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One current challenge in the field of breast cancer infrared imaging is the identification of 10 

carcinoma cell subtypes in the tissue. Neither sequencing nor immunochemistry is currently able 

to provide a cell by cell thorough classification. The latter is needed to build accurate statistical 

models capable of recognizing the diversity of breast cancer cell lines which may be present in a 

tissue section. One possible approach to overcome this problem is to obtain the IR spectral 

signature of well-characterized tumor cell lines in culture. Cultures in three-dimensional matrices 15 

appear to generate an environment that mimics better the in vivo environment. There are 

presently series of breast cancer cell lines which have been thoroughly characterized in two- and 

three-dimensional (2D and 3D) cultures by full transcriptomics analyses. In this work, we 

describe the methods used to grow, to process and to characterize a triple-negative breast cancer 

cell line, MDA-MB-231, in 3D laminin-rich extracellular matrix (lrECM) culture and compare it 20 

with traditional monolayer cultures and tissue sections. While unsupervised analyses did not 

completely separate spectra of cells grown in 2D from 3D lrECM cultures, a supervised 

statistical analysis resulted in an almost perfect separation. When IR spectral responses of 

epithelial tumor cells from clinical triple-negative breast carcinoma samples were added to these 

data, a principal component analysis indicated that they cluster closer to the spectra of 3D culture 25 

cells than to the spectra of cells grown on a flat plastic substrata. This result is encouraging in 

view of correlating well-characterized cell line features with clinical biopsies. 

 

 
Introduction 30 

Breast cancer is a global public health issue. It is the most 

frequently diagnosed malignancy in women in the Western 

world and the commonest cause of cancer death among 

European and American women. When performed at its best, 

basic histopathological examination of breast cancer remains 35 

the gold standard in determining patient outcome. During the 

last two decades, several new clinical and pathological 

parameters have been used to evaluate the prognosis of breast 

cancer patients. Analysis of biopsies is required for 

pathological examination but immunohistochemistry methods 40 

are limited by both the volume of tissue available and the fact 

that they cannot use more than a few probes at the same time 

on one tissue section. New technologies such as microarray 

analysis, which enables scientists to look at specific “molecular 

(gene) signature” or “fingerprint” of a tumor, has allowed 45 

gaining new insights into the biology of breast cancer. It has 

contributed to a better understanding why some women have 

different clinical outcomes even though the histopathological 

examination of their tumors provides similar results. Several 

microarray studies have been remarkably consistent in 50 

reproducing similar molecular classification of breast cancer. 

The collective results conclude that breast tumors can be 

grouped according to at least three individual subgroups: 

luminal, basal and ErbB2/HER2 subtypes. These subgroups 

have distinct clinical outcomes and may respond differently to 55 

various therapeutics.1–3 These results suggest that molecular 

profiling could significantly advance our interpretation of 

breast cancer biology and improve our management of 

individual patients. Yet, on the one hand, despite interesting 

and positive results provided by these gene expression studies, 60 

reproducibility and robustness of expression data remain a 

concern4. Even though concordance among microarray 

platforms improves dramatically after filtering for gene 

nucleotide sequence identity5, the price to pay is a reduced 

gene expression information retained in the analysis. 65 

Furthermore, sample preparation and storage form also a 

crucial issue for microarray experiment. In fact, RNA is 

inherently unstable and rapid changes may occur as a result of 

insults caused by tissue handling or ischemia. On the other 

hand, there is a relative lack of success of the new molecular 70 

clinical tests in terms of clinical outcome.6,7 As the expansion 

of targeted therapies available to breast cancer patients is 

developing rapidly, exploring alternative strategies for 

biomarker discovery and individualized therapy is urgent. 

Among the available opportunities for the ex vivo analysis of 75 

tissues, Fourier transform infrared (FTIR) spectroscopy appears 

as one of the most relevant tools. It is due to the global 

information it provides about the molecular content of samples. 

