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Differentiation of Prostate Cancer from Normal 

Tissue in Radical Prostatectomy Specimens by 

Desorption Electrospray Ionization and Touch Spray 

Ionization Mass Spectrometry 

K.S. Kerian,a A. K. Jarmusch,a V. Pirro,a M. O. Koch,b T. A. Masterson,b L. 
Cheng,c and R. G. Cooksa  

Radical prostatectomy is a common treatment option for prostate cancer before it has spread beyond the 

prostate. Examination for surgical margins is performed post-operatively with positive margins reported 

to occur in 6.5 - 32% of cases. Rapid identification of cancerous tissue during surgery could improve 

surgical resection. Desorption electrospray ionization (DESI) is an ambient ionization method which 

produces mass spectra dominated by lipid signals directly from prostate tissue. With the use of multivariate 

statistics, these mass spectra can be used to differentiate cancerous and normal tissue. The method was 

applied to 100 samples from 12 human patients to create a training set of MS data. The quality of the 

discrimination achieved was evaluated using principal component analysis - linear discriminant analysis 

(PCA-LDA) and confirmed by histopathology. Cross validation (PCA-LDA) showed >95% accuracy. An 

even faster and more convenient method, touch spray (TS) mass spectrometry, not previously tested to 

differentiate diseased tissue, was also evaluated by building a similar MS data base characteristic of tumor 

and normal tissue. An independent set of 70 non-targeted biopsies from six patients was then used to record 

lipid profile data resulting in 110 data points for an evaluation dataset for TS-MS. This method gave 

prediction success rates measured against histopathology of 93%. These results suggest that DESI and TS 

could be useful in differentiating tumor and normal prostate tissue at surgical margins and that these 

methods should be evaluated intra-operatively. 

 

Introduction 

Prostate cancer is estimated to be the most commonly diagnosed 

cancer in the United States, representing 14% (233,000 cases) of all 

newly diagnosed cancer cases in 20141. Treatments for prostate cancer 

include surgery, radiation therapy, and hormone therapy, the choice 

between them being primarily dependent on the patient’s health and 

the stage of the cancer. At the time of diagnosis, over 90% of prostate 

cancer cases have tumors confined to the prostate gland, representing 

stage 1 or stage 2. Before cancer has spread to the outer layer of the 

prostate, the disease is curable through complete surgical resection by 

radical prostatectomy (RP)2. Standard practice relies on preoperative 

measurements such as rectal examination and clinical biopsy data to 

guide surgical resection. Positive surgical margins are only identified 

after completion of the surgery and their incidence is reported to range 

from 6.5-32%3. 

 

Needle biopsies are used for early diagnosis of prostate cancer, 

however cancer detection using such biopsies is prone to false-

negatives, reportedly up to 25%4. Difficulty in diagnosis is the result 

of the limited sample size, the limited number of malignant glands 

among many benign, and confusion of benign histological features 

which mimic prostate cancer such as paraganglia or xanthoma. 

Immunohistochemistry (IHC) has been used to label p63, a marker for 

basal cells, which is present in benign and absent in cancerous tissue. 

However, negative staining is not reliably diagnostic given the limited 

number and sizes of samples. Positive staining for α-methylacyl-CoA 

racemase (AMACR) can be used since it is greatly up-regulated in 

cancer, but this method too has pitfalls with false-negative rates up to 

20-30% in cases such as pseudohyperplastic, atrophic, and foamy 

gland adenocarcinoma of the prostate5. Currently unrepresented in 

prostate molecular diagnostics is the use of the lipid constituents of 

tissue, either in early diagnosis or in post-surgical tumor margin 

diagnostics. 

Lipid constituents of tissues are readily measured by ambient 

ionization MS methods such as desorption electrospray ionization MS 

(DESI-MS). The basis for ambient ionization is sample examination 

in the ambient environment with little to no prior sample preparation6. 

The two methods used in this study, DESI and touch spray (TS) 

ionization7 fall into this category as do others like nanospray 

desorption electrospray ionization (nanoDESI)8, probe electrospray 

Page 1 of 11 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

ionization (PESI)9 and laser ablation electrospray ionization 

(LAESI)10. 

