Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1 2 3

4

5

6 7

8 9

10

11

12 13

14

15 16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57

58 59 60 Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

Detection of Fe(III) and bio-copper in human serum based on fluorescent AuAg nanoclusters

Qian Zhao, Shenna Chen, Lingyang Zhang, Haowen Huang^{*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

In this study, a fluorescence assay for successive determination of Fe³⁺ and Cu²⁺ ions based on quenching fluorescence of composite AuAg nanoclusters (AuAg NCs) was developed. By using this binary fluorescence sensor, the Fe(III) level in human serum sample can be directly detected without pretreatment. After the nitrification of human serum, the bio-copper level in human serum may be

10 measured with quick response. Human serum samples were analyzed and the average concentration of Fe(III) and bio-copper are 2.33×10^{-5} and 2.91×10^{-5} M, respectively. This assay is not only sensitively responsive to blood iron(III) but also serum copper, suggesting great potential applications for successively monitoring Fe(III) and bio-copper levels and their changes during the progression of biological process.

151. Introduction

Noble metal clusters are an emerging class of fluorescent nanomaterials, such as Au nanoclusters (NCs) and Ag NCs,^{1,2} circumventing most of the drawbacks of common fluorescent compounds, which have drawn wide attention in single-molecule

- 20 optoelectronic nanodevices, biological labeling, optical sensing, novel catalysis, and surface-enhanced Raman spectroscopy (SERS).³⁻⁸ Recognition and quantification metal ions are considerable significant due to these ions play important roles in various biological and environmental processes.9,10 In the past
- 25 few years, there are numerous reports on the design of fluorescent sensors for detection of various metal ions, such as Hg^{2+,11} Fe^{3+,12} Cu²⁺ and Cd²⁺, ^{13, 14} Pb^{2+ 15} because of their high sensitivity, specificity, and real-time monitoring with fast response time.
- 30 deficiency may lead to a wide variety of neurological problems, ^{16,17} cardiovascular disease and kidney damage.¹⁸ Development of specific sensors determining these metal ions in aqueous media constantly grow attention. Current approaches of detecting Fe³⁺
- 35 spectrometry (ICP-MS),^{19,20} atomic absorption spectrometry ^{21,22} and electrochemical methods.^{23,24} Although these methods offer excellent sensitivity, they are rather costly, time-consuming and complex. Most of the developed approaches to detect copper and iron ions are stressed on the design of selective sensors only for 70 2.2 Prepartion of AuAg NCs.
- 40 one kind of metal ion. In contrast, the investigation of sensors on successive or simultaneously detecting two kinds of these ions is rare. Thus it is important to develop a binary sensor to determine the iron and copper in the practical sample, especially in the biological samples.
- 45 In this study, a type of composite metal nanoclusters AuAg

NCs with strong fluorescence was prepared. A fluorescent probe for successive determination of Fe³⁺ and Cu²⁺ ions based on the quenching fluorescence of AuAg NCs was developed. By using this binary fluorescence sensor, a practical application of human $50\ {\rm serum}\ {\rm sample}\ {\rm was}\ {\rm performed}\ {\rm to}\ {\rm determine}\ {\rm Fe}({\rm III})$ and bio-copper levels. This assay is quick response not only to blood iron level

but also serum copper, suggesting great potential applications for successively monitoring Fe(III) and bio-copper concentrations and their changes during the progression of biological process.

55 2. Experimental

2.1 Chemicals

HAuCl₄·3H₂O, silver nitrate (AgNO₃), glutathione (GSH), disodium ethylenediamine tetraacetate (EDTA), NH₄F, ferric chloride (FeCl₃), cupric chloride (CuCl₂) were purchased from Previous studies have demonstrated that copper and iron 60 Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). A series of different concentration of solutions were obtained by dilution. The aqueous solutions were prepared with doubly distilled water. The K⁺, Ca²⁺, Na⁺, Mg²⁺, Zn²⁺, Mn²⁺, Cd²⁺, Ni²⁺, Br⁻, I⁻, F⁻, bovin serum albumin (BSA), cysteine, pepsin, Co²⁺, and Cu^{2+} ions include inductively coupled plasma mass 65 Fe³⁺, Cu^{2+} , Pb²⁺ and Al³⁺ metal ion solutions and molecules were prepared to examine the metal ion induced emission enhancement

or quenching. The concentration of all prepared metal ion solutions is 1×10⁻² M. All reagents were of analytical reagent grade, and used as received.

