This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Ultrasensitive carbohydrate-peptide SPR imaging microarray for diagnosing IgE mediated peanut allergy

Amit A. Joshi,a Mark W. Peczuh,a Challa V. Kumar,a,b and James F Rusling*a,c,d

Severity of peanut allergies is linked to allergen-specific immunoglobulin E (IgE) antibodies in blood, but diagnostics from assays using glycoprotein allergen mixtures may be inaccurate. Measuring IgEs specific to individual peptide and carbohydrate epitopes of allergenic proteins is promising. We report here the first immunoarray for IgEs utilizing both peptide and carbohydrate epitopes. A surface plasmon resonance imaging (SPRi) microarray was equipped with peptide and β-xylosyl glycoside (BXG) epitopes from major peanut allergen glycoprotein Arachis hypogaea h2 (Ara-h2). A monoclonal anti-IgE antibody was included as positive control. IgEs were precaptured onto magnetic beads loaded with polyclonal anti-IgE antibodies to enhance sensitivity and minimize non-specific binding. As little as 0.1 attomole (0.5 pg/mL) IgE was detected from dilute serum in 45 min. IgEs binding to Ara-h2 peptide and BXG were quantified in 10 µL of patient serum and correlated with standard ImmunoCAP values.

Introduction

Allergies to peanuts and tree nuts are critical issues for millions of people worldwide.1,2 Severe allergic reactions to nuts can lead to anaphylactic shock, hospital visits and death.3 Allergen epitope-resolved arrays are a promising strategy to improve diagnostic specificity for serum immunoglobulin antibodies (IgEs) to these allergens.4 Here we report the first peptide-carbohydrate SPRi immunoarray aimed at diagnosis of peanut allergies. It features spots of a 28-mer peptide sequence residues 39-66 from peanut protein Ara h2,5 a β-xylosyl glycoside present on the central mannose residue of N-linked glycoproteins,6 and an anti-IgE antibody to achieve quantitative detection of human allergen-specific IgEs.

Arachis hypogaea (Ara-h1 to Ara-h8) glycoproteins are the major peanut allergens recognized by serum IgEs in allergic individuals.7,8 Amongst these, Ara-h2 is the most potent allergen.9 Specific IgE levels against epitopes of Ara-h2 are predicted to be reliable diagnostic biomarkers for severity of peanut allergies.10 Specific peptide epitopes have been used for detecting IgEs by a fluorescent immunoassay.11-13 Our previous studies employed the same Ara-h2 peptide to detect an allergen-specific model for IgEs, chicken IgY antibody, by electrochemical immunoassays14 and a resistive pulse nanosensor.15

Nearly all Ara-h glycans are linked through asparagine residues (N-linked).16 They are referred to as Cross-reactive Carbohydrate-Determinants (CCDs) because they are present on many plant glycoproteins. Consequently, IgEs reactive to this moiety on one allergen can demonstrate cross-reactivity with other allergens.16 N-glycans containing a β-linked xylose on the central mannose of the core pentasaccharide and an α-linked fucose at the reducing-end GlcNAc are the main epitopes recognized by cross reactive IgEs.6 The significance of CCDs to allergy are controversial because they have been implicated in false positive diagnoses by skin-prick and quantitative IgE tests.17 Methods to quantify CCD-specific IgEs have been reported using model N-linked glycoproteins such as bromelain or horseradish peroxidase as capture agents,18-20 although their N-glycans are not the same as those of Ara-h proteins. A positive CCD test can, however, qualify the interpretation of standard IgE (e.g., ImmunoCAP) assays for physicians and alert them to possible false positives.21 One prevailing view is that no single diagnostic test at present reliably predicts the severity of peanut allergy.22 To the best of our knowledge, peptide sequences and carbohydrate residues have not been used together in an array to detect specific IgE antibodies.