 

A number of recent studies have reported the application of mass 

spectrometry (MS) as a molecular diagnostic tool for cancer. Zare and 

coworkers used DESI imaging with statistical analysis methods to 

classify gastrointestinal cancer tissues from banked and surgical 

specimens11. Agar and coworkers showed that it is possible to 

distinguish diseased from healthy brain tissue using libraries of mass 

spectra characteristic of particular disease states12. The work on brain 

cancer has allowed clear differentiation of healthy from diseased 

tissue as well as glioma subtype, the stage of the disease in particular 

tumor regions, and the tumor cell concentrations at particular 

locations13. Another mass spectrometry method, ultraperformance 

liquid chromatography MS, has been shown to accurately identify 

prostate cancer from serum using a metabolite-based assay14.  It is 

possible to recognize in these and related studies the beginnings of a 

significant effort to perform cancer molecular diagnostics through the 

use of mass spectrometry (MS).   

 

The origins of recent interest in diagnostics by mass spectrometry can 

be traced to the development of matrix-assisted laser desorption 

ionization (MALDI) imaging and its application to mapping the 

distribution of proteins and peptides in tissue sections15, 16. Ambient 

ionization methods which do not use matrices have also given highly 

encouraging results, especially for small molecules including drug 

metabolites, hormones and lipids17. The earliest application of DESI 

to cancer diagnosis demonstrated changes in lipid profiles in normal 

Figure 1.  (A) Average DESI-MS of normal prostate tissue samples (N=74) from training set (B) Average DESI-MS of prostate cancer 

tissue samples (N=26) from training set (C) Prostate tissue biopsy with outlined region of cancerous tissue which was analyzed by DESI 

imaging (D) Average TS-MS of normal prostate tissue samples (N=74) from training set (E) Average TS-MS of prostate cancer tissue 

samples (N=26) from training set (F) Prostate tissue biopsy analyzed by TS-MS, tissue is adjacent to DESI imaged biopsy again the 

cancerous region outlined, the two missing regions correspond to locations of TS-MS analysis 
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human liver tissue compared to metastatic liver adenocarcinoma. This 

study established the fact that tumor margins can be recognized by 

mass spectrometry imaging18. Subsequent work using DESI 

differentiated tumor from normal tissue using lipid profiles in kidney 

cancer19, bladder cancer20, testicular cancer21, and brain cancer12, 13, 22, 

23. The development of ambient ionization methods for cancer 

diagnostics was accelerated by the rapid evaporative ionization mass 

spectrometry experiments of Takats and coworkers24.  In this 

approach, the smoke produced during electrosurgical dissection is 

transferred and analyzed by a mass spectrometer. The smoke contains 

phospholipids and other biomolecules released from the region being 

resected and comparison to a library of spectra allows tissue 

identification. DESI and TS are both spray-based ambient ionization 

methods. However, their complementary features make them suitable 

for different tasks. DESI-MS is primarily an imaging technique, 

allowing collection of mass spectra, pixel by pixel, to create a 2D 

molecular image. The collected data can be assembled in 

hyperspectral datacubes25 from which 2D ion images corresponding 

to specific components can be extracted to show the spatial 

distribution and relative amounts of analytes. Applications of DESI in 

distinguishing diseased and non-diseased tissue rely on the use of 

multivariate statistics25, typically principal component analysis (PCA) 

and partial least squares discriminant analysis (PLS-DA). DESI 

provides a key connection between the information from 

histopathology and the characteristic mass spectrum that is produced 

for each tissue and disease type because the same (or adjacent) tissue 

sections analyzed by DESI can be evaluated by the pathologist. On 

the other hand, TS-MS is a user-guided method in which a spot of 

interest is directly sampled with a probe, e.g. teasing needle, and 

transferred to the interface of a mass spectrometer, and ionized by the 

application of solvent and high voltage. TS produces information-rich 

spectra which are similar to DESI, but in a localized and very rapid 

process which typically takes a few seconds.  

We explore the potential of DESI-MS and TS-MS for prostate 

cancer differentiation through in vitro analysis of radical 

prostatectomy specimens. First, DESI-MS was used to establish 

the relationship of MS features to pathology and then touch spray 

was used to characterize unknown tissue samples. Training sets 

for both methods were built using data obtained from 12 radical 

prostatectomy specimens and evaluated by PCA and linear 

discriminant analysis (LDA). Both methods resulted in >95% 

correct sample identification when confirmed against 

histopathology. A TS-MS test dataset, obtained from another six 

radical prostatectomy specimens, was used for further evaluation 

of the method using a non-targeted analysis of the prostate tissue 

samples. 

