Analyst Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/analyst

Page 1 of 26

An ultra-high throughput spiral microfluidic biochip for the enrichment of circulating tumor cells

Majid Ebrahimi Warkiani^{1#}, Bee Luan Khoo^{2,3#}, Daniel Shao-Weng Tan⁴, Ali Asgar S. Bhagat⁵, Wan-Teck Lim⁴, Yoon Sim Yap⁴, Soo Chin Lee⁶, Ross A. Soo⁶, Jongyoon Han^{1,7*}, Chwee Teck Lim^{1,2,3,5*}

¹BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore

²Mechanobiology Institute, National University of Singapore, Singapore

³Department of Biomedical Engineering, National University of Singapore, Singapore

⁴Department of Medical Oncology, National Cancer Centre Singapore, Singapore

⁵Clearbridge BioMedics Pte Ltd, Singapore

⁶Department of Hematology-Oncology, National University Hospital, Singapore

⁷Department of Electrical Engineering and Computer Science, Department of Biological Engineering,

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

[#] These authors contributed equally to this paper.

*Contact:

Jongyoon Han (<u>jyhan@mit.edu</u>) Room 36-841, Research Laboratory of Electronics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Chwee Teck Lim (<u>ctlim@nus.edu.sg</u>) Department of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

Analyst Accepted Manuscript

ABSTRACT

Detection and characterization of rare circulating tumor cells (CTCs) from blood of cancer patients can potentially provide critical insights into tumor biology and hold great promise for cancer management. The ability to collect a large number of viable CTCs for various downstream assays such as quantitative measurements of specific biomarkers or targeted somatic mutation analysis is increasingly important in medical oncology. Here, we present a simple yet reliable microfluidic device for the ultra-high throughput, label-free, size-based isolation of CTCs from clinically relevant blood volumes. The fast processing time of the technique (7.5 mL blood in less than 10 mins) and ability to collect more CTCs from larger blood volume lends itself to a broad range of potential genomic and transcriptomic applications. A critical advantage of this protocol is the ability to return all fractions of blood (i.e., plasma (centrifugation), CTCs and white blood cells (WBCs) (size-based sorting)) that can be utilized for diverse biomarker studies or time-sensitive molecular assays such as qRT-PCR. The clinical use of this biochip was demonstrated by detecting CTCs from 100% (10/10) of blood samples collected from patients with advanced stage metastatic breast and lung cancer. CTC recovery rate ranged from 20-135 CTCs/mL and obtained under high purity (1 CTC for every 30-100 white blood cells detected, $\sim 4 \log$ depletion of WBCs). They were identified with immunofluorescence assays (Pan-cytokeratin+/CD45-) and molecular probes such as HER2/neu.

KEYWORDS: Circulating tumor cells (CTCs); Microfluidics; Cancer; Cell separation; Blood

INTRODUCTION

Circulating tumor cells (CTCs), cancer cells of solid tumor origin that shed into the blood stream from either primary or secondary tumors of patients, directly contribute to the haematogenous metastatic spread and subsequent growth of tumor cells at distant sites within the body.^{1, 2} The isolation and recovery of these CTCs are very challenging primarily due to their rarity in peripheral blood and also their heterogeneity.³ Nevertheless, enrichment of CTCs can help clinicians better understand the biology of metastasis and disease progression as well as contribute to cancer management by potentially serving as a powerful clinical prognostic tool and non-invasive analysis of tumor genotypes for the therapeutic management of cancer-related diseases.^{3, 4} However, conventional clinical approaches for isolation of CTCs from peripheral blood, including flow cytometry,⁵ gradient centrifugation,⁶ and fluorescence and magnetic-activated cell sorting^{7, 8} are often based on antigen recognition techniques, which are expensive and limited in yield and purity. Most techniques require long processing time, resulting in low cell viability of the enriched CTCs. They also do not allow complete fractionation and preservation of plasma, white blood cells (WBCs) and CTCs. A reliable method for rapid, efficient and effective enrichment of CTCs will therefore be pivotal for deepening our understanding of the metastatic process and contribute to the field of clinical oncology.

Analyst Accepted Manuscript

Microfluidics is one of the most rapidly developing technologies for innovation in cancer research. The application of microfluidic systems for separation of CTCs provides unprecedented opportunities for efficient enrichments of these rare cells from blood, allowing detailed molecular characterization of them at the single-cell level.⁹ While several microfluidic devices have been reported for CTCs isolation using epithelial cell surface antigens such as EpCAM (epithelial cell adhesion molecule),^{10, 11} these platforms/techniques rely on mediating the interaction of target CTCs with anti EpCAM-coated features including