FTIR spectroscopy is based upon the interaction between the 

IR radiation and the covalent bonds of molecules in presence. 80 

IR spectroscopy exploits the fact that molecules have specific 

frequencies at which they rotate or vibrate corresponding to 

discrete energy levels (vibrational modes). Within the mid-

infrared range (4000-400 cm-1 or 2.5-25 µm), all organic 

functions lead to specific IR absorption bands. Each compound 85 

has a characteristic set of absorption bands in its infrared 

spectrum. It is now considered that the FTIR spectrum provides 
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as much information as DNA microarrays as far as diagnostic 

purposes are concerned. Importantly, all molecular types 

contribute to the IR spectrum and this contribution depends on 

the exact molecular structure. For instance, the head group 

length and unsaturation of membrane lipids contribute all to the 5 

IR spectral signature.8,9 Similarly, lipid/protein ratio, DNA 

condensation state and many other parameters can be obtained 

from the spectra.10–12 Besides, the IR spectra account not only 

for the chemical nature of cell molecules but also for their 

conformations and are, in particular, very sensitive to protein 10 

secondary structure.13–17 All together, the various contributions 

to the FTIR spectrum form a signature of the biochemical 

composition of the cell that is unique. Interestingly, FTIR 

spectroscopy is very fast and does not require any labeling or 

chemical preparation. 15 

When coupled with a microscope device, this technique 

provides spatially resolved information on the various 

structures present in tissue sections. It makes a significant 

contribution in histopathology investigations and has been 

recently recognized as an emerging tool for histopathological 20 

studies.18–21 Specifically, in breast cancer research, IR 

spectroscopy has proven its value.22–25 

The current challenge in the field of breast cancer is the 

identification of carcinoma cell subtypes in the tissue. The 

issue is particularly challenging as tumors are often quite 25 

heterogeneous. Many clones having different properties may 

coexist within a small tumor area as demonstrated by single 

cell sequencing.26 In turn, it remains very challenging to 

identify the “molecular” or genomic classification of individual 

cells by FTIR imaging. Even relying on immunohistochemistry 30 

labelling just after recording IR images is limited by the 

possibility to obtain quantifications for many different epitopes 

on the same tissue section. Highly multiplexed approach could 

resolve this problem in the future.27 In the absence of an 

extended spectral database with reliable assignments to 35 

carcinoma subtypes, training a model to assign IR spectra to 

these subtypes in a tissue environment is not possible. 

One possible approach to overcome this problem is to obtain 

the IR spectral signature of well-characterized cell lines in 

culture. There are presently series of breast cancer cell lines 40 

which have been thoroughly characterized in 2D and 3D 

cultures. The availability and relevance of these cell lines (for 

instance 51 breast cancer cell lines mirroring 145 primary 

breast tumors28) have been carefully described for breast 

cancer.29,30 Transcriptomic data are available in both 2D and 45 

3D cultures. See for instance the Transcription profiling of 25 

breast cancer cell lines grown in 2D and 3D tissue culture 

conditions published on the EMBL-EBI web site at 

http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-

TABM-244.  50 

In a living tissue, cells interact with other cells and with 

extracellular matrix through biochemical and mechanical cues. 

These interactions play a crucial major role in maintaining 

normal homeostasis and functions of the tissue31 and, in that 

way, they regulate cell proliferation, migration and apoptosis. 55 

When cultured ex vivo on 2D plastic surface, cells loose the 

possibility to communicate with their microenvironment. Cell 

cultures in 3D lrECM re‑establish interactions with 

extracellular matrix lost in conventional 2D cultures.32 Thus, 

they appear to generate a physiologically relevant environment 60 

that is much closer to the environment found in real tissues.33 

For 3D cultures, a tight correlation has been found between the 

morphology of the colonies,34 gene expression profile35 and 

prognostic.36  

In this work, we describe the methods used to characterize a triple-65 

negative (ER-, PR-and HER2-) breast cancer cell line, MDA-MB-

231, grown in 3D lrECM culture and compare it with 2D culture 

cells and triple-negative carcinoma tissue.  

Materials and Methods 

2D cell culture conditions 70 

Human mammary tumor epithelial cell line MDA-MB-231 was 

propagated on standard cell culture plastic in RPMI 1640 medium 

(Lonza, Switzerland) supplemented with 10% fetal bovine serum 

(FBS) (Life Technologies, USA), 2 mM L-glutamine (Lonza, 

Switzerland), 50 U/mL penicillin and 50 µg/ml streptomycin (Life 75 

Technologies, USA) at 37°C in 5% CO2. Healthy, early-passage (p 

= 3 to 5) and less than 75% confluent cells were used, on the one 

hand, in 3D culture assays and, on the other hand, were coated with 

Matrigel as protective agent before undergoing formalin fixation and 

paraffin embedding (FFPE). 80 

3D lrECM culture system 

3D cultures were prepared following the protocol described by Lee 

et al.33 3D embedded culture (vs 3D on-top culture) turned out to be 

more suitable for further handling, providing an increased number of 

cell colonies in each sample. Briefly, single MDA-MB-231 cells 85 

were suspended in 150 µl growth-factor reduced Matrigel basement 

membrane (BM) matrix (9.6 mg/ml; BD Biosciences, USA) at a 

density of 1x105 cells/ml and plated into eight-well plastic-

chambered glass microscope slide (0.7 cm²/well; Corning, USA) 