 

Results and discussion 

DESI and TS lipid profiles and training datasets 

 

Prostate cancer is a heterogeneous disease. It is commonly 

diagnosed by histopathology which at times can be ambiguous. 

The morphological variations that are the basis for diagnosis by 

histology result from underlying biochemical changes. The two 

main criteria for diagnosis are atypical architectural features (e.g. 

perineural infiltration) and atypical cytological features (e.g. 

enlarged nuclei). Prostate cancer diagnosis does not currently use 

the lipid components of the cancerous cells or tissue. Thus, 

complementary information provided by direct molecular 

diagnosis of prostate cancer by mass spectrometry could be 

useful to improve decision-making strategies. In this study, two 

different ionization techniques, DESI and TS, were used to 

acquire lipid profiles and investigate differences between tumor 

and normal tissue. The biochemical features recovered by DESI 

and TS were also compared, since each ambient ionization 

technique provides unique capabilities.   

  

For prostate tissue, the primary components of lipid profiles 

(detected as negative ions) are glycerophospholipids: 

phosphotidylethanolamines (PhE), phosphotidylserines (PhS), 

phosphotidylcholines (PhC), and phosphatidylinositols (PhI). 

Figure 2. (A) DESI-MS score plot, PC2 vs. PC3, displaying 

separation of prostate cancer (red objects) and normal 

prostate tissue samples (dark green objects) (B) TS-MS 

score plot, PC3 vs. PC4, displaying separation of prostate 

cancer (red objects) and normal prostate tissue samples 

(dark green objects) 
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These lipids can be observed in the average normal (74 samples) 

and tumor (26 samples) mass spectra shown in Figure 1 for 

DESI (A and B) and TS (C and D). Many of the same differences 

between normal tissue and tumor are seen in both DESI and TS 

average spectra. These include ratio changes for ions of m/z 788 

and 885, an increase in relative abundance of ions of m/z 786, 

835, 861, 863, and a decrease in relative abundance of ions such 

as m/z 737. However, there are also differences in the mass 

spectra recorded by DESI and TS (Figure 1 A vs D, Figure 1 B 

vs. E). For example, chlorinated adducts on phosphatidylcholine 

species (e.g. m/z 794) are more abundant in the TS than the DESI 

spectra (as well in the case of m/z 794 being more abundant in 

tumor than in normal tissue). This example suggests that some 

differences between the ionization methods can be attributed to 

different salt content tolerances (TS has a lower salt tolerance 

than DESI) in the complex matrix when analyzed with no sample 

pretreatment, as discussed elsewhere8
. The same spectra also 

show that the average ion intensity in TS is two orders of 

magnitude greater than that in DESI, suggesting that 

extraction/desorption occurs more rapidly in comparison to 

DESI. Considering the lipid profiles recorded for the entire 

dataset, 12 patients and 100 samples (thousands of mass spectra), 

the differences between disease states are difficult to address by 

eye therefore a robust statistical strategy is needed to efficiently 

explore the chemical information contained in the mass spectra. 

PCA was performed as an exploratory tool to identify chemical 

features that characterize tumor and normal tissue based on the 

DESI and TS lipid profiles. The PCA score plots are shown in 

Figure 2 A and B, respectively for DESI and TS. Both plots 

show the lowest-order principal components (PCs) for which 

separation between normal and tumor tissue is apparent. Indeed, 

distinct groupings of normal (dark green objects) and tumor 

tissue samples (red objects) are present. The loading plots shown 

in Supplementary Figure 1 A and B display those lipids that 

contribute the most to the PC differentiation.   

 

The first principal component by definition encompasses the 

largest variation in the multidimensional space of the original 

variables, PC2 is orthogonal and includes the largest remaining 

variation, etc. Separation in PC space between normal and tumor 

tissue is interpreted in terms of differences between their DESI 

(and TS) mass spectra (i.e. biochemical features). The TS spectra 

are usually noisier than the DESI spectra, which may be 

attributed to the smaller number of scans acquired over a shorter 

time window before signal exhaustion. In this case, the best 

separation among red and dark green objects is in the PC3 vs. 