Analyst Accepted Manuscript

micropillars ¹⁰ or nanoporous surfaces ¹² under precisely controlled laminar conditions with reliable efficiency. However, some tumor cells express low or no EpCAM (e.g., for cells that undergo epithelial-mesenchymal transition (EMT)), resulting in incomplete retrieval of isolated CTCs.^{1, 13} In addition, the immunomagnetic isolation approaches involve chemical and mechanical manipulation of the cells rendering them non-viable or challenging for culture as well as downstream molecular analysis.^{14, 15} To date, a number of microfluidic devices that employ dielectrophoretic forces have also been developed for isolation of cancer cells based on differences in responses of cells to the electric field.^{14, 16, 17} Although this allows for label-free cell sorting without relying on immunochemistry, this technique is limited due to the subtle dielectric differences between CTCs and blood cells thereby affecting the throughput and purity and the high electric fields that can potentially cause gene expression (phenotypic) changes.¹⁸ To overcome the above limitations, cell size and deformability have been exploited in order to isolate CTCs from blood. Most CTCs are believed to be larger than the other blood components (< 20 µm) (RBCs, peripheral WBCs) and platelets),^{19, 20} including tumor cells obtained from small cell lung cancer patients.²¹ This obviates the need for any prior knowledge of target cells' biochemical characteristics, while enabling collection of putative CTCs regardless of their EpCAM expression. The most popular size/deformability based CTC isolation methods rely on using either track-etched membranes or microfabricated filters.^{22, 23} These techniques are limited by the volume of blood that can be processed due to issues arising from filter clogging, low recovery and low cell viability due to cell damage caused by high shear incurred as the cells are made to pass through the filter pores.

Hydrodynamic filtration systems for size-based separation in the microfluidic devices can overcome the shortcomings of the current approaches including clogging, low recovery and cell viability issues.^{24, 25} The controlled laminar flow within microfluidic channels can be

Page 5 of 26

Analyst

manipulated to generate size-dependent cell trajectories for high resolution CTC enrichment. Previously, we report a novel microfluidic platform for blood fractionation (i.e., named as "Dean Flow Fractionation") and applied it successfully for CTCs isolation from whole blood.^{25, 26} We have shown the integrated spiral biochip is capable of processing blood with hematocrit of 20-25%, thus allowing process and enrichment of rare cells with ~3 mL/hr speed. Herein, we report the development of a simple yet reliable multiplexed spiral biochip for ultra-high throughput isolation, label-free isolation of CTCs to address the challenges of the next generation CTC enrichment platform such as high sensitivity (near 100% detection rate), high purity (~750 WBCs/mL), high throughput (7.5 mL in less than 10 mins), labelfree enrichment, simplicity and ease of operation. In contrast to the previous version, this device can work with a minimum of two syringe pumps instead of three (i.e., making automation easier) and can process larger volume of blood samples in shorter time with relatively higher sensitivity and purity. Processing larger volume of blood samples can boost the number of enriched CTCs for multiple downstream assays such as Immunofluorescent staining, qRT-PCR, fluorescence in situ hybridization (FISH) and also time-sensitive molecular tests such as RNA-sequencing. The clinical use of this biochip was demonstrated by the isolation of CTCs from 100% (10/10) of blood samples collected from patients with advanced stage metastatic breast and lung cancer. Retrieved cells are unlabelled and hence more viable for propagation, drug development and other downstream analysis. This design is extremely ideal for development of a low-cost and automated CTC detection and retrieval device for cancer diagnosis and prognosis.

Analyst Accepted Manuscript

MATERIAL AND METHODS

Device fabrication

Analyst Accepted Manuscript

SU-8 silicon molds were fabricated using standard lithography techniques.^{27, 28} The patterned silicon wafer was silanized with trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane (Sigma Aldrich, USA) to render the surface hydrophobic. PDMS prepolymer was prepared by mixing the PDMS at a standard 1:10 ratio (Sylgard 184, Dow Corning, USA) and degassing in a vacuum chamber. To produce the single layer spiral biochip, PDMS prepolymer was poured onto the SU-8 mold and cured 80 °C for 1-2 h inside a conventional oven. The PDMS was then cut from the mold, and four fluidic access holes (two-inlets and two-outlets) were punched. In order to obtain the multiplexed device, three spiral biochips were bonded together using oxygen plasma and manual alignments. The final device obtained by bonding the whole assembly onto a microscopic glass slide using an air plasma machine.

Cell culture and sample preparation

Two commercially available human cancer cell lines, namely breast adenocarcinoma (MCF-7) and bladder (T24) were first used to mimic CTC separation. The MCF-7 cells (HTB-22TM, ATCC, USA) and T24 cells (HTB-4 ATCC, USA) were cultured in high-glucose Dulbecco's modified Eagle's medium (DMEM) (Invitrogen, USA) supplemented with 10% fetal bovine serum (FBS) (Invitrogen, USA) together with 1% penicillin-streptomycin (Invitrogen, USA). The culture was maintained at 37 °C in a humidified atmosphere containing 5% (v/v) CO₂ till 80% confluence. Cells were cultured in sterile 6-well plates (BD Bioscience, USA) and sub-cultivated (1:3) two times a week with media replaced every 48 h. Sub-confluent monolayers were dissociated using 0.01% trypsin and 5.3mM EDTA solution (Lonza, Switzerland). For the control and recovery experiments, the cancer cells were diluted in buffer containing 1x phosphate buffered saline (PBS), 2 mM ethylenediaminetetraacetic acid (EDTA) supplemented with 0.5% bovine serum albumin (BSA) (Miltenyi Biotec, Germany) to prevent non-specific adsorption to the tubing and microchannel walls. For all