Scheme 1 depicts the SPRi microarray with spots featuring the Ara-h2 peptide, β-xylosyl glycoside (BXG) (see supporting information for synthesis), and monoclonal anti-human IgE as positive control. The Ara-h2 peptide and BXG were equipped with terminal amine groups to facilitate chemical linkage onto carboxylated gold SPRi sensor slides. Since individual epitope-specific anti-peanut IgEs are not commercially available, we used an available human IgE mixture as a standard. SPRi is not sufficiently sensitive to measure protein biomarkers at sub-pg/mL levels. Thus, we used magnetic bead amplification to overcome this limitation. Magnetic beads coated with ~60,000 polyclonal ε-chain specific anti-human IgE antibodies (MP-Abε) were used to capture IgEs from samples. These 1 µm diam. iron oxide-poly(styrene) beads greatly amplify SPR signals by increasing the refractive index in the detection window of the SPR sensor.23 MP-Abε beads with captured IgEs were washed, separated magnetically, then redispersed and injected into the flow system to deliver them to the gold SPRi chip.
where SPR signals for spots are imaged simultaneously. Capture on magnetic beads facilitates separation of IgEs from the complex serum mixture. In this approach, only target antibodies, but not potentially interfering biomolecules, enter the SPRi array, thereby minimizing non-specific binding on the SPR sensor. This is quite important for a method like SPR in which any biomolecule adsorbed on the sensor surface will contribute to the signal.

Results and Discussion

Kinetics of Antibody binding to allergen epitopes

To ascertain binding strengths on SPR chips before developing the full analytical protocol, we first studied the binding kinetics of chicken IgY and the human IgE mixture onto the Ara h2 peptide and BXG spots on the microarray. We estimated apparent dissociation constants of these antibody mixtures after binding to allergen epitopes attached to the SPR sensor surface. For IgY binding, allergen probes were first attached to the activated mixed thioalkyl-PEG-carboxylate monolayer on a conventional gold SPR chip using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to promote amide bond formation. Attachments of probes to the chip were monitored by the SPR response (Figure S1-A), resulting in estimated ligand densities of \( \sim 3 \times 10^{11} \) molecules/mm\(^2\). The response for BXG was smaller than that of the Ara-h2 peptide presumably because of its smaller molar mass.

The binding data for IgY and IgE samples were fit using an equilibrium association-dissociation model (eqs 1 and 2). Simultaneous non-linear regression analysis onto these equations provided the global minimum sum of squares resulting in the best values of association rate constant \( k_a \) and dissociation rate constant \( k_d \). Apparent dissociation constant, \( K_D \), was obtained using eq 3.

\[
R_s = \frac{Ck_aR_{\text{max}}[1-\exp(-(Ck_a+k_d)t)]}{(Ck_a+k_d)}
\]  

(1)

\[
R_s = \frac{R_{\text{max}}(\exp(-k_dt))}{k_d}
\]  

(2)

\[
K_D = k_d/k_a
\]  

(3)

Clearly, these studies do not provide absolute dissociation constants, but they provide relative binding strengths of the free antibody-allergen pairs that will be used for analysis of patient samples. Figure S1-B shows that binding of free IgY to the allergen probes immobilized on the gold SPR chip gave good fits to this model. The affinity of human IgEs to array ligands was measured directly by the SPRi system. The sixteen gold spots on the chip were functionalized with carbohydrate groups as reported previously using 1:9 thialalkane-PEG-COOH : thialalkane-PEG-OH.\(^{25}\) Anti-IgE monoclonal antibody, Ara-h2 peptide and BXG with amine linkers were covalently attached to the carboxyl groups on individual spots by EDC/NHS amidation. Unreacted carboxyl groups were blocked using 1 M glycine, pH 8. Control BSA responses were subtracted from responses for individual capture probes to correct for non-specific binding of IgE. SPRi data gave good non-linear regression fits onto eqs 1 and 2 (Figure 1) to provide rate and dissociation constants (Table 1).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Probe</th>
<th>Association, ( k_a ) (M(^{-1})s(^{-1}))</th>
<th>Dissociation, ( k_d ) (s(^{-1}))</th>
<th>( K_D ) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken IgY</td>
<td>Ara-h2 peptide</td>
<td>2.9±0.6\times10^5</td>
<td>1.2±0.2\times10^3</td>
<td>4.1±0.2</td>
</tr>
<tr>
<td></td>
<td>BXG</td>
<td>2.4±0.8\times10^5</td>
<td>1.7±0.1\times10^3</td>
<td>6.8±1.0</td>
</tr>
<tr>
<td>Human IgE</td>
<td>Anti-IgE</td>
<td>2.4±1.0\times10^{10}</td>
<td>0.29±0.06\times10^{10}</td>
<td>1.3±0.5</td>
</tr>
<tr>
<td></td>
<td>Ara-h2 peptide</td>
<td>1.8±0.8\times10^5</td>
<td>0.27±0.07\times10^3</td>
<td>1.6±0.6</td>
</tr>
<tr>
<td></td>
<td>BXG</td>
<td>1.1±0.8\times10^5</td>
<td>0.29±0.03\times10^3</td>
<td>2.6±1.1</td>
</tr>
</tbody>
</table>