PC4 score plot and is associated with a slightly lower percentage 

of the total data variation. By contrast, DESI mass spectra result 

from averaging many pixels in the hyperspectral images, 

selected as regions of interest (tumor or normal tissue sections) 

and this helps reduce random noise. In DESI, the best separation 

is along PC2 vs. PC3. 

 

Independently of the ionization method used for analysis, the 

loading plots display a similar relationship between the objects 

and variables. This observation provides initial insight into the 

consistency between DESI and TS in recovering the biochemical 

features associated with the tumor/normal condition. In 

particular, the ions of m/z 835, 861, 885, and 887 are higher in 

relative abundance in prostate cancer tissue, while m/z 788 is 

higher in relative abundance in normal prostate tissue. It is 

noteworthy that the ions observed in higher abundance in 

prostate cancer tissue correspond to phosphatidylinositol 

species: PhI(38:4), PhI(38:3), PhI(36:4), and PhI(34:5) 

respectively. Oncogenes (e.g. PI3K, AKT, PTEN) pertaining to 

lipid-based signaling are relevant to prostate and other human 

cancers26-28. Intriguingly, the dynamics in the PhI class of 

glycerophospholipids could relate to PI3K, an oncogene which 

utilizes phosphorylated-PhIs (not directly detected here) for 

cancer cell growth and survival signaling29. The observed 

increase in non-phosphorylated PhIs might prove to have an 

unexplored but important role in prostate cancer. 

 

Classification of prostate cancer/normal tissue by molecular 

profiling 

 

LDA was performed on the DESI and TS target datasets (data 

that was directly correlated to identified tumor or normal samples 

by histopathology) to quantify the separation between normal 

and tumor samples and build a classification model capable of 

predicting the disease state of unknown samples. The first eight 

and nine PCs were used for DESI and TS datasets, respectively, 

which provided the highest prediction rates for both classes 

(normal and tumor tissue). The average cross-validation (CV) 

prediction rate was 98% for DESI and 96% for TS. The number 

of false results per class obtained through the cross-validation 

process can be seen in Table 1, where the CV confusion matrices 

are reported. Notably, DESI performs slightly better than TS-

MS, although both methods exceed 95% in correct predictions. 

Table 1. Cross validation of training set 

(A)  DESI-MS CV prediction rates (C) TS-MS CV prediction rates 

Normal 98.7% Normal 96.1% 

Tumor 96.2% Tumor 95.8% 

Average 97.5% Average 96% 

(B)  DESI-MS CV confusion matrix (D) TS-MS CV confusion matrix 

Species Normal Tumor Species Normal Tumor 

Normal 73 1 Normal 73 3 

Tumor 1 25 Tumor 1 23 
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To further test the performance of TS-MS, which was used here 

for the first time to differentiate diseased and healthy tissue, an 

additional evaluation set was tested. Samples were acquired from 

patients #13-18 and a total number of 70 biopsies were 

performed from which 110 samples were analyzed randomly. 

The LDA model built on the target TS dataset was used to predict 

the tissue condition (tumor or normal) of these unknown 

samples. The LDA predictions, based on MS molecular 

diagnostics, were compared with pathological evaluation of 

adjacent, unanalysed, tissue sections. Nine samples were 

diagnosed as prostate cancer by an expert pathologist, while the 

remaining 101 samples were normal tissue. The LDA results 

were only moderately discriminatory which we attribute to the 

low reproducibility of some ions (e.g. chloride adducts) in the TS 

spectra acquired in full-scan MS mode. We therefore built an 

LDA model using the top five discriminant ions in the range m/z 

700-1000, as opposed to compressing the entire mass spectra by 

PCA, using a stepwise variable selection strategy to select the 

most discriminant ions30. This strategy proved more efficient and 

robust in differentiating tumor and normal tissue for the TS target 

dataset (see Table 2), no prediction errors in cross validation. 

Moreover, the average percentage of correct prediction of tumor 

and normal tissue for the external evaluation set (110 samples) 

was equal to 93%. It should be noted that the small number of 

samples with tumor tissue was due to the non-targeted selection 

of the samples analyzed. These results suggest that further 

refinements of the strategy used for data analysis could 

strengthen a decision-making strategy based on molecular 

diagnostics. A wide portfolio of pre-treatment processes and 

variable selection techniques is available for pattern recognition 

analysis, following the needs of the acquired MS data structures. 

