mL) were placed in two separate dialysis bags, one is placed in a 0.1 M PBS solution at pH 7.4 the other in a 5 mM ascorbic acid solution. Ascorbic acid is a reducing agent which reduces the Pt(IV) complexes into Pt(II) where the compound loses its axial ligands. Studies have shown that the reduction rate of Pt(IV) complexes strongly depend on the electron-withdrawing power and the steric hindrance of the axial ligands. The rate of reduction increases in the order of axial ligands: OH< OCOCH₃<Cl<OCOCF₃.⁶⁵ Samples were taken from the dialysis bag and were measured with UV-VIS at 428 nm in DMF to quantify the amount of curcumin remaining.

From the results obtained, the fastest release of curcumin is from uncrosslinked micelles indicating that the flexible structure did not delay the release. After 8 hours 40% of the curcumin is released and the rate of release has slowed down for the next 2 days and reaching a maximum release of 63 % in 5 days. Comparing the platinum crosslinked micelles, a faster release rate of curcumin could be observed with the reduction of platinum crosslinker in the presence of ascorbic acid within the first 20 hours but slowly levels off to similar values of crosslinked micelles in 0.1 M PBS solution as shown in Figure 3. In summary, crosslinking of the micelles at the interphase of hydrophilic and hydrophobic section slows down the leaching of encapsulated curcumin avoiding initial burst release of the drug. Although crosslinking of micelles can result in a much more noticeable delay of the release rate,⁶⁶ the measure rate here is not a sign that crosslinking has not occurred, but more a sign that the crosslinking density is not high.

The release of platinum was measured using ICP-MS in an reductive environment of ascorbic acid and the results show more than 50 % of the platinum was released within the first 24 h and levels off to about 75% after 2 days (Figure 3). The micelles without the presence of any ascorbic acid did not release and Pt-drugs.

Scheme 3 Conjugation of Pt(IV)[(COOH)₂]as crosslinker for the amine bearing monomers

<table>
<thead>
<tr>
<th>Pt</th>
<th>COOH</th>
<th>41%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>59%</td>
</tr>
</tbody>
</table>

By John Doe
The cytotoxicity effect of the curcumin and platinum incorporated micelle and the free drugs (curcumin, cisplatin, oxoplatin and platinum-diacid) were studied against A2780 cells using standard SRB assay. Firstly the toxicity of the polymer at various concentrations was investigated prior to drug incorporation and it can be deduced that the naked polymer itself has little or no effect on the growth of A2780 cells at low concentration however concentrations higher than 250 µg/mL shows slight cell growth inhibition effect (Figure 4).

Subsequently the cytotoxicity of free drugs oxoplatin, cisplatin, Pt(IV)(COOH)_2 and curcumin was tested against A2780 (Figure 5). The results were compared to the drug incorporated micelles; the comparison allows the determination of the efficacy of the drug carriers themselves. As expected, cisplatin is more potent compared to oxoplatin as oxoplatin is a platinum (IV) compound, which requires an extra reduction step to form the active diaquo-diamino platinate(II) active species in order to bind to DNA to cause cell apoptosis. Furthermore, cisplatin is more potent towards the A2780 cells compared to curcumin, Pt[(COOH)_2] and oxoplatin, where A2780 cells are least susceptible to curcumin, giving the highest IC_{50} value. IC_{50} values of all compounds tested are shown in Table 4.

Drug incorporated micelles were also tested against the A2780 human ovarian cancer cell line. The purpose of this experiment was to demonstrate the importance of drug delivery system for the enhanced cytotoxicity compared to free drugs. Three micelles were compared: the micelle loaded with curcumin only using PCL_{50}-b-PAPA_{38}-b-POEGMEA_{37} (M1 cuc), a micelle crosslinked with Pt(IV)(COOH)_2 (M2 Pt micelle) and a micelle loaded with both drugs (M3). The molar ratio of curcumin and Pt in the latter micelle was measured by UV-Vis and ICP-MS to be 1: 0.95 indicating that roughly the same molar amounts of both drugs are present in the system.

The IC_{50} of free curcumin was compared to curcumin incorporated micelles in the same way curcumin encapsulated platinum crosslinked micelles were compared to each other (Figure 6). The results show that with the aid of the polymeric drug delivery system, the cytotoxicity of curcumin is increased compared to the free drug. The decrease in IC_{50} from 63.21 µg mL^{-1} to 22.64 µg mL^{-1} with the use of polymeric micelles most likely indicates the efficiency of transporting larger amounts of
curcumin into the cell via endocytosis rather than through ion channels. PEG-based micelles are known to be efficiently taken up by various cells while simultaneously transporting large amounts of drug across the cell membrane. In addition, studies have shown that when curcumin accumulates in the endoplasmic reticulum (ER) membrane, the intracellular iron pool is reduced. This may result in lengthening of the G1 phase of the cell cycle, thereby slowing growth in vitro.