Apparent dissociation constants in the low nanomolar range show that the free IgY and IgE antibodies bind strongly to BGX and Ara h2 peptide spots on the Au SPRi array. We previously found strong binding of IgY to Ara h2 peptide in electrochemical sensors.\(^{24}\) Similar strength of binding between anti-CCD antibodies and the xylose portion of N-glycans has been reported, with apparent dissociation constant 4.7 nM for anti-CCD antibodies binding to xylose region of N-glycan attached onto an SPR sensor.\(^{25}\) Further, strong binding of IgE to N-Glycans containing both \( \beta \) (1,2) xylose and \( \alpha \) (1,3) fucose was reported with equilibrium dissociation constants of 68 pM.\(^{26}\) Our results are consistent with those findings. The low dissociation constants suggest that IgE antibodies bind very strongly with carbohydrate residues and Ara h2 peptide spots on the SPR array, and suggests that SPRi should be effective for quantitative detection of the IgEs. Strong avidity between IgEs and surface ligand spots could possibly be influenced by the bivalent nature of IgE antibodies.\(^{27}\)
Apparent dissociation constants ($K_D$) for human IgE binding to the ligands were smaller than those for chicken IgY, indicating stronger binding of the IgEs with $K_D$ values of 1-3 nM. To a first approximation, the association $k_a$ for binding of IgE and IgY on the BXG and Ara-h2 peptide spots are roughly the same, but the dissociation $k_d$ of IgE are much smaller, leading to smaller apparent $K_D$ values. $K_D$’s of IgE on Ara-h2 peptide, BXG and anti-IgE were not significantly different at the 95% confidence interval (t-test). This suggests that IgEs bind to both probes equally well.

**Detection of IgE using MP-Ab$_2$ conjugate**

Magnetic beads conjugated with ~60,000 polyclonal ε-chain specific anti-human IgE antibodies (MP-Ab$_2$) were prepared as described in SI. These MP-Ab$_2$ conjugates easily capture and separate IgEs from complex serum mixture. IgEs were pre-captured onto MP-Ab$_2$, then washed and redispersed. The beads were subsequently injected into the SPRi. Bright spots in background-subtracted array images reflect specific binding of MP-Ab$_2$-IgEs onto the detection probes and the positive anti-IgE control (Figure 2-A). Little response was seen on negative control BSA spots.

**Assay Validation**

Five serum samples from patients who had allergic reactions to peanuts at some time in their lives were obtained from the serum bank at the Elliot and Roslyn Jaffe Food Allergy Institute, Mt Sinai Medical Center, NY. These samples were analyzed with the SPRi array after 1000-fold dilution of 10 µL patient serum samples. IgE’s captured by protein antigens of serum IgEs from serum samples. The magnetic beads greatly enhance SPRi signals by increasing the refractive index of the binding moiety, and increasing apparent binding constants of IgE, so that detection limits of 0.5-1 pg mL$^{-1}$ (0.1-0.2 attomoles) were achieved. Using magnetic beads, we achieved pre-capture of the analytes to minimize non-specific binding, and amplification of the SPR signal. This approach should facilitate detection of very low levels of antibodies of any type. In our previous work, ultralow detection limits of the protein prostate specific antigen were achieved by conventional SPR in pure serum using pre-capture on magnetic beads. Similarly, it should be possible to detect IgE antibodies in pure serum with little compromise of sensitivity.