In a typical synthesis, under vigorous stirring (1000 rpm), the Au/Ag NCs were synthesized using GSH as template by chemical reduction of HAuCl₄, followed the literature reported earlier.²⁵ Freshly prepared aqueous solutions of HAuCl₄ (20 mM, 0.25 mL),

75 GSH (100 mM, 0.15 mL) and AgNO₃ (20 mM, 0.25 mL) were mixed with 4.35 mL of distilled water at 25 °C in a round

Analytical Methods Accepted Manuscrip

55

56

57

58

59 60

1

2

3

bottomed flask. The reaction mixture was heated to 110 °C under gentle stirring for 12 h. An aqueous solution of strongly orangeemitting Au/Ag NCs was formed. The orange-emitting Au/AgNC 5 changes in the optical properties.

2.3 AuAg NCs-based sensor for Fe(III) and Cu²⁺ ions.

A series of 20 μ L of Fe³⁺ standard solutions with different concentrations were added to 1 mL of Au/AgNCs, respectively.

- 10 temperature, the fluorescence quenching spectra was then recorded (excitation 450 nm; maximum emission 570 nm). For the determination of Cu^{2+} , there is a certain concentration of Fe^{3+} $(4.9 \times 10^{-7} \text{ M})$ in the target, thus a series of 20 µL of Cu²⁺ standard solutions with different concentrations were added to 1 mL of 70
- 15 Au/AgNCs, respectively. The EDTA was added after the sufficient NH₄F (0.1 mol/L) was full reaction with the Fe³⁺, the fluorescence quenching spectra was then recorded (excitation 450 nm; maximum emission 570 nm).

2.4 Human serum sample processing

- 20 The serum samples were supplied by healthy volunteers that were stored at 4 °C until use. All experiments procedures were performed in compliance with the relevant laws and institutional guidelines. The untreated serum was used for the detection of Fe³⁺.
- 25 50 μ L of blood sample was diluted with 50 μ L of double distilled water and then 50 µL of concentrated HNO3 was added for reaction 2 h in the disposable centrifuge tube at the room temperature. The sample was briefly centrifuged at 5000 rpm for 7 min when it was be completely nitrification. The supernatant
- 30 was adjusted to neutral use the NaOH solution. This treated serum was used for the detection of Cu^{2+} .

2.5 AuAg NCs-based sensor for Fe (III) and copper in human serum.

Take 20 µL of the untreated human serum to the 1 mL 35 Au/AgNCs to proceed for 20 min at room temperature, the decrease of the fluorescence intensity was induced by the Fe³⁺ and the concentration of Fe³⁺ in the sample was quantified according to the calibration curve.

Take 50 µL of the treated serum to the 1 mL Au/AgNCs, then 40 added 50 μL 0.1 M $\rm NH_4F$ and 50 μL 0.1 M EDTA sequentially. The fluorescence enhancement after the addition of EDTA was induced by Cu^{2+} . The concentration of Cu^{2+} in the sample was quantified according to the calibration curve.

2.6 Characterization.

- 45 The photoluminescence spectra were recorded on an F-4500 (Hitach, Japan) fluorescence spectrometer. UV/Vis absorption spectra were recorded by a Lambda 35 spectrophotometer (PerkinElmer, USA). Transmission electron microscopy (TEM) was performed on a JEM-2010 transmission electron microscope 80
- 50 at 80 kV. The copper level of human serum was also determined by atomic absorption spectrometry using a Perkin Elmer atomic absorbance spectrophotometer (ASS) (PEAAnalyst 300).

3. Results and discussion

3.1 Preparation and characterization of AuAg NCs

55 The preparation of AuAg NCs was performed according to the previous method with slight modification.²⁶ Briefly, HAuCl₄,

AgNO₃ and GSH aqueous solutions were allowed to react under gentle stirring at 110 °C for 12 h. A gradual color change appeared within minutes from yellow to colorless and then to solution could be stored at 4 $^{\circ}$ C for 6 months with negligible 60 light yellow. The resultant solution exhibited light yellow under visible light and there was intense orange luminescence from the solution when irradiated by the UV light. Fig. 1 shows the TEM image of the synthesized AuAg NCs, indicating the size of the nanoparticles less than 2 nm with quite narrow distribution. The The reactions were allowed to proceed for 10 min at room 65 UV-vis absorption and fluorescence spectra acquired from AuAg NCs are displayed in Fig. 2. When the as-prepared AuAg NCs are excited by 450 nm light, an emission band at 570 nm is observed, implying a successful preparation of AuAg NCs. The AuAg NCs show excellent stability in water, maintaining excellent

photoluminescence. With rhodamine B as the reference, the quantum yield of the as-prepared Au NCs was calculated to be 15.0%.