Analyst

experiments unless otherwise mentioned, whole blood obtained from healthy donors was lysed using red blood cell (RBC) lysis buffer (Bioscience, USA) for 5 mins at room temperature under continuous gentle mixing. The lysed RBCs were removed by centrifugation at 1000×g for 5 mins and nucleated cell fraction were re-suspended in phosphate buffer saline (PBS) buffer accordingly with PBS buffer. The process of RBC lysis removes blood contaminants and hence reduces overall cell concentration. Therefore, nucleated cells can be resuspended in a smaller volume of buffer, speeding up the process of size-based sorting by microfluidic device.

Immunofluorescence staining and Fluorescent Automated Cytometry System (FACS) analysis

Analyst Accepted Manuscript

Results from experiments conducted to determine the cell loss incurred by lysis were analyzed by performing flow cytometry analysis using a BD Accuri C6 flow cytometer (BD Biosciences, USA) on the lysed and whole blood spiked samples. Samples were spiked with 100K T24 cells pre-stained with fluorescein isothiocyanate (FITC) conjugated pancytokeratin (CK) antibody (1:100, Miltenyi Biotec Asia Pacific, Singapore). Outlet samples were concentrated to 1 mL and processed for quantification of pan-CK+ cells. For quantification of cell counts, Immunofluorescence (IF) staining was carried out to allow visualization and differentiation of the various cell types. The outlet samples were fixed with 4% paraformaldehyde (PFA) (Sigma, USA) for 10 mins in room temperature, permeabilized with 0.1% Triton X-100 in PBS (Sigma, USA). Permeabilized cells were treated with an antibody cocktail (pan-CK antibody, APC conjugated CD45 antibody (1:100, Miltenyi Biotec Asia Pacific, Singapore) and Hoechst dye in PBS buffer for 30 mins on ice. During flow cytometry analysis, the cells were gated based on the forward and side scatters as well as the fluorescence intensity.

Analyst Accepted Manuscript

Viability culture experiments

A known concentration of T24 cells were spiked into whole blood before lysis. T24 cell counts (before and after lysis) were compared by enumeration of recovered T24-spiked blood after their respective treatment. Recovered cells were seeded onto 2D substrates under optimal growth conditions and bright field images were obtained after 5 mins from seeding.

DNA Fluorescence in-situ hybridization (FISH)

Samples were obtained from patients with HER2+ tumor status. The tumors were extracted via biopsy in the diagnostic stage (pre-treatment) and analysed for gene amplification via PCR in the hospital (not shown). Cells were spun onto slides using a Cytospin centrifuge (Thermo Scientific, USA) at 600 rpm for 6 mins. Slides were fixed in 4% PFA at room temperature for 10 mins and dehydrated via ethanol series (80%, 90%, and 100%). For DNA FISH, slides were treated with RNase (4 mg/mL) (Sigma, USA) for 40 mins at 37 °C, washed with 1x PBS/0.2% Tween 20 (Sigma, USA) thrice and denatured with 70% formamide/2x SCC for 10 mins at 80 °C. They were then quench dehydrated again via ice-cold ethanol series. HER2 probes were directly applied to slides maintained at 42 °C. Hybridization was continued at 42 °C under dark and humid conditions overnight. Slides were washed with 50% formamide/2x SSC and 2x SSC at 45 °C under shaking, counterstained with 4', 6-diamidino-2-phenylindole (DAPI) counterstain and sealed with 50×50 mm² coverslip (Fisher Scientific, USA).

Clinical samples

Human whole blood samples were obtained from healthy donors and 10 patients with either metastatic lung or breast cancer. This study was approved by our local ethics committee according to a protocol permitted by the Institutional Review Board (IRB). A total of 5 blood

Analyst

samples from healthy donors were used as controls and 10 samples from lung and breast cancer patients were processed for CTC enumeration. Blood samples were collected in vacutainer tubes (Becton-Dickinson, Franklin Lakes, NJ, USA) containing EDTA anticoagulant and were processed within 2-4 h to prevent blood coagulation. For all the samples, 7.5 mL of whole blood was lysed initially using RBC lysis buffer and re-suspended in PBS prior to processing on biochip. 7.5 mL of blood is concentrated to 3.75 mL for processing, reducing processing time. Samples are processed at an input velocity of 350 µl/min.