**Conclusions**

We demonstrate here the first SPRi immunoarray featuring peptide and carbohydrate allergen binding moieties for peanut allergen IgE antibodies. Magnetic particles coated with ~60,000 secondary anti-IgE antibodies were used to capture IgEs from serum, and these were in turn bound directly onto specific epitope spots on the SPRi chip to detect sub-attomole levels of IgEs from serum samples. The magnetic beads greatly enhance SPRi signals by increasing the refractive index of the binding moiety, and increasing apparent binding constants of IgE, so that detection limits of 0.5-1 pg mL$^{-1}$ (0.1-0.2 attomoles) were achieved. Using magnetic beads, we achieved pre-capture of the analytes to minimize non-specific binding, and amplification of the SPR signal. This approach should facilitate detection of very low levels of antibodies of any type. In our previous work, ultralow detection limits of the protein prostate specific antigen were achieved by conventional SPR in pure serum using pre-capture on magnetic beads. Similarly, it should be possible to detect IgE antibodies in pure serum with little compromise of sensitivity.

The immunoarray was used to quantitate peptide and xylose binding of serum IgEs in 10 µL patient serum samples. IgE’s bound to these spots determined by SPRi correlated well with the clinically-used ImmunoCAP assay. The technology described here is amenable to developing a future microarray.
with multiple allergen peptide and carbohydrate epitopes to characterize severity of peanut allergy. Specific to the present work, we anticipate that future microarrays will differentiate between IgEs that bind to protein/peptide versus glycan epitopes.

**Experimental**

**Chemicals and Materials**

A full list of source of chemicals and experimental procedures are in the supporting information (SI) file. Ara-h2 peptide fragment with terminal amine group (H₂N-QSPSYPDREYSDERQIKQMILHQECPR-L-CONH₂, 3450 Da, predicted IEP 4.95) was synthesized by Anaspec. β-xylene with a butylamine linker was synthesized as in SI. Monoclonal Anti-Human IgE (Ab₁) and polyclonal ε chain specific anti-human IgE (Ab₂) were from Sigma Aldrich. Human IgE antibody (clone HE1) was from Thermo Scientific. Carboxyl-functionalized superparamagnetic particles (BioMagPlus, No. 86011) were from Polysciences Inc.

**Kinetics of antibody binding to allergen Epitopes**

Binding of IgE antibody to allergen epitopes was studied using an SPR imager II from GWC technologies interfaced with syringe pump and injection valve. Microarrays were fabricated on SpotReady™ 16 SPRi chip (No. SPR-1000-016, GWC). The SpotReady™ sensor chip features 16 gold spots, which were functionalized as reported previously using 1:1 ratio of monothiol alkane PEG₆-COOH: monothiol alkane PEG₃-OH.²⁴ Carboxyl groups were activated with EDC and NHS for 10 min followed by coupling amine groups of anti-IgE , peptide , and β-xylene for 3 hours at room temperature in a humidified chamber. Then sensor chip was assembled into the SPR imaging instrument. 10 mM phosphate buffered saline containing 0.05% Tween 20 (PBS-T) was used as running buffer. 1 M glycine, pH 8.2, at 20 µL min⁻¹ flowed through the array for 10 min to quench unreacted EDC derivatives. SPR response was monitored in real time at 50 µL min⁻¹ for association phase of 300s and dissociation phase of 300 seconds by injecting series of antibody concentrations.
Background subtracted response curves were analyzed using
Graphpad Prism 5.0 Software. A dual channel surface plasmon
resonance spectrophotometer, SR700DC from Reichert
Analytical Instruments (NY, USA) was used to study binding
kinetics of chicken IgY on allergen spots.