 

DESI and TS similarities and fit-for-purpose applications 

 

The similarities between DESI and TS mass spectra in providing 

chemical features associated with a healthy/disease state is of 

interest. Indeed, although based on similar mechanisms of ion 

generation (i.e. electrospray-like processes), DESI and TS have 

specific analytical features that may be used to propose diverse 

fit-for-purpose strategies of molecular diagnostics. To estimate 

the correlation between the two sets of MS data, canonical 

correlation analysis (CCA) was performed on the DESI and TS 

target datasets (100 samples). Figure 3 shows the samples in the 

canonical variable space (1 vs. 2) for DESI and TS with a clear 

separation between tumor (red) and normal tissue samples (dark 

green). The correlation coefficients for the first three canonical 

variables are as high as 0.94, 0.76, and 0.68 respectively 

(Supplemental Figure 2). The high correlation between DESI 

and TS is also supported by the location of each sample (labelled 

with the same sample number in both plots) in the CCA space. 

The loading plots (Supporting Figure 3) show the greatest 

contribution to the canonical variable computation from 

principal components 1, 2, and 3 for DESI, whereas principal 

Table 2. Validation of test set data  

(A) TS-MS stepwise LDA on the targeted dataset (C) TS-MS untargeted prediction rates 

Normal  100% Normal  96% 

Tumor  100% Tumor  89% 

Average  100% Average  92.5% 

(B) TS-MS stepwise LDA targeted confusion matrix (D) TS-MS untargeted confusion matrix 

Species Normal Tumor Species Normal Tumor 

Normal 74 0 Normal 97 4 

Tumor 0 26 Tumor 1 8 

 

 

Figure 3.  (A) Canonical variable 1 vs. 2 score plot displaying 

separation of tumor (red objects) and normal tissue samples (dark 

green objects) for DESI-MS target dataset (B) Canonical variable 

1 vs. 2 score plot displaying separation of tumor (red objects) and 

normal tissue samples (dark green objects) for TS-MS target 

dataset 
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components 2, 3, and 4 have the highest contribution for TS. 

Most importantly, the high correlation between DESI and TS 

data is related to the principal components that carry the 

biochemical information relevant to separating tumor and 

normal tissue samples.   

 

CCA results suggest that the same interpretations regarding the 

chemical features which characterize tumor and normal tissue 

can be applied to DESI and TS spectral patterns. This suggests 

that both methods have the same diagnostic purpose but with 

different, possibly complementary, implementations as now 

discussed. One of the most important features of TS is its use of 

the probe as means of sampling a complex matrix as well as 

serving as a source of the ions which move into the mass 

spectrometer upon the addition of solvent and high voltage. This 

transfer-based mechanism makes TS completely user-guided and 

applicable to a variety of samples. TS is not limited to tissue 

sections, but can be used to investigate areas of interest in vivo. 

Figure 4 shows the degree of similarity of (A) a TS mass 

spectrum obtained by sampling a bisected radical prostatectomy 

specimen in vitro and (B) a TS mass spectrum obtained from a 

frozen tissue section from the training set. The complete TS 

process of sampling to collecting data can occur within 20 

seconds. Similar lipid profiles are obtained for DESI and TS, 

even though comparisons between ex vivo and in vivo TS 

analysis, as well as sources of contamination affecting the mass 

spectra, e.g. due to blood, urine etc., need further investigation.  

 

Limited sample size is the main disadvantage of TS-MS. The 

minimal removal of material from a sensitive source such as 

tissue is viewed as an advantage for the patient, but it limits the 

power of the technique by reducing analysis to a few MS scans 

before the signal is exhausted. This could be overcome by 

multiple examination of the same area, but each additional 

sampling requires more time. The limited sample size collected 

by the TS probe also forces the user to consider more carefully 

the measurement uncertainty due to sampling, which may bias 

the analytical results.   

 

TS-MS is envisioned as a surgical tool for disease screening of 

areas of interest. As a surgical screening tool, TS could help 

preserve healthy tissue that may have otherwise been resected for 

histopathological evaluation or help with decisions to remove 

additional diseased tissue that was observed to be questionable. 