Fig. 1 TEM image of the AuAg NCs.

Fig. 2 UV-vis absorption (blue line) and excitation and emission spectra 75 (black line, $\lambda ex=450 \text{ nm}$, $\lambda em=570 \text{ nm}$) of the orange-emitting AuAg

NCs. Inset: Photographs of an aqueous solution of AuAg NCs under visible light (left) and UV irradiation ($\lambda = 365$ nm) (right).

3.2 Response of fluorescent AuAg NCs toward different metal ions

The study of sensing metal ions was carried out based on the fluorescent response of AuAg NCs. With the addition of Fe³⁺ or Cu²⁺ ion into the AuAg NCs solution, a rapidly quenched fluorescence occurred. As a comparison, other common metal ions, protein and small thiol-containing molecules, such as K⁺, 85 Ca²⁺, Na⁺, Mg²⁺, Zn²⁺, Mn²⁺, Cd²⁺, Ni²⁺, Co²⁺, Fe³⁺, Cu²⁺, Pb²⁺,

Al³⁺, Br⁻, I⁻, F⁻ as well as BSA, cysteine, pepsin were investigated under the same conditions. A clear quenching effect like that of the Fe³⁺ and Cu²⁺ ions was not observed when the concentration of these metal ions and molecules increased up to 10⁻⁴ M, as 1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18 19

20

Fig 3. The fluorescence intensity ratio of changes of the AuAg NCs 5 induced by various ions and biological molecules $(1 \times 10^{-4} \text{M})$, F₀ is the initial intensity of AuAg NCs and F is the fluorescence after the addition of metal ions, the error bars represent the standard deviation of three measurements.

10 ion.

The fluorescence intensity of the AuAg NC decreased greatly after the addition of Fe^{3+} . Apparently, the fluorescence intensity of AuAg NC clearly decreases with the increase of the concentration of Fe^{3+} . Finally, the fluorescence might quench

15 completely along with the increase of concentration of Fe³⁺. Fig. 4 shows that the fluorescence intensity of AuAg NCs decreases with the increasing concentration of Fe³⁺. Due to the high probability of the coexistence of Fe³⁺ and Cu²⁺ ions, it is difficult to tell the source of the quenching fluorescence under the 20 coexistence of these metal ions. The popular chelants, $\rm NH_4F$ and

EDTA, might be used to differentiate the quenching fluorescence arisen from Fe^{3+} or Cu^{2+} , as illustrated in scheme 1.

Fig 4. Fluorescence quenching of AuAg NCs with increasing Fe(III) concentration (from top to bottom: 0M, 2×10^{-8} M, 1.9×10^{-7} M, 7.2×10^{-6} 25 M, 3.5×10⁻⁵ M, 1.7×10⁻⁴ M).

groups of GSH stabilizing AuAg NC, the combination of metal ions to the surface of the AuAg NCs would induce the 30 fluorescence quenching. However, the response of AuAg NCs

toward Cu²⁺ and Fe³⁺ were found to be reversible, namely, the quenched florescence was almost recovered to 100% after the addition of NH₄F into the mixture system of Fe³⁺ and AuAg NCs. EDTA was also used to further test the Cu2+ ion. With the 35 addition of EDTA to mixture of Cu²⁺ and AuAg NCs, an

- enhancement of fluorescence up to the initial intensity of fluorescent AuAg NCs was found owing to the formation of complex between EDTA and Cu2+. These results indicate that the formation of metal complexes makes the metal cations departed
- 40 from the surface of AuAg NCs. Therefore, the introduction of NH₄F or EDTA to AuAg NCs provides a possibility to determine Fe³⁺ and Cu²⁺ ions successively.

Scheme 1. Schematic diagram of successive detection of Fe³⁺ and Cu²⁺ 3.3 Evaluation of fluorescence response to Fe^{3+} ion and Cu^{2+} 45 based on the binary fluorescence sensor of AuAg NCs.