Detection of IgEs using MP-Ab2

Carboxyl functionalized 1 µm magnetic beads were
biocojugated with secondary anti-IgE antibodies (MP-Ab2) as
described in SI. IgEs from diluted serum were captured on the
above MP-Ab2 beads. 40 µL of MP-Ab2 stock dispersion was
diluted with 320 µL of PBS-T buffer (0.05% Tween-20). To
discard unbound IgEs, the mixture was magnetically separated and supernatant
fluid was removed. Beads were then washed three times with
PBS-T, and final volume was made up to 400 µL with PBS-T
before detection.

Acknowledgements

This work was supported by Grant No. EB014586 from the
National Institute of Biomedical Imaging and Bioengineering
(NIBIB), NIH (FIR) and DMR 1441879 from NSF (CVK). We thank Dr. S. H. Sicherer at the Elliot and Roslyn Jaffe Food
Allergy Institute, Mt Sinai Medical Center, NY for supplying
serum samples from the Food Allergy Research and Ed ucation
funded repository.

Notes and references

125, 116.
120, 491.
3 S. A. Bock, A. Munoz-Furlong, H. A. Sampson, J. Allergy Clin.
4 K. J. De Knop, C. H. Bridts, M. M. Verweij, M. M.
5 J. S. Stanley, N. King, A. W. Burks, S. K. Huang, H. A.
Sampson, G. Cockrell, R. M. Helm, C. M. West, G. A. Bannon,
Arch. Biochem. Biophys. 1997, 342, 244.
6 Ronald van Ree, M. Cabanes-Macheteau, J. Akkerdaas, J. P.
Milazzo, C. Loutelie-Bourhis, C. Rayon, M. Villalba, S.
Koppelman, R. Aalberse, R. Rodriguez, L. Faye, P. Lerouge, J.
Biol. Chem. 2000, 275, 11451.
7 T. Kleber-Janke, R. Cramer, U. Appenzeller, M. Schaalk, W.
8 G. A. Bannon, M. Besler, S. L. Hefle, J. O`B. Hourihane, S. H.
9 J. A. Lieberman, S. Glaumann, S. Batelson, M. P. Borres, H. A.
2013, 1, 75.
10 F. Codreanu, O. Collignon, O. Roitel, et al. Int Arch Allergy
12 W. G. Shreffler, D. A. Lencer, L. Bardina, H. A. Sampson, J.
13 T. T. Perry, E. C. Matsui, M. K. Conover-Walker, R. A. Wood,
2010, 82, 5865.
15 Y. Wang, K. Kececi, M. V. Mirkin, V. Mani, N. P. Sardesai, J.
17 L. Guilloux, M. Morisset, F. Codreanu, L. Parisot, D. A.
18 W. Hemmer, M. Focke, D. Kolarich, I. B. Wilson, F. Altmann,
108, 1045.
Allergy 2005, 35, 441.
20 A. Mari, P. Iacovacci, C. Affierini, B. Barletta, R. Tinghino, G.
21 W. Hemmer in Anticarbohydrate Antibodies Eds. P. Kosma, S.
2013, 9, 551.
23 S. Krishman, V. Mani, D. P. Wasalathanthri, C. V. Kumar, J. F.
1999, 71, 777.
25 C. Jin, M. Bencurova, N. Borth, B. Ferko, E. Jensen-Jarolim, F.
Altmann, B. Hantusch, Glycobiology 2006, 16, 349.
26 C. Jin, B. Hantusch, W. Hemmer, J. Stadlmann, F. Altmann, J.


The first peptide-carbohydrate SPR imaging immunoarray aimed at diagnosing severity of peanut allergies is reported. The SPRI chip features a peptide epitope of peanut protein allergen Ara h2, a β-xylosyl glycoside an anti-IgE antibody to achieve epitope-specific detection of human allergen IgEs at sub-attomol levels.