The computer software CalcuSyn for Windows (Biosoft, UK) was employed to evaluate the synergistic effect between curcumin and Pt[(COOH)$_2$] as free drugs as well as micelle-incorporated moieties. In this system, synergism, additivity, or antagonism is defined by the combination index: a CI value <1 indicates synergistic effect, a CI value of 1 an additive effect and a CI value >1 an antagonistic effect.

The experimental set up for this experiment consisted of constant concentration ratios between curcumin and Pt[(COOH)$_2$] against A2780 cells individually and combined as free drugs, mixed micelles and as well being incorporated in micelles. The results are represented in Isobologram as well as Median effect analysis plot (Figure 8). Details on the analysis can be found in the supporting information.

Figure 6 Cell growth inhibition study of free curcumin, curcumin incorporated micelles and curcumin platinum crosslinked micelles against A2780 human ovarian cancer cells for 48 h

Figure 7 Cell growth inhibition study of free Pt[(COOH)$_2$], M2-Pt micelles and curcumin platinum crosslinked micelles M3 against A2780 human ovarian cancer cells for 48 h

Figure 8 CalcuSyn software evaluation of synergistic effect of free curcumin and free Pt(IV) acid complex as isobologram (A) and Median effect analysis plot (B), the mixture effect of two separate micelle solutions as isobologram (C) and Median effect analysis plot (D), the effect of both drugs in one micelle as isobologram (E) and Median effect plot (F).
The experimental data are represented in dots and data points that are located below the line in the median effect analysis indicating their synergism within the fractional effect of between zero to one. Fractional effect on cell death is calculated by the formula: (100-alive cells)/100. The calculation using the computer software CalcSyn of the in vitro experimental results showed synergistic effect of curcumin and Pt[(COOH)2] in 1:1 ratio as free drug (Figure 8-A & B). This can also be seen for the combination of the two drugs in one micelles in the ratio of respectively for curcumin to Pt[(COOH)2] (Figure 8-E & F). However, it appears that the synergistic effect for the mixture of two individually drug encapsulated micelles are prominent at low fractional effects. From refined values of combination index method described by Chou and Talalay it can be seen that the synergism for the combination of curcumin and Pt[(COOH)2] as free drug (CI value between 0.1-0.4) are less synergistic compared to its micelle form (CI value between 0.1-0.4).

Here, it can be seen that the combination of free Pt[(COOH)2] and curcumin results in marked synergy (Figure 8-B), where the combination indexes all range between 0.4-0.8. When the same drugs are incorporated into micelles in the same concentration ratios, the combination indexes are mostly less than 0.4 and reach 0.2 (Figure 8-D), indicating highly synergistic combinations. These data confirm that the combination of cisplatin and curcumin are synergistic, but also that the incorporation of both drugs in micelles increases the synergy considerably. At this point, it is not clear why the behaviour is different between the micelle loaded with both drugs and two micelles loaded with curcumin and platinum drug, respectively. It is possible that different uptake pathways of the two different micelles can result in this outcome while drug loaded into one carrier will undergo the same pathway together.

Conclusion

This project demonstrated the enhanced cytotoxicity of micelles incorporating two drugs as combinational chemotherapy against resistant cancer cell line. Triblock copolymer was synthesised with amphiphilic properties to allow the physical encapsulation of curcumin and also allows for the crosslinking using Pt(NH3)2Cl2[(COOH)2] at the interphase which strengthens the structural integrity of the micelle to ensure a slower release of curcumin and to prevent premature disassociation of the delivery vehicle. The synergistic effect both drug as free drug as well as in micelle form is calculated using Calcsyn Biosoft software which indicates the use of both drugs is a highly synergistic combination.

Acknowledgements.

The authors would like to thank the Australian Research Council (ARC) for funding. M. H. Stenzel and W. Scarano acknowledge the Centre for Advanced Macromolecular Design (CAMD), St George Research Education Centre (CPT), UNSW Analytical Centre for support and UNSW Electron Microscope Unit for support.

Notes and references

17. K. Hidieg and H. Kalman, Univ Ohio State Res Found.