RESULTS AND DISCUSSION

Working Principle

Figure 1A schematically illustrates the principle of hydrodynamic separation in spiral microfluidic channels. In the spiral microchannels with rectangular cross-section, the influence of centrifugal forces acting in radial direction results in the formation of two symmetrical counter-rotating vortices across the channel cross-section, also known as Dean vortices. Under Poiseuille flow condition, naturally buoyant particles of varying sizes equilibrate at different positions along the microchannel cross-section under the influence of inertial lift and Dean drag forces.²⁴ By confining the cells at the inlet to one region of the channel cross-section, we can effectively fractionate the cells by equilibrating the CTCs near the microchannel inner wall while driving the smaller hematologic cells (platelets and WBCs) to the microchannel outer wall, allowing an efficient separation at the outlet.²⁹ The spiral biochip enriches the CTCs population by a significant 10⁴-fold from a red blood cells (RBCs) depleted nucleated cell fraction. It consists of two-inlets and two-outlets to enrich the larger CTCs at the outlet. The collected CTCs can then be analyzed by suitable downstream

Analyst Accepted Manuscript

techniques such as immunostaining, qRT-PCR and FISH or can be employed for culturing and single-cell analysis (Figure 1B).

Spiral biochip operating parameter optimization

The challenge for clinical use of CTCs is to develop an unbiased, high throughput and reliable assay to enrich viable CTCs from peripheral blood in a reasonable period of time. High speed frame capture (6,400 frames per second) of CTC isolation via the spiral device is illustrated in Figure 2A. For all the experiments, high-speed imaging was performed to monitor position of CTCs and WBCs near the outlet region (See movie S1&S2 in Supplementary Information). 99.9% of WBCs and residual RBCs undergo a complete Dean Cycle migration and exit from the waste outlet while CTCs that were focused near the inner wall during the lateral migration can be collected from the CTC outlet. To reduce the amount of cellular components flowing in the spiral biochip, we employed a conventional RBC lysis technique (using ammonium chloride solution) in order to process larger volume of clinical samples. While WBCs constitute just 1% of total blood volume fraction, it is still challenging to efficiently separate minute quantities of CTCs from them. Extensive characterization of the proposed methodology was carried out to study the depletion capability of WBCs in the spiral biochip. To demonstrate the impact of input sample cell concentration on the device performance and final purity, we carried out the processing of blood under different nucleated cell concentrations. Initial 7.5 mL whole blood collected from healthy donors had the RBCs lysed and the nucleated cell fraction was then spun down and resuspended back to 7.5 mL (1x \pm concentration), 3.75 mL (2x concentration) and 2.5 mL (3x concentration), respectively. Figure 2B shows the total cells count collected from the CTC outlet at different sample concentrations in 5 mins. A linear incremental trend in the total cell count is observed suggesting the effect of initial WBCs concentration on the final purity. Since the total number of WBCs varied from one patient to another and with cancer type/stage,³⁰ we decided to use

Analyst

2x concentration (~ 14×10^6 WBCs) as optimal for future tests and clinical validation. This translates to a total processing time of around 10 mins for 7.5 mL blood sample using a multiplexed device with three stacked spiral biochips (see Fig. 1).

Next, to demonstrate robustness and repeatability, a pure population of leukocytes was processed through the biochip at 2x concentration continuously. Enriched samples containing the contaminating WBCs were collected from the CTC outlet for a period of 5 mins, each collection taken from different time intervals (0-5, 5-10 and 10-15 mins) from the start of processing. The WBC count collected at the different time point is fairly uniform with approximately 900 to 1,200 cells collected under optimal flow conditions (see Fig. 2C). Microscopic analysis of the collected WBCs (data not shown) revealed that this sub-population were in order of CTCs in terms of size (i.e., ~ 12-15 μ m), and can be easily differentiated using immunofluorescence staining and molecular approaches. Starting with a initial concentration of ~ 7×10⁶ nucleated cells, the spiral biochip depleted ~ 99.99% of the WBCs providing a purer CTC fraction at the outlet. This is particularly important for many downstream molecular assays where the contaminating materials from WBCs can significantly lower the signal to noise leading to inaccurate diagnosis.

Effect of RBC lysis on separation efficiency and cell viability

Chemical lysis of whole blood using ammonium chloride has been employed extensively for depletion of contaminated RBCs in various applications such as transcriptome analysis of WBCs in various human diseases. While some people reported that RBC lysis can lead to compounded loss of cells,³⁰ we have shown here depletion of RBCs did not compromise the recovery and isolation of cancer cells significantly (Fig. 3A). Exposure to the lysis buffer also did not alter the morphology and size of the cells (Fig. 3B).

Analyst Accepted Manuscript

We also compared the performance of our previous integrated biochip²⁶ with the new multiplexed spiral one for CTC isolation. In the previous integrated biochip, whole blood was processed (100 μ l/min) with the two-biochip cascaded spiral device and progressively diluted with a sheath flow (750 μ l/min) running through the device. 7.5 mL of whole blood is processed in about 30 mins. The CTC counts obtained from both biochips where they were used for analysis of samples from lung cancer patients is shown in Figure 3C. The multiplexed spiral biochip yielded significant improved capture efficiency in comparison with the previous integrated biochip which processed whole blood. This is also done under shorter time (7.5 mL of blood in 10 mins), giving rise to much higher throughput (Fig. 3D). In addition, the purity of retrieved CTCs captured among contaminating WBCs was significantly higher for the multiplexed biochip, compared with the integrated one.

