This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides**

Omkar P. Dhamale, Chengli Zong, Kanar Al-Mafraji and Geert-Jan Boons*

Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602. E-mail: gjboons@ccrc.uga.edu; Fax: +1 706-542-4412

**Electronic supplementary information (ESI) available: Experimental procedures for the preparation of compounds 21, 23, 25, 27, 37, 38 and 1H, HSQC NMR spectra of synthetic compounds.

Abstract: Although hundreds of heparan sulfate (HS) binding proteins have been implicated in a myriad of physiological and pathological processes, very little information is known about ligand requirements for binding and mediating biological activities by these proteins. We report here a streamlined approach for the preparation of modular disaccharide building blocks that will facilitate the assembly of libraries of HS oligosaccharides for structure-activity relationship studies. In particular, we have found that glucuronic acid donors, which usually perform poorly in glycosylations, can give high yields of coupling product when the C-2 hydroxyl is protected with a permanent 4-acetoxy-2,2-dimethyl butanoyl- (PivOAc) or temporary levulinoyl (Lev) ester and the C-4 hydroxyl modified with a selectively removable 2-methylnaphthyl (Nap) ether. It has been shown that the PivOAc ester can be removed without affecting sulfate esters making it an ideal protecting group for HS oligosaccharide assembly. Iduronic acid donors exhibit more favorable glycosyl donating properties and a compound protected with a Lev ester at C-2 and an Fmoc function at the C-4 hydroxyl gave coupling products in high yield. The new donors avoid post-glycosylation oxidation and therefore allow the facile preparation of modular disaccharide building blocks.
Introduction

Glycosylaminoglycans (GAGs), such as heparin and heparan sulfate (HS), are naturally occurring polydisperse linear polysaccharides that are heavily O- and N-sulfated. The interaction between GAGs and proteins can cause profound physiological effects on hemostasis, lipid transport and adsorption, cell growth and migration and development. Binding of GAGs can result in the immobilization of proteins at their sites of production and in the matrix for future mobilization, regulation of enzyme activity, binding of ligands to their receptors and protection of proteins against degradation. 1-5 Alteration in GAG expression has been associated with disease and for example, significant changes in content of proteoglycans have been reported in the stroma surrounding tumors. GAGs are also employed by microbes for cell entry and inhibition of these interactions may provide new avenues for the development of antimicrobial agents.

Although many heparan sulfate-binding proteins have been identified, the oligosaccharide structure that mediates a particular interaction has been defined in only a very few cases. 6-8 This problem is mainly due to the structural complexity of HS, which in turn, arises from a complex biosynthetic pathway. To address this difficulty, we have developed a modular approach for the chemical synthesis of HS oligosaccharides whereby a set of disaccharide building blocks, which resemble the different disaccharide motifs found in HS, can repeatedly be used for the assembly of a wide range of sulfated oligosaccharides (Figure 1). 9-13 In this approach, levulinoyl esters (Lev) 14 are employed for the protection of hydroxyls that need sulfation. In HS, the C-3 and C-6 of glucosamine and C-2 hydroxyls of uronic acids can be sulfated and therefore depending on the sulfation pattern of a targeted disaccharide module, one or more of these positions are protected as Lev esters. In case the C-2 position of a disaccharide module does not need sulfation, an acetyl ester is employed as a permanent protecting group. An azido group is used as an amino-masking functionality because it does not perform neighboring group participation and therefore allows the introduction of α-glucosides. 15 The C-4’ hydroxyl, which is required for extension, is protected as 9-fluorenymethyl carbonate (Fmoc), and this protecting group can be removed using a hindered base such as Et3N without affecting the Lev ester. On the other hand, the Lev group can be cleaved with hydrazine buffered with acetic acid and these conditions do not affect the Fmoc carbonate. 14 The anomic center of the modular disaccharide building blocks is
protected with a TDS ether and this functionality can easily be removed by treatment with HF in pyridine to give a lactol, which in turn, can be converted into a leaving group for glycosylations with appropriate acceptors. Compared to conventional approaches,16-25 a modular synthetic strategy makes it possible to rapidly assemble libraries of HS oligosaccharides for structure activity relationship studies.