3.4. Application to human serum samples analysis

As nutrient elements, iron and copper are of wide existence in biological tissues. Most of the iron existed in the form of protein complexes in the biological body fluids and organs. Similarly, the 50 main existed form of copper-containing compounds is present as undissociated copper such as protein in the biological body fluids and organs. Human serum samples were analyzed to demonstrate the practical application to determination of the Fe(III) and copper level. When the human serum sample was added to AuAg

- 55 NCs, a significant decrease of fluorescence intensity was found, which indicated that the iron and/or copper in the human serum might be directly determined without pretreatment. With the addition of NH₄F to the mixture system, a quickly remarkably enhancement of fluorescence occurred and recovered to the initial
- 60 intensity of the AuAg NCs. As a control experiment, the chelant NH₄F was first added to the human serum, then the biological sample mixed with the AuAg NCs and no detectable variation of fluorescence occurred, as shown in Fig. S1 (supplementary material). These results indicate that quenched fluorescence
- 65 resulted from Fe(III) rather than bio-copper in the human serum, which demonstrate that the proposed fluorescent probe can only respond to Fe(III) in the serum, implying the fluorescence of AuAg NCs would not be interfered by other components in human serum, and this fluorescence assay may selectively 70 determine the Fe(III) in the human serum.

To quantitative detect the Fe(III) in the human serum, calibrate curve was first established and a linear relationship between the degree of quenching fluorescence and Fe³⁺ concentration within the range of $9 \times 10^{-8} \sim 1.1 \times 10^{-6}$ M was found (Fig. S2), which the The Fe³⁺ and Cu²⁺ ions may combine with the COOH and NH₂ 75 fluorescence intensity was inversely proportional to concentration of Fe(III). The equation is displayed as following: F_0 -F/F₀ =0.03173+0.1531c, where F_0 is the initial intensity of fluorescent

1 AuAg NCs, and F is the fluorescence intensity after the addition 2 of Fe(III). The linear regression coefficient is 0.9965 and the limit 3 of detection of Fe(III) is 10⁻⁸ M. By using this fluorescence 4 sensor, the human serum samples were analyzed to demonstrate 5 5 the practical application from four volunteers and the blood 55 Hunan Provincial Natural Science Foundation of China 6 Fe(III) concentration were illustrated in Table 1. 7 As discussed aforementioned, this fluorescent probe can only 8 respond to the Cu²⁺ rather than undissociated copper. Thus, the 9 Technology (Nos.S130028). bio-copper in the human serum cannot be directly measured 10 10 utilized this fluorescent probe due to few copper ions present in 11 60 Notes and references the human body fluids. The same four human serum samples 12 were analyzed to determine bio-copper levels following the 13 general procedure. After human serum nitrification, the iron and 14 copper were existed as ionic state in the aqueous solution. Before 15 15 the quantitative analysis of bio-copper, the calibration curve of 65 58290045; E-mail: <u>hhwn09@163.com</u> 16 copper ions was established, as shown in Fig. S3. Clearly, the 17 addition of various concentrations of Cu2+ to the fluorescent 18 DOI: 10.1039/b00000x/ AuAg NCs led to varying degrees of quenching fluorescence 19 shown in Fig. S4. The corresponding $\Delta F (\Delta F = F_0 - F)$ of AuAg NCs 20 20 increased with the concentration of the metal ion in the solution spectral data, and crystallographic data. 21 and shows a linear relationship with the Cu²⁺ concentration. 22 Therefore, the degree of quenching fluorescence of fluorescent 23 AuAg NCs may be directly reflected by the concentration change 75 24 55, 272. of the copper ion. To eliminate the interference of Fe^{3+} toward the 2 25 25 detection of copper, NH₄F was added to the nitrification solution 3 26 of human serum, as shown in Fig. S5. Then, with the addition of 4 27 nitrification solution to the AuAg NCs solution, the fluorescence 2005, 38, 534. 80 5 28 intensity was decreased. The copper concentration can be 6 29 calculated from the calibration curve. As a result, the bio-copper 7 30 30 levels of human serum detected by this assay were also displayed Chem. Soc. 2012, 134, 10237. 31 in Table 1. The samples were also determined by AAS, and the 8 32 obtained results were closely comparable with the result given by 85 6.6789-6795 9 33 the proposed method, suggesting this assay is of high accuracy. 3416. 34 The experimental results indicate that the recovery of this assay 10 35 35 101.8% corresponding to Cu²⁺ and 99.6% corresponding to 36 Fe(III), as shown in Table S1. 37 13 2289 38 Table1. The result obtained from the AuAg NCs binary sensor for Fe(III) and copper levels in human serum samples 39 Organic Letters. 2008, 10, 3653. 40 15 41 Letters. 2008, 10, 1041. 42