precoated beforehand with 50 µl Matrigel. 3D lrECM cell cultures 90 

were maintained in H14 medium with 5% Matrigel and 1% FBS at 

37°C in 5% CO2 for 7-10 days with medium change every 2-3 days. 

By Matrigel, we refer to the solubilized tissue basement membrane 

extract derived from the Engelbreth-Holm-Swarm mouse sarcoma. 

It is mainly composed of laminin; other constituents include 95 

collagen IV, heparan sulfate proteoglycans and entactin/nidogen.37 

Matrigel is commonly used as a physiologically relevant model of a 

laminin-rich BM. 

FFPE treatment 

Matrigel matrices with 3D cell cultures and 2D culture cells 100 

they derived from were fixed in 10% neutral buffered formalin 

solution for 22 h, followed by progressive dehydration and 

embedding in paraffin as usual in clinical routine (200 min 

protocol). Two 4 µm adjacent sections were cut with a rotary 

microtome: one of both was mounted on a BaF2 slide (Korth 105 

Kristalle GmbH, Germany), deparaffinized and intended for IR 

imaging, the other one was stained with hematoxylin and eosin 

(H&E) for visual examination. The choice of such a sample 

treatment has been guided by the purpose of simplifying 

comparison with tissue samples. 110 

FTIR data acquisition  

The FTIR data were collected using a Hyperion 3000 FTIR 

imaging system (Bruker Optics, Ettlingen, Germany), equipped 

with a liquid nitrogen cooled 64 x 64 Mercury Cadmium 

Telluride (MCT) Focal Plane Array (FPA) detector and a 15x 115 

objective (NA = 0.4). The data were collected in transmission 

mode from sample regions of 180 x 180 µm2. Every element of 

the FPA acts as an independent and discrete detector from 

which a full spectrum is obtained. The corresponding pixel 

covers an area of 2.8 x 2.8 µm2. One FTIR image (unit image) 120 
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results in 4096 spectra, each one being the average of 256 

scans recorded in a spectral range from 3800 to 900 cm-1 (ca. 5 

minutes). To cover larger sample areas, several FTIR images 

were juxtaposed in order to obtain one FTIR map. The 

background spectrum, acquired as the average of 512 scans in 5 

the absence of sample or BaF2 slide. The spectral resolution 

was set to 8 cm-1. 

Six unit images and one 2 x 2 FTIR map were acquired for 

each 3D and 2D cell culture sample respectively. Experiments 

were performed independently in triplicate: from cell thawing 10 

to FTIR data acquisition. 

Data analyses 

Pre-processing of IR spectra 

All spectra were preprocessed as follows. Water vapor 

contribution was subtracted as described previously38,39 with 15 

1956-1932 cm-1 as reference peak and CO2 peak was flattened 

between 2450 and 2250 cm-1. The spectra were baseline-

corrected. Straight lines were interpolated between the spectra 

points at 3620, 2995, 2800, 2395, 2247, 1765, 1724, 1480, 

1355, 1144 and 950 cm-1 and subtracted from each spectrum. 20 

Spectra were normalized for equal area between 1725 and 1481 

cm-1 (Amide I and II peaks). The signal-to-noise ratio (S/N) 

was then checked on every spectrum. It was required to be 

higher than 500:1 with noise defined as the standard deviation 

in the 2200-2100 cm-1 region of the spectrum and signal 25 

defined as the maximum of the curve between 1750 and 1480 

cm-1 after subtracting a baseline passing through these two 

points. Finally, some rare spectra with normalized absorbance 

lower than -5 (negative lobe) and a maximum above 120 

(saturation) were discarded. To avoid abrupt refractive index 30 

changes we always selected areas of sample with contiguous 

cells. Visual inspection of spectra as well as systematic 

screening for negative lobes on the left-hand side of the Amide 

I band did not reveal significant dispersive artifacts.40–44 As 

Mie scattering corrections rely on simplified models and as 35 

dispersive artifacts were minor in the present work, we 

preferred not applying such a correction. Derivation calculation 

did not provide more efficiency as also reported elsewhere45 

and was not applied to preprocessed IR spectra. 