Although modular assembly of HS oligosaccharide is very attractive,9-13, 26-27 the preparation of the disaccharide building blocks is time consuming. In particular, glycosyl donors derived from uronic acid often perform poorly in glycosylations due to a low reactivity which is caused by the electron withdrawing carboxylic acid that destabilizes the oxacarbenium ion like transition state of glycosylations.28-30 Therefore, it is common to employ a post-glycosylation oxidation approach in which an oligosaccharide is assembled followed by selective oxidation of the C-6 hydroxyl of glucosides or idosides to the corresponding carboxylic acid. Such an approach requires additional reaction steps of advanced intermediates reducing the overall efficiency of the process.

Here, we report a detailed examination of the influence of protecting group patterns of uronyl donors on glycosylation efficiencies that led to the identification of new modular disaccharide building blocks that can readily be prepared without a need for post-glycosylation oxidation.

Results and Discussion

It is well known that the nature of a C-2 ester of a glycosyl donor can have a profound influence on the outcome of glycosylations. In this respect, the use of pivaloyl esters at C-2 can suppress orthoester formation, however, the removal of this protecting group requires harsh conditions which may not be compatible with the presence of sulfate esters in large complex HS oligosaccharides.31 The 4-acetoxy-2,2-dimethyl butanoil (PivOAc) ester has the steric advantage of the pivaloyl group but can be removed under mild basic conditions by a relay mechanism.32-33 Thus, we set out to prepare glycosyl donors \textbf{14}, \textbf{15} and \textbf{16} (Scheme 1) which carry at C-2 an acetyl-, Lev- or PivOAc ester, respectively, and examine their glycosyl donor properties in glycosylations with glycosyl acceptor \textbf{17} (Scheme 2). The glycosyl donors could readily be prepared starting from compound 1, which has a free hydroxyl at C-2. Acetylation of 1 under standard conditions provided 2, whereas treatment of the same compound with levulinic acid in
the presence of \(N,N'\)-Dicyclohexylcarbodiimide (DDC) and 4-dimethylaminopyridine (DMAP) gave compound 6. PivOAc protected 4 could readily be prepared in a high yield by a reaction of 1 with 4-acetoxy-2,2-dimethyl butanoyl chloride in the presence of DMAP in pyridine. The benzylidene acetal of compounds 2-4 was removed to give diols 5-7, respectively and the primary hydroxyl of these compounds was selectively oxidized using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in the presence of iodobenzene diacetate (BAIB) as the cooxidant.\(^{34-36}\) The resulting carboxylic acids were protected as methyl esters using diazomethane to provide derivatives 8-10. The C-4 hydroxyl of the latter compounds was protected as a Fmoc carbonate by treatment with FmocCl in pyridine to give compounds 11-13 in yields ranging from 76-87%. Removal of the anomeric TDS group of the fully protected compounds 11-13 with HF in pyridine and subsequent installation of an anomeric trichloroacetimidate\(^{37}\) using trichloroacetonitrile and NaH in DCM provided the required glycosyl donors 14-16, respectively. The latter reaction conditions did not affect the base labile Fmoc protecting group.

As expected, a triflic acid (TfOH) mediated glycosylation of trichloroacetimidate 14 with glycosyl acceptor 17 did not lead to the formation of disaccharide 18 and instead hydrolyzed donor and the corresponding trehalose were isolated (Scheme 2). A similar glycosylation with glycosyl donor 15, having a Lev ester at C-2, provided the corresponding disaccharide 19 as only the \(\beta\)-anomer in a low yield of 27%. The use of PivOAc protected glycosyl donor 16 improved the outcome of the glycosylation, however, the corresponding disaccharide 20 was isolated in a disappointing yield of 36%.

In addition to the C-2 functionality of a glycosyl donor, other protecting groups may affect the outcome of glycosylations. We reasoned that the electron withdrawing carbonate at C-4 further reduces the reactivity of the glucuronic acid donors, which have low intrinsic glycosyl donating properties. Thus, replacement of this protecting group by a C-4 ether was expected to increase the anomeric reactivity which may lead to higher yields of glycosylation products. To test this hypothesis, glycosyl donors 21, 23 and 25 were prepared (see SI) and examined in TfOH mediated glycosylations with glycosyl acceptor 17 (Scheme 3). Gratifyingly, the use of glycosyl donors 23 and 25 resulted in improved glycosylation outcomes and the disaccharides 24 and 26 were isolated as only the \(\beta\)-anomers in yields of 61% and 71%, respectively. The coupling with
glycosyl donor 21 to give disaccharide 22 was still low yielding (22%) due to the formation of a substantial quantity of trehalose.