- D. W. Domaille, E. Que, C. Chang, Nat. Chem. Biol. 2008, 4, 168.
- 17 S. R. Jaiser, G. P. Winston, J. Neurol. 2010, 257, 869.
- 18 J. M. Walsh, QJM-AnInt, J. Med. 2011, 104, 775.
- J. G. Wiederhold, C. J. Cramer, K. Daniel, I. Infante, B. Bourdon, R. Kretzschmar, Environ. Sci. Technol. 2010, 44, 4191.
- 20 G. Li, D. Wu, Y. Wang, W. Xie, X. Zhang, B. Liu, J. Sep. Sci. 2012, 35, 334-340.
- 21 L. T. Viyannalage, Y. Liu, QN. Dimitrov, Langmuir. 2008, 24, 8332.
- In summary, a type of composite metal nanoclusters AuAg NCs105 22 J. Y. Cabon, P. Giamarchi, A. Le Bihan, Anal. Chim. Acta. 2010, 664,
 - 114. E. Tran, A. E. Cohen, R. W. Murray, M. A. Rampi, G. M. Whitesides, 23 J. Am. Chem. Soc. 2009, 131, 2141.
 - 24 M. Cui, Y. Zhao, Q. Song, Trac Trend Anal. Chem. 2014, 57, 73.
 - X. L. Guével, V. Trouillet, C. Spies, K. Li, T. Laaksonen, D. Auerbach, G. Jungc, M. Schneider, Nanoscale. 2012, 4, 7624.
 - 26 G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev. 2004, 104, 2723.

and copper levels in numan serum samples.			
Sample	Fe(III) (M)	$Cu^{2+}(M)$	95
1	2.11×10 ⁻⁵	2.75×10 ⁻⁵	
2	2.34×10 ⁻⁵	1.61×10 ⁻⁵	
3	1.44×10^{-5}	4.62×10 ⁻⁵	
4	3.44×10 ⁻⁵	2.65×10^{-5}	100
5	2.62×10 ⁻⁵	4.33×10 ⁻⁵	100

404. Conclusions

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60

were prepared and a binary fluorescence sensor for successively determining Fe(III) and copper level in human serum was developed. The Fe(III) level of human serum can be directly 45 determined without pretreatment with high sensitivity. Human110 25 serum samples were analyzed and the average concentration of Fe(III) is 2.33×10^{-5} M. On the other hand, the bio-copper was detected after the nitrification of human serum and the result is corroborated by AAS, suggesting this assay is of high accuracy. 50 This proposed assay for successive detection of Fe(III) and bio-

copper level has high selectivity, low cost, and high sensitivity, which is of a potential application in clinical diagnosis.

Acknowledgments. Notes and This work was supported by National Natural Science Foundation of China (21375036), (14JJ7054), the Innovation Platform Open Funds for Universities

in Hunan Province (13K090), the Innovation Foundation of Graduate Student of Hunan University of Science and

Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China. Tel: 86-731-

* Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See

- ‡ Footnotes should appear here. These might include comments relevant 70 to but not central to the matter under discussion, limited experimental and
 - L. Cui, J. Wu, J. Li, Y. Q. Ge, H. X. Ju, Biosens. Bioelectron. 2014,
 - I. Diez, Ras, H. A. Robin, Nanoscale. 2011, 5, 1963.
 - J.Yu, S.Choi, R. M. Dickson, Angew. Chem. Int. Ed. 2009, 48, 318. T. H. Lee, J. I. Gonzalez, J. Zheng, R. M. Dickson, Acc. Chem. Res.
 - Y. Z. Lu, W. Chen, Chem. Soc. Rev. 2012, 41, 3594.
 - H. Qian, M. Zhu, Z. Wu, R. Jin, Acc. Chem. Res. 2012, 45, 1470. D. R. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, J. Am.
 - W. Li, Z. Gao, R. Su, W. Qi, L. Wang, Z. He, Anal. Methods, 2014,
 - J. F. Zhang, Y. Zhou, J. Yoon, J. S. Kim, Chem. Soc. Rev. 2011, 40,
 - Y. Jin, Y. Huang, G. Liu, R. Zhao. Analyst 2013, 138, 5479.
 - 11 J. Xie, Y. Zheng, J.Y. Ying, Chem. Commun. 2011, 46, 961.
- 90 12 J. A. Annie Ho, H. C. Chang, W. T. Su, Anal. Chem. 2012, 84, 3246.
 - X. Liu, N. Zhang, T. Bing, D. Shangguan, Anal. Chem., 2014, 86,
 - 14 X. L. Tang, X. H. Peng, W. Dou, J. Mao, J. R. Zheng, W. W. Qin,
- F. Zapata, A. Caballero, A. Espinosa, A. Tárraga, P. Molina, Organic
 - 16

19