Statistical analyses of IR spectra 40 

In order to observe the intrinsic proximities and distances 

within the data set and to group IR spectra according to their 

similarity, unsupervised Principal Component Analyses (PCA) 

were performed. These multivariate methods enable variable 

reduction by building linear combinations of wavenumbers 45 

varying together, called Principal Components (PC). Usually 2 

to 6 PCs are sufficient to explain the major proportion of the 

original variance of the dataset, reducing the description of 

every spectrum to 2 to 6 numbers representing its projection 

(scores) on the PCs. Based on these scores, each spectrum can 50 

be represented as a point on a 2D or a 3D PC space. 

Supervised Partial Least Square Discriminant Analysis (PLS-

DA) was also performed on the data set to extract latent 

variables that enable the construction of a factor capable of 

predicting a class. It requires a priori knowledge about the 55 

classes of spectra and allows both data reduction and 

discriminative investigation. This approach consists in the 

application of PLS regression resulting in fewer uncorrelated 

variables. Linear combination of variables explaining the 

membership assignment will then serve as discriminant rules, 60 

minimizing intragroup and maximizing intergroup separations. 

Correction of the IR spectra for water vapor and atmospheric 

CO2 contribution, baseline subtraction, normalization, 

application of quality filters, PCA and PLS-DA analyses were 

carried out by Kinetics, a custom-made program running under 65 

Matlab (Mathworks, Inc.).  

Results 

MDA-MB-239 triple-negative cell line has been grown in 2D 

and 3D culture conditions as described by Lee et al.33 We 

decided to follow the most common protocol used in the clinic 70 

to prepare cells and tissues. As described in Materials and 

Methods, cell pellets (2D) and cell colonies (3D) were 

formalin-fixed and paraffin-embedded. Adjacent 4-µm-thick 

sections were prepared for IR imaging and H&E staining. Even 

though the FFPE procedure brings some modifications to the 75 

IR spectra of cells, these modifications are very similar for all 

cell lines (limited loss of lipids and some protein 

conformational changes),46 these conditions have also been 

shown to maintain the subtle variations that may exist among 

breast cancer cell lines.46 Nevertheless, it is worth pointing out 80 

the importance of lipid metabolism in cancer progression.47,48 

Comparison of the IR spectra of MDA-MB-231 cell line grown 

in 2D and 3D cultures 

When growing on a 2D flat surface of a culture box, MDA-

MB-231 cells form a uniform monolayer after 4-5 days. To 85 

manipulate healthy cells and avoid effects related to 

confluence,49 cells were always collected at less than 75% 

confluence. Cell shape before detachment were either round or 

elongated, depending on cell cycle stage,50 but all cells became 

round-shaped after trypsinization and remained so after FFPE 90 

treatment (Fig. 1). Even though FFPE processed cancer cells 

grown in 2D accurately reflect the differences that exist among 

different cell lines before FFPE processing,46 the 2D phenotype 

is quite distinct from the one found in tissues. MDA-MB-231 

cells grown in 3D lrECM-embedded matrix form colonies of 95 

various sizes and shapes and are phenotypically much closer to 

epithelial cells found in tissue context. Particularly, MDA-MB-

231 cell line is characterized by its invasive phenotype with 

stellate intercolonial projections. 

 100 
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Figure 1. Bright-field microscopy images of MDA-MB-231 breast 120 

cancer cells grown in conventional 2D culture (A and C) and in 3D 
lrECM-embedded culture (B and D). The images A and B have been 

acquired before formalin fixation; the images C and D have been 
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obtained after FFPE treatment and H&E staining of 4-µm-thick 

sections. White bars: 100 µm. 

Interestingly, Figure 1D also shows that Matrigel matrix in 3D 

culture, stained by eosin in light pink, is absent from the 

immediate vicinity of the cell colonies. It is mainly due to post-5 

FFPE processing shrinkage of Matrigel. A comparison between 

bright-field images of H&E stained, unstained sections and 

their corresponding IR images is provided in Figure 2. While 

individual cells can be easily identified on the H&E stained 

sections and, though less clearly, on the unstained sections, the 10 

IR images are characterized by a much poorer resolution as 

expected from the diffraction-limited resolution at 1654 cm-1  

(λ ≈ 6 µm). Considering the numerical aperture (NA = 0.4), 

diffractions limit resolution to ca. 9 µm at best.51 As the point-

spread-function usually presents side lobes, true resolution is 15 

usually even further reduced in standard IR imaging.51,52 51,52 

Raw absorbance spectra are reported in Figure S1 

(Supplementary Material). 
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Figure 2. Bright-field microscopy (A-B, D-E) and IR (C, F) images of 
adjacent 4-µm-thick sections of MDA-MB-231 breast cancer cells 

grown in 2D (A-C) and 3D (D-F) cultures. For 2D culture, the image A 

reports the H&A stained section. The adjacent, unstained section image 
is presented in B. The IR raw image (absorbance at 1654 cm-1, no 40 

spectral processing) of the same region is reported in C. For 3D culture, 

image D reports the H&A stained section. The adjacent, unstained 
section image is presented in E, and the IR raw image (absorbance at 

1654 cm-1, no spectral processing) of the same region is reported in F. 

One image is 180 x 180 µm2. 45 

Spectra with sufficient S/N (see Materials and Methods) were 

then extracted manually from the IR images. Three 

independent cultures provided 600 and 1752 spectra for the 2D 

and 3D samples respectively. PCA was applied in order to 

provide an unsupervised view of the data. A score plot is 50 

reported in Figure 3.  

PC1 is characterized by a strong sigmoidal feature in the 

Amide I range of the spectrum, with a minimum at 1624 cm-1 

and a maximum at 1670 cm-1. Considering this shape and the 

sign of its contribution in Figure 3 (positive for 3D culture cells 55 

and negative for 2D culture cells), it indicates that proteins of 

cells grown in 3D culture have more α-helical and less β-sheet 

structures than cells grown in 2D culture. This feature is also 

dominant on a straight difference spectrum obtained by 

subtracting the mean spectrum calculated for 2D culture cells 60 

from the mean spectrum associated with 3D culture cells (not 

shown). The biological interpretation of this observation 

remains to be elucidated. 

Figure 3 indicates some degree of separation between the 

MDA-MB-231 breast cancer cells grown in 2D and 3D 65 

cultures. The origin of the difference can be appreciated from 

the shape of the PCs (Figure 4). 
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Figure 3. PCA score plot of 600 spectra of MDA-MB-231 breast cancer 

cells grown in 2D culture (red) and 1752 spectra of cells derived from them 90 

and grown in 3D culture (green). Spectra are projected in the PC1 – PC2 

space. The fraction of the total variance explained by each PC is indicted on 

the axes. The analysis has been carried out on the 1800-1000 cm-1 spectral 
range.  
 95 

 

 

 

 

 100 

 

 

 

 

 105 

 

 

 

 

 110 

 
Figure 4. Representation of PC1 (blue) and PC2 (green) obtained after 

principal component analysis applied on 600 spectra of MDA-MB-231 
breast cancer cells grown in 2D culture and 1752 spectra of cells 

derived from them and grown in 3D culture (1800-1000 cm-1 range). 115 

Since an unsupervised statistical analysis indicated a trend to 

separation according to culture type (either 2D or 3D), we 

attempted to use a supervised method to improve the 

discrimination. PLS-DA was used to classify all the spectra 

used in PCA represented in Figure 3. In order to evaluate the 120 

contribution of the different spectral regions, a bootstrapping 

method was set up on 100 cm-1 wide spectral ranges. 60% of 

the spectra were used to build a model and the remaining 40% 

of the spectra were used to test the quality of this model. The 

procedure was repeated 40 times by randomly selecting a new 125 

training set and a new test set. The procedure was repeated for 

each spectral interval. Results are summarized in Figure 5. 
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When run on the entire spectral range, the PLS-DA yielded 

even better correct assignment scores (not shown), indicating 

that non redundant information is present in the various sub-

regions analyzed in Figure 5. 
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Figure 5. Success rate (in %) of the prediction models as a function of 
the spectral range selected (see color legend). Interval PLS-DA 

classification was computed on the spectra described in Figure 3. The 25 

percentages of correct assignment by the prediction models are 
reported on Y-axis; the predicted values are expressed as % of the true 

values. 60% of the spectral database was used for the training and the 

remaining 40% as test set. The procedure was repeated 40 times, 
yielding to a standard deviation for each % value. The entire spectral 30 

range between 3000-2800 and 1800-1000 cm-1 was investigated by 

steps of 100 cm-1 as indicated in the color legend. Group 1: spectra 
associated with 2D culture cells; group 2: spectra associated with 3D 

culture cells. 

Comparison with epithelial cells in breast cancer tissues 35 

As information able to distinguish cells grown in 2D and 3D is 

present in their IR spectra, we attempted to compare these two 

categories of spectra with spectra of carcinoma cells present in 

a tissue. Sections from three clinical samples were imaged. For 

the sake of the consistency, three triple-negative tumor cases 40 

were selected. A PCA score plot shows that spectra of 2D 

culture cells form a distinct cluster while spectra of 3D culture 

and clinical carcinoma cells are largely superimposed on PC#1 

(Fig. 6).  

 45 
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Figure 6. PCA score plot of 600 spectra of cells grown in 2D culture 

(red), 1752 spectra of cells grown in 3D culture (green) and 1704 
spectra of tumor epithelial cells from 3 patients (respectively 504, 648 

and 552 spectra) with triple-negative breast carcinoma (blue). The 

fraction of the total variance explained by PC1 and PC2 is indicated on 70 

the axes. The analysis has been carried out on the 1800-1000 cm-1 

spectral range. 

Figure 6 indicates that, even though there is some projection 

overlap of the spectra of 2D culture cells, on the one hand, with 

the spectra of 3D culture cells, and, on the other hand, with 75 

clinical carcinoma cells, unique characteristics of the two 

groups are extracted in PC1 which explains about half (51.3%) 

of the total variance found in the entire dataset. 

Furthermore, it appears that after addition to the two existing 

spectral groups a large number of IR spectra of carcinoma cells 80 

recorded in clinical samples, the shape of PC1 remains very 

similar to the one observed in Figure 4 (Fig. 7). 
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Figure 7. Representation of PC1 obtained after principal component 

analysis applied on 600 spectra of cells grown in 2D culture, 1752 
spectra of cells grown in 3D culture and 1704 spectra of tumor 100 

epithelial cells from 3 patients with triple-negative breast carcinoma 

(1800-1000 cm-1 range). 

Conclusion 

The present paper describes a methodology that allows direct 

comparison of cell phenotypes grown in 2D monolayer and 3D 105 

lrECM cultures. The results show us that FFPE-treated cell 

cultures preserve their morphological integrity and provide thus 

satisfactory specimens for IR analysis. Interestingly, bright-

field images indicate that at the end of the FFPE processing, 

the matrix shrinks and leave a space around the cells. After 110 

paraffin removal, it results in no contamination of the cell 

spectra by the extracellular matrix spectra. PCA also 

demonstrates that Matrigel matrix spectra are completely 

distinct from the cell spectra (not shown). Phenotypes are, as 

expected, distinct in 2D and 3D cultures.33–36,53,54 It highlights 115 

the biochemical changes occurring in studied epithelial cancer 

cell line according to its growth condition. While unsupervised 

analysis did not completely separate the two phenotypes, a 

supervised statistical analysis resulted in an almost perfect 

separation. When spectra from carcinoma cells present in 120 

clinical samples are added to the series, a PCA indicates that 

they cluster closer to the spectra of 3D culture cells than to the 

spectra of 2D culture cells. This result is encouraging in view 

of correlating well-characterized cell line features with 

biological characteristics of clinical samples. It is obvious that, 125 
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even in 3D cultures, cell lines will never have phenotypes 

absolutely identical to the ones found in tissues. Nevertheless, 

as long as common features can be extracted, they could be 

identified in both conditions. 3D cultures could be improved to 

match better and/or understand better the in vivo conditions. 5 

The influence of fibroblasts55–59 or lymphocytes56,60,61 on breast 

carcinoma cells has been underlined consistently. Co-cultures 

with such cells could be easily implemented. Moreover, other 

well-established breast cancer cell lines should be explored in 

order to represent as much as possible the diversity of human 10 

breast carcinoma forms. 
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Breast cancer cell line in 2D (top) and 3D (bottom) culture: H&H, unstained bright field and IR image 
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