Isolation efficiency and cell viability using cancer cell lines

To test the performance of the multiplexed spiral biochip for CTC isolation and recovery, we characterized the biochip with commercially available cancer cell lines. Cell lines have been shown to be a good surrogate for characterization of various microfluidics as well as other CTC enrichment assays. Using the spiral biochip, we demonstrated high recovery of breast (MCF-7) and bladder (T24) cancer cells spiked into healthy blood samples. These cell lines were chosen due to their different range of cell diameters (MCF-7: ~20 μ m; T24: ~30 μ m), which validated the ability of the multiplexed spiral biochip for enriching CTCs of different sizes from various cancer types. Following enrichment, cancer cells were identified by immunofluorescence staining either by enumerating under epi-fluorescence microscope or by flow cytometry analysis with common biomarkers (CK+/CD45-). For both cell lines spiked at clinically relevant concentrations of 500/7.5 mL of whole blood, a recovery of 87.6% for MCF-7 and 76.4% for T24 cells was achieved (Fig. 4A).

Analyst

To verify cell viability, propidium iodide (PI) staining of recovered samples was performed. High viability was confirmed by the minimal staining (<10%) detected by flow cytometry (Fig. 4B). Viable cells isolated can then be seeded onto 2-D culture substrates, where they attach and proliferate under standard culture conditions. Morphology of cells remained relatively unchanged at different stages of processing (before lysis, after lysis and after processing with lysis (see Fig. 4C). Isolated cells after device processing also remain viable for days after seeding onto culture substrates (See supplementary Fig. 1). This illustrates that both the lysis process and shear force induced by device processing did not affect cell viability, and is in good agreement with previous studies showing that the high shear conditions inside spiral microchannels have no adverse effects on the enriched cells.³¹

Enrichment of CTCs from patients with metastatic breast and lung cancer

Analyst Accepted Manuscript

Using the optimal test parameters, 7.5 mL of blood samples from 5 healthy volunteers (control) and 5 patients with metastatic breast cancer and 5 patients with non-small cell lung cancer (NSCLC) were processed (Table 1). CTCs captured by the spiral biochip were identified using a comprehensive image analysis algorithm, consisting of staining with Hoechst for DNA content, FITC conjugated pan-cytokeratin antibodies for cancer/epithelial cells, and APC conjugated anti-CD45 antibodies for haematologic cells (Fig. 5B). Cells stained positive for both Hoechst and pan-cytokeratin while negative for CD45 were scored as CTCs. CTCs were detected in 10 of 10 patient samples (100% detection) with counts ranging from 20-67 CTCs/mL for breast cancer samples and 33-135 CTCs/mL for lung cancer samples (Fig. 5A). CTC diameter ranges from 15-25 µm for lung cancer samples and 20-35 µm for breast cancer samples (data not shown). Epithelial cells positive for pan-cytokeratin were also detected in healthy volunteers (1-4 per mL), indicating a clear detection threshold.

Analyst Accepted Manuscript

To assess the feasibility of characterizing gene copy number alteration by FISH of CTCs isolated using the multiplexed spiral biochip, we have selected few HER2-positive breast cancer samples for analysis. These samples were obtained from patients with HER2-positive tumor status. HER2-positive breast cancers has been reported to be more aggressive than other types of breast cancer;^{32, 33} however, treatments that specifically target HER2 are very effective.³⁴ HER2 signals in isolated CTCs were compared against control breast cancer cell lines SKBR3 (amplified HER2 signals) and MDA-MB-231 (non-amplified HER2 signal) as shown in Figure 5C. Intriguingly, we found that HER2 status on isolated CTCs did not correlate with primary tumor characteristics. For 3 (out of 5) patients that were analyzed in this study, HER2 status was negative (where amplified HER2 expression was determined when the ratio of HER2/centromere of Chromosome 17 (Cen17) signals in single nuclei was > 2), indicating heterogeneity of HER2 status in disseminated cells and primary tumor.

Pleomorphism and heterogeneity of enriched CK+ cells

Collected CTCs demonstrated intrapatient pleomorphism. Complementing immunofluorescence staining with epifluorescence microscopy detection, we observed differences in cell and nuclear morphology, nuclear-to-cytoplasmic (N/C) ratios and staining pattern. Stained CTCs isolated from the spiral biochip revealed distinct pleomorphic cell types, as shown from the images of CTC provided (Fig. 6A). The CTC varied from cells densely stained at the nucleus and showed eccentric nuclear morphology, to those which had bi-lobed or even kidney shaped nucleus. Such variation in nuclear morphology has also been previously reported ³⁵. CTC size also differs with diverse N/C ratios. In some samples, CTC microembolis (clusters) were also observed. In order to further characterise these cells, CTCs were stained for CD166 and CD133, identifying a rare subpopulation (~1 in 135 cells) (Fig.