 

Experimental 

Study Protocols 

Radical prostatectomy specimens #1-19 were obtained from 

consented patients undergoing treatment at Indiana School of 

Medicine (Indianapolis, IN) following an IRB approved study. 

Biopsies were obtained from specimens #1-18 after resection 

using a disposable biopsy gun (Max-core disposable core biopsy 

instrument, Bard Biopsy Systems, Tempe, AZ). Biopsies 

(approximately 4-15 mm x 1 mm x 1 mm) were subsequently 

frozen, cryosectioned at 15 μm, and thaw mounted to glass 

microscope slides. Sections were stored at -80° C prior to MS 

analysis. The same slide analyzed by DESI-MS imaging was 

H&E stained and examined by an expert pathologist to identify 

from tissue morphology the presence/absence of prostate cancer. 

Adjacent sections (separated by ~15 - 60 μm) were analyzed by 

TS-MS by sampling areas of 1-4 mm2 from regions of known 

pathology based on the DESI/histopathology assignment of 

locations as diseased or normal tissue. Note that this procedure 

was necessary because TS is a destructive sampling method for 

thin sections. Radical prostatectomy specimen #19 was inked 

according to IUSM gross pathology protocol then bisected to 

allow the tissue to be analyzed in vitro. The specimen was 

analyzed by TS-MS at IUSM using an on-site commercial mass 

spectrometer. No biopsies were taken from specimen #19 and 

thus no DESI-MS analysis was performed. Radical 

prostatectomy specimen #19 results were compared to gross 

pathological analysis obtained from IUSM. 

 

A total of 100 samples were prepared from patients # 1-12 and 

used to create a database of tumor and normal tissue mass spectra 

for both DESI and TS methods. These databases are referred to 

Figure 4. (A) TS-MS obtained in vitro from radical 

prostatectomy case 19, lipid pattern suggests sampled area 

was cancerous and this agrees with gross pathology findings 

(B) TS-MS obtained from targeted cancer sample from 

training set 
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as targeted datasets, because the data used is directly correlated 

with histopathological analysis of the tissue. For the DESI 

targeted datasets, regions outlined as tumor or normal by 

pathology were selected (~ 4 mm2 on average) and data were 

averaged to create each data point for subsequent multivariate 

analysis. In parallel, TS was performed in the regions outlined as 

tumor or normal tissue from adjacent tissue sections used for 

DESI and that data was directly used to create the TS targeted 

dataset. Table S1 shows in detail the number of sections prepared 

per biopsy and patient. Another 70 biopsies were prepared from 

the other 6 radical prostatectomy specimens (patients # 13-18) 

and these were analyzed only by TS-MS to create an evaluation 

dataset to further test performance. The biopsy sections used to 

create this independent evaluation dataset were randomly chosen 

and sampled 1-2 times (depending on the size of the tissue) to 

create a 110 sample dataset. Also included in the evaluation set 

were 1-2 randomly selected samples from each patient used in 

the targeted dataset.  Histopathology of these tissue sections was 

performed after MS analysis on adjacent tissue (spacing ~15-60 

μm). 

 

DESI-MS 

 

A laboratory-built DESI ion source, similar to the commercial 

2D source from Prosolia, Inc. (Indianapolis, IN, USA) was 

coupled to a linear ion trap mass spectrometer (LTQ) controlled 

by XCalibur 2.0 software (ThermoFisher Scientific, Waltham, 

MA) and used in DESI experiments. The negative ionization 

mode was used with the automatic gain control (AGC) 

inactivated. The spray solvent used for DESI-MS was 

dimethylformamide (DMF)-acetonitrile (ACN) at a 1:1 ratio 

(v/v), both solvents were purchased from Mallinckrodt Baker 

Inc. (Phillipsburg, NJ), and delivered at 1.0 µL/min flow rate 

using the instrument syringe pump. The DESI source parameters 

were set as follows: capillary temperature 275oC, voltage applied 

to the stainless steel needle syringe 5 kV, capillary voltage -25 

V, tube lens voltage -115 V, capillary incident angle 54o, spray 

to surface distance ~3 mm, sample to inlet distance ~5 mm, and 

nitrogen gas at 180 PSI. Prostate tissue sections were analyzed 

using a moving stage with a lateral scan rate of 303.03 µm/s in 

horizontal rows separated by a 200 μm vertical step. Instrument 

scan time was coordinated with scan speed providing ~200 x 200 

μm pixels. Full scan mass spectra were acquired in negative ion 

mode in the mass range m/z 200–1000. For statistical analysis of 

the evaluation dataset, a reduced mass range of 700-1000 was 

used, limiting the biochemical information to complex 

phospholipids. 

 

Touch spray MS 

 

The TS probe used was a commercially available teasing needle 

purchased from Fisher Scientific (Pittsburgh, PA, USA)7. 

Methanol (Mallinckrodt Baker Inc., Phillipsburg, NJ) was used 

as spray solvent and 1 μL was applied manually via an adjustable 

pipette (Eppendorf Research-2.5 μL). The LTQ linear ion trap 

mass spectrometer was also used for the TS experiments with the 

same operating parameters as those used in the DESI 

experiments except that the voltage applied to the TS probe was 

4 kV and the automatic gain control was active. TS was 

performed by touching and desorbing material onto a teasing 

needle from regions of interest of 1-4 mm2. After sampling, the 

tip of the probe was directed at the inlet of the mass spectrometer 

and the high voltage and 1 μL of solvent were applied. The 

extracted analytes were analyzed in a spray time of ~6 seconds. 

The data acquired within this period were averaged to represent 

a single data point. 

 

Principal component analysis of target datasets 

 

An in-house program was used to convert the MS data files (.raw) into 

ASCII files (.txt), which were imported into Matlab (MathWorks, 

Inc., Natick, USA).  Biomap software (http://www.maldi-msi.org) 

was used to display single ion images (i.e. spatial distribution of a 

single m/z variable, Supplemental figure 4) with MS intensity 

represented in false color (normalized to the absolute value). For each 

DESI image, information was coded as a datacube (X∙Y∙MS), where 

“X” and “Y” are spatial dimensions and the “MS” domain contains 

the m/z variables and corresponding intensity (i.e. an entire mass 

spectrum). Groupings of adjacent pixels, i.e. regions-of-interest 

(ROIs), representing areas of tumor or normal tissue were selected in 

the 2D spatial domain (X∙Y), according to pathological evaluations, 

and the corresponding mass spectra were averaged. The averaged 

mass spectra from the prostate sections constituted the DESI target 

dataset. The TS target dataset was built using a list of m/z values and 

ion abundances from the average mass spectrum (over ~6 s of data 

acquisition) acquired per sample. The data were then imported into 

Matlab. 

 

The acquisition step used to increment m/z values was equal to 

0.0833, therefore the two data matrices (DESI and TS) consisted 

of 3601 columns (i.e. m/z values) and 100 rows (i.e. samples: 

normal tissue sections, n = 74; tumor tissue sections, n = 26). 

PCA was performed with in-house Matlab routines. PCA is 

commonly used for exploring complex information contained 

within mass spectral datasets, allowing consideration of all 

spectral variables and possible inter-correlations 

simultaneously25, 31. By means of PCA, the information of the 

original m/z variables is reorganized and compacted in principal 

components (PCs). That is, PCA can be used as an unsupervised 

data compression technique. When dealing with high-

dimensional data, the compression of the relevant information is 

a preliminary step in order to efficiently manage and extract 

useful features. All MS spectra were normalized by the standard 

normal variate (SNV) transform, correcting for both baseline 

shifts and global intensity variations32, 33, and then column 

centered. The principal components are orthogonal (i.e. 

uncorrelated) and efficiently describe large fractions of the 

information. The projections of the data objects onto the PCs are 

called scores, while the importance of each original variable in 

defining a certain PC is given by a loading coefficient. Groupings 

in the score plot indicate similarities among the objects (i.e. 

samples), based on the information derived from the mass 
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spectra. Both scores and loading values were represented in two-

dimensional scatter plots. 

 

Canonical correlation analysis on the target datasets 

 

Canonical correlation analysis (CCA) is a way of measuring the 

linear relationship between two multidimensional variables 

(DESI and TS) observed on the same sample collection34, 35. In 

this study, the two datasets represent the DESI and TS mass 

spectra recorded from 100 prostate tissue sections. The DESI 

mass spectral dataset is considered as a reference. CCA rotates 

the original variables in the two blocks, to obtain some pairs of 

variables (one for each block), called canonical variables, with 

maximum correlation between the two blocks. The 

dimensionality of these new bases is equal to or less than the 

smallest dimensionality of the two sets of variables. The 

canonical variables are linear combinations of the original 

autoscaled (i.e. unitary variance) variables, whose contribution 

in defining a specific canonical variable can be inferred through 

the corresponding loading value. The correlation coefficients 

between the DESI canonical variable and the corresponding TS 

canonical variable are termed canonical correlation coefficients. 

Specific details on CCA can be found elsewhere34, 35. In order to 

overcome the high inter-correlations across m/z values, CCA was 

performed after PCA, which acts as an unsupervised data 

compression technique. Two separate PCAs were run on the 

SNV normalized and column-centered DESI and TS mass 

spectral data. The first 10 PCs, explaining about 90% of total data 

variation, were selected and used for CCA. CCA was performed 

by the free chemometric package V-PARVUS 2010 (University 

of Genova, Italy, 

(http://www.csita.unige.it/software/free/other.html). 

 

Linear discriminant analysis on the target and the evaluation 

sets 

 

Linear discriminant analysis (LDA) was performed as a supervised 

discriminant classification technique. Discriminant methods look for 

a delimiter that divides the global domain into a number of regions, 

each assigned to one of the classes. This delimiter identifies an open 

region for each class and such regions determine the assignment of 

the samples to one of the classes30, 36. Model validation (i.e. evaluation 

of the predictive ability of the model) was performed by means of 

cross validation (CV)36. For this study, five cross-validation deletion 

groups were selected, meaning that all the samples (n=100) were 

divided five times systematically in a training set (objects used for 

building the classification model) and a test set (remaining objects 

used to evaluate the predictive ability of the model), with all the 

samples being in the test set only once. Eventually, the final model 

was built using all the objects. LDA was applied on the DESI and TS 

target datasets of SNV normalized mass spectra after compression by 

PCA, thereby using as variables the principal components (instead of 

the original mass spectral data). Two classes were modelled: normal 

tissue (n=74) and tumor (n=26). In more detail, 8 PCs for DESI and 9 

PCs for TS were computed each time with the training samples and 

used for building the classification model. The test sets – samples that 

did not contribute in the model building process - were used to 

estimate the global prediction rate for all classes, hence as the CV 

prediction rate for each class. This is a so-called complete validation 

strategy36. The CV prediction rate is the percentage of correct 

predictions on the objects in the CV test sets. The CV confusion 

matrix shows how many samples belonging to a certain category were 

correctly/incorrectly assigned by the classification rule to that 

category. Indeed, in this matrix, each element gives the number of 

samples of the row category assigned to the column category. When 

the matrix is diagonal (entries outside the main diagonal are all zero) 

there is a perfect prediction of all the samples. Note that LDA models 

used for supervised discriminant classification were built by using 4 

to 10 PCs. The models with 8 and 9 PCs, for unsupervised DESI and 

TS respectively, were chosen as they provided the least number of 

false results (i.e. highest prediction rates) in cross-validation.  

 

The model built for the TS dataset was used further to predict the 

normal/disease state of another 110 samples (the evaluation set), 

whose histopathology was unknown at the time of MS analysis. 

The subsequent comparison between molecular diagnosis by TS-

MS and histological diagnosis further validated the TS-MS 

model performances. LDA was performed with Matlab using in-

house routines. 

Conclusions 

DESI-MS and TS-MS have been used to differentiate tumor and 

normal tissue from biopsies taken from 18 radical prostatectomy 

surgical specimens. The targeted dataset (radical prostatectomy 

specimen 1–12) was subjected to discriminant classification analysis 

using LDA, providing an average prediction rate of 97.5% for DESI-

MS and 96% for TS-MS. Validation of TS-MS as a non-targeted 

technique was performed using an external evaluation set (radical 

prostatectomy specimen 13–18) of unknown prostate specimens,  

which provided average predictions rates of 92.5%. DESI and TS 

results are comparable (0.94 correlation coefficient by CCA), 

recovering the biochemical information, primarily in the lipids, that is 

responsible for the separation of tumor and normal tissue samples.  
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Prostate cancer is distinguished reliably (> 95% accuracy) from normal tissue using 

ambient spray ionization in a rapid diagnostic measurement.  
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