The modular synthesis of heparan sulfate requires disaccharides having a removable protecting group at C-4 of the glucuronic moiety. Therefore, we examined the use of glycosyl donor 27 that has a 2-methylnaphthyl (Nap) ether at C-4, which can be removed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). As expected, coupling of 27 with glycosyl acceptor 28 provided disaccharide 29 in a yield of 88%. These results show that glucuronyl donors having an ether protecting group at C-4 and a Lev or PivOAc ester at C-2 perform well in glycosylations with 2-azido-2-deoxy glycosyl acceptors having a free C-4 hydroxyl.

Next, we examined whether a Lev ester can be selectively removed in the presence of a PivOAc ester to give an alcohol for selective sulfation. For this purpose, disaccharide 31 was prepared by a TfOH catalyzed glycosylation of glycosyl donor 27 with glycosyl acceptor 30 (Scheme 4). The latter disaccharide has a Lev ester at C-6 that allows the installation of a sulfate ester, and an anomeric N-(benzyl)benzyloxycarbonyl protected aminopentanol moiety, which after deprotection provides opportunities for conjugation chemistry. As designed, removal of the Lev ester of 31 by treatment with hydrazine acetate in a mixture of toluene and ethanol followed by sulfation of the resulting hydroxyl of 32 with pyridinium sulfur trioxide lead to the clean formation of monosulfate 33. Importantly, these conditions did not affect the PivOAc ester. However, the latter protecting group and the acetyl and methyl esters of 33 could readily be saponified by a two-step procedure employing first LiOH in a mixture of hydrogen peroxide and THF and then sodium hydroxide in methanol to give partially deprotected 34. The azido moiety of 34 was reduced with trimethyl phosphine in THF in the presence of NaOH to give amine 34, which was immediately acetylated to give 35. Finally, the benzyl ethers and benzyloxycarbamate of 35 were removed by a two-step procedure involving hydrogenation over Pd/C in a mixture of MeOH/H$_2$O which led to the removal of the spacer protecting groups followed by hydrogenation over Pd(OH)$_2$ which resulted in to removal of the benzyl and Nap ethers to give HS disaccharides 36.

Next, we examined the use of iduronic acid donors for the preparation of modular disaccharides. Gratifyingly, the coupling of 37 with 30 in the presence of NIS and AgOTf gave, after removal of the Fmoc protecting group, disaccharide 38 in an overall yield of 70% (Scheme
5, see SI for experimental procedures). In this case, there was no need to protect the C-4 position of the donor with an ether protecting group, highlighting the more favorable glycosyl donating properties of iduronic acid donors, which has also been observed by others.39,41-42 Disaccharide 38 was also prepared by a post-oxidation approach by coupling 39 with 30 to give disaccharide 40, which was subject to EtSH, TsOH in DCM to give a diol. The primary alcohol of the latter compounds was selectively oxidized to a carboxylic acid which was protected as a methyl ester by treatment with diazomethane to give disaccharide 38. The latter three chemical manipulations proceeded in an overall yield of 50% demonstrating the liabilities of a post-oxidation approach.

In conclusion, we have developed a new procedure for the preparation of modular disaccharide building blocks for the synthesis of HS-oligosaccharides using glucuronic acid donors and therefore commonly employed late stage oxidation steps to make such compounds can be avoided. Particularly, it has been found that a glucuronic acid donor protected at C-2 with a permanent PivOAc or temporary Lev ester and an ether protecting group at C-4 can provide modular disaccharides in high yield. Our previous studies have shown that such building blocks are ideally suited for the preparation of libraries of HS oligosaccharides.12,43 Previous attempts to improve the yield of glycosylation of glucuronic acid donors for HS oligosaccharide synthesis have focus on increasing the reactivity of the glycosyl acceptor and for example, protection of the C-2 amine of the glycosyl acceptor as a 2