Analyst

Discussion

Despite the recent technological advances, development of a simple and robust platform capable of enriching CTCs with high throughput (i.e., processing clinically relevant blood volumes in few mins), high sensitivity, high specificity, and high cell viability remain elusive. The application of microfluidic systems for separation of CTCs provides unprecedented opportunities for efficient enrichments of these rare cells from blood, allowing detailed molecular characterization of them at the single-cell level. Previously, we developed a spiral microfluidic biochip for blood fractionation and applied it successfully for size-based CTCs isolation from blood.²⁶ The integrated biochip developed is capable of processing blood with high hematocrit (\sim 20-25%), thus allowing process and enrichment of tumor cells at $\sim 3 \text{ mL/hr}$ speed. However, a reduction in processing time will help translate our previous platform to clinic and "point-of-care" applications. Here, we demonstrate the application of a multiplexed spiral biochip for ultra-high throughput isolation of CTCs from lysed blood using inertial focusing microfluidics to realize a single step label-free enrichment process. This device is capable of efficient cell separation of clinically relevant blood volumes in a short period of time (7.5 mL blood in 10 mins), thus allows isolation of viable CTCs with high sensitivity and purity. Compared with other microfluidics-based methods, this device has the following merits. (i) *High throughput processing*: By stacking up a number of biochips, we can further increase the throughput based on the sample volume and downstream assays. (ii) Simplicity and ease of operation: the simple design of spiral biochip with large channel dimensions prevent any clogging and facilitate multiplexing and automation for quick translation for diagnostic/prognostic purposes. The simplicity in manufacturing (i.e., no

Analyst Accepted Manuscript

pretreatment or antibody immobilization required) of the device and its ease of operation make it attractive for clinical applications requiring one-time use operation. The multiplexed spiral biochip demonstrates high sensitivity by the successful detection and isolation of CTCs from 100% (10/10) blood samples collected from patients with advanced stage metastatic breast and lung cancer. The device also demonstrates high specificity and consistency, showing a further improvement and yield over our previous integrated biochip.²⁶ (iii) Viable *CTC collection*: Unlike affinity-based, electrical or physical filtration platforms, the incessant collection of enriched CTCs and short residence time in the micro-channels (<10 msec) eliminates the long-shear exposure to the CTCs, hence minimizing any undesirable phenotype changes due to the shear stress. The enriched cells are continuously collected in a separate tube in real time and can be used for high-definition imaging as well as RNA-based single-cell molecular analysis. (iv) Affordability: our device uses simple microfluidic channels, which can be produced at low-cost using conventional microfabrication techniques. In addition, it only needs two plastic syringes for sheath and sample loading into the biochip. Further improvement will come in the form of an automated system capable of blood handling and processing. Moreover, a critical advantage of this biochip is the ability to return all fractions of blood - plasma, CTCs and PBMC - that can be utilized for other diverse biomarker studies.

Conclusions

We demonstrated high-throughput and high-resolution separation of CTCs from blood using a multiplexed spiral microfluidic device. This approach utilizes the combined effect of inertial and Dean drag force to separate rare cells from large volume of blood samples rapidly and efficiently. The label-free nature of the spiral biochip has improved the yield of CTC

Analyst

capture in certain diseases like lung cancer, and current research is directed at cultivating viable CTCs as well as the scalability of detecting clinically actionable genetic alterations.

Acknowledgements

We would like to express our sincere gratitude to all patients who participated in this trial and the healthy volunteers who donated blood samples for characterization of our device. Financial support by the Singapore-MIT Alliance for Research and Technology (SMART) Centre (BioSyM IRG) is gratefully acknowledged. This work is also supported by the use of NTU's Micro-Machine Center (MMC) facilities for wafer fabrication and the lab facilities at the Mechanobiology Institute (MBI) and the Nano Biomechanics Laboratory at the National University of Singapore. The clinical samples and data collection was supported by the Singapore National Medical Research Council grant NMRC 1225/2009.

REFERENCES

- 1. K. Pantel, R. H. Brakenhoff and B. Brandt, *Nature Reviews Cancer*, 2008, **8**, 329-340.
- D. R. Parkinson, N. Dracopoli, B. G. Petty, C. Compton, M. Cristofanilli, A. Deisseroth, D. F. Hayes, G. Kapke, P. Kumar and J. S. H. Lee, *Journal of Translational Medicine*, 2012, 10, 138.
- 3. M. Yu, S. Stott, M. Toner, S. Maheswaran and D. A. Haber, *The Journal of Cell Biology*, 2011, **192**, 373-382.
- 4. Y. F. Sun, X. R. Yang, J. Zhou, S. J. Qiu, J. Fan and Y. Xu, *Journal of cancer* research and clinical oncology, 2011, **137**, 1-23.
- 5. W. He, H. Wang, L. C. Hartmann, J. X. Cheng and P. S. Low, *Proceedings of the National Academy of Sciences*, 2007, **104**, 11760.
- 6. R. Gertler, R. Rosenberg, K. Fuehrer, M. Dahm, H. Nekarda and J. Siewert, *Recent Results in Cancer Research*, 2003, **162**, 149-156.
- 7. A. L. Allan, S. A. Vantyghem, A. B. Tuck, A. F. Chambers, I. H. Chin-Yee and M. Keeney, *Cytometry Part A*, 2005, **65**, 4-14.
- 8. I. Cruz, J. J. Cruz, M. Ramos, A. Gómez-Alonso, J. C. Adansa, C. Rodríguez and A. Orfao, *American journal of clinical pathology*, 2005, **123**, 66-74.
- 9. B. Khoo, M. Warkiani, G. Guan, D. S.-W. Tan, A. S. Lim, W.-T. Lim, Y. S. Yap, S. C. Lee, R. A. Soo and J. Han, Ultra-High Throughput Enrichment of Viable Circulating Tumor Cells, *The 15th International Conference on Biomedical Engineering*, 2014, 1-4.

- S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber and M. Toner, *Nature*, 2007, 450, 1235-1239.
- 11. S. L. Stott, C. H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas and G. K. Korir, *Proceedings of the National Academy of Sciences*, 2010, **107**, 18392-18397.
- 12. S. Mittal, I. Y. Wong, W. M. Deen and M. Toner, *Biophysical journal*, 2012, **102**, 721-730.
- 13. C. Alix-Panabières, H. Schwarzenbach and K. Pantel, *Annual Review of Medicine*, 2012, **63**, 199-215.
- 14. V. Gupta, I. Jafferji, M. Garza, V. O. Melnikova, D. K. Hasegawa, R. Pethig and D. W. Davis, *Biomicrofluidics*, 2012, **6**, 024133.
- 15. E. Ozkumur, A. M. Shah, J. C. Ciciliano, B. L. Emmink, D. T. Miyamoto, E. Brachtel, M. Yu, P.-i. Chen, B. Morgan and J. Trautwein, *Science translational medicine*, 2013, **5**, 179ra147.
- 16. H. S. Moon, K. Kwon, S. I. Kim, H. Han, J. Sohn, S. Lee and H. I. Jung, *Lab on a Chip*, 2011, **11**, 1118-1125.
- 17. E. W. Majid and C. T. Lim, in *Materiomics: Multiscale Mechanics of Biological Materials and Structures*, Springer, 2013, pp. 107-119.
- 18. J. Chen, J. Li and Y. Sun, *Lab Chip*, 2012, **12**, 1753-1767.

- 19. S. A. Vona G, Louha M, Sitruk V, Romana S, Schütze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Bréchot C, Paterlini-Bréchot P, *Am J Pathol.*, 2000, **156**, 57-63.
- 20. Z. S. Lin HK, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC, Cote RJ., *Clinical Cancer Research*, 2010, **16**, 5011-5018.
- 21. E. J. Lee TK, Blackburn LD, Silverman JF., Anal Quant Cytol Histol., 1992, 14, 32-34.
- 22. S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong and C. T. Lim, *Biomedical microdevices*, 2009, **11**, 883-892.
- 23. M. E. Warkiani, C.-P. Lou and H.-Q. Gong, *Biomicrofluidics*, 2011, 5, 036504.
- 24. A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, *Medical and Biological Engineering and Computing*, 2010, **48**, 999-1014.
- 25. E. W. Majid, G. Guan, B. L. Khoo, W. C. Lee, A. A. S. Bhagat, D. S.-W. Tan, W. T. Lim, S. C. Lee, P. C. Chen and C. T. Lim, *Lab Chip*, 2014, **14**, 128-137.
- 26. H. W. Hou, M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S.-W. Tan, W.-T. Lim, J. Han, A. A. S. Bhagat and C. T. Lim, *Scientific Reports*, 2013, **3:1259**.
- 27. Y. Xia and G. M. Whitesides, *Annual review of materials science*, 1998, **28**, 153-184.
- 28. M. E. Warkiani, A. A. S. Bhagat, B. L. Khoo, J. Han, C. T. Lim, H. Q. Gong and A. G. Fane, *ACS nano*, 2013, **7**, 1882-1904.
- 29. A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, *Lab on a Chip*, 2008, **8**, 1906-1914.
- 30. S. K. Arya, B. Lim and A. R. A. Rahman, *Lab Chip*, 2013, **13**, 1995-2027.
- 31. W. C. Lee, A. A. S. Bhagat, S. Huang, K. J. Van Vliet, J. Han and C. T. Lim, *Lab on a Chip*, 2011, **11**, 1359-1367.
- 32. C. G. Slamon DJ, Wong SG, Levin WJ, Ullrich A, McGuire WL., *Science*, 1987, **235**, 177-182.
- 33. G. W. Slamon DJ, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Michael FP, *Science*, 1989 **244**, 707-712.
- 34. S. Riethdorf, V. Müller, L. Zhang, T. Rau, S. Loibl, M. Komor, M. Roller, J. Huober, T. Fehm and I. Schrader, *Clinical Cancer Research*, 2010, **16**, 2634-2645.

Analyst

- 35. D. Marrinucci, K. Bethel, D. Lazar, J. Fisher, E. Huynh, P. Clark, R. Bruce, J. Nieva and P. Kuhn, *Journal of oncology*, 2010, **2010**, 1-7.
- C. Kahlert, H. Weber, C. Mogler, F. Bergmann, P. Schirmacher, H. Kenngott, U. Matterne, N. Mollberg, N. Rahbari and U. Hinz, *British journal of cancer*, 2009, 101, 457-464.
- 37. A. Lugli, G. Iezzi, I. Hostettler, M. Muraro, V. Mele, L. Tornillo, V. Carafa, G. Spagnoli, L. Terracciano and I. Zlobec, *British journal of cancer*, 2010, **103**, 382-390.

Table Captions:

 Table 1. Clinico-pathological characteristics of patients enrolled in this study for CTC enumeration (C: Cycle, D: Day, Sutent: Sunitinib).

Figure Captions:

Figure 1. (A) Schematic representation of the configuration and operational mechanism of a multiplexed spiral microfluidic chip for capturing CTCs with two inlets and two outlets. (B) Sample processing workflow showing different steps of enrichment and identification. The blood sample is collected; RBCs are lysed and processed through multiplexed spiral biochip. The isolated CTCs are available for immunostaining using specific markers or FISH. DNA or RNA can be extracted from the CTCs and subjected to next-generation sequencing and quantitative RT-PCR (qRT-PCR). Viable cells can be released and propagated in cell culture for various applications including cancer stem cell (CSC) study or drug discovery.

Figure 2. (A) Time sequence images demonstrating the isolation of rare cells using the spiral microfluidic biochip. Using advantage of the inherent secondary Dean vortex flows present in curvilinear microchannels, the CTCs (marked with black arrow) can be focused near the microchannel inner wall while driving the smaller hematologic cells (RBCs and WBCs) toward the microchannel outer wall, thus allowing an efficient separation at the outlet. Scale bar is 100 µm. (B) Different WBC concentration affects the total number of nucleated cells collected at the first 5 mins of processing (n=3; Anova (single factor), P<0.05). (C) Linear increase in nucleated cells isolated along with the respective increase in whole blood processed under 2x concentration. This demonstrates the relatively constant rate of nucleated cell collection with time. (n=3; Anova (single factor), P<0.05).

Figure 3: (A) Minimal cell loss incurred upon cell lysis. Flow cytometry quantification for recovery of spiked T24 cells is comparable to that enumerated for recovery of cells spiked in whole blood (98% with respect to recovery in whole blood) (n=3; Anova, P= 0.82). (B) Range of MCF-7 cell diameters after exposure to different media. No significant increase in cell diameter is detected (n=3; Anova, P= 0.2). (C) CTC count obtained by the integrated spiral biochip is compared against that of the current multiplexed spiral using blood of patients with lung cancer. (D) Sample processing time by the integrated spiral biochip (i.e., for 7.5 mL of blood).

Figure 4. (A) Recovery of spiked cancer cells introduced at clinically relevant concentration (500 cells per 7.5 mL whole blood) (n=3; Anova (single factor), P<0.05). (B) Proportion of viable cells after various treatments, as stained by propidium iodide (B.P: Before Processing & A.P: After Processing). (C) Phase contrast microscopy images of isolated T24 at different treatment conditions. Morphology of cells remained relatively constant after lysis and spiral processing treatments, and cells remained viable. Cancer cells are indicated by orange arrows. Scale bar is 10 μ m.

Figure 5. Enumeration of CTCs from cancer patients. (A) Plot of CTCs enumeration for healthy donors (Red), breast cancer patients (Black) and lung cancer patients (Blue). (B) Immunofluorescence staining of isolated CTCs. CTCs (marked by white arrow) were identified by the following criteria: Hoechst positive, pan-cytokeratin positive and CD45 negative. Scale bar is 16 μ m. (C) FISH for HER2 detection for breast cancer cell line MDA-MB-231, SKBR3 and breast CTC enriched by the multiplexed spiral chip. Nuclei of cells were stained with DAPI, HER-2/neu gene locus (red) and CEP 17 centromere (green). Scale bar is 10 μ m.

Figure 6. (A) CTC nuclear and cell size pleomorphism. Isolated CTCs displayed varied range of nuclear shapes and cell size (Blue: Hoechst & Green: CK). (B) Staining for stem cell markers on lung CTCs. Population of CD166+ cells were rare in most of the samples. In some occasions, some CD166+/CD133+ cells were also detected in certain samples. Scale bar is 10 μ m.

Sample no	Subject status	CK+	Cancer stage	Treatment
		cells/mL		timepoint
1	Healthy	1	N.A.	N.A.
2	Healthy	3	N.A.	N.A.
3	Healthy	3	N.A.	N.A.
4	Healthy	4	N.A.	N.A.
5	Healthy	2	N.A.	N.A.
1	Breast	20	IV	C1D15
2	Breast	61	IV	Post Sutent
3	Breast	55	IV	C1D15
4	Breast	34	IV	Baseline
5	Breast	67		Baseline
1	Lung	33	IV	Single Draw
2	Lung	43	IV	Single Draw
3	Lung	37	IV	Single Draw
4	Lung	90	IV	Single Draw
5	Lung	135	IV	Single Draw

Analyst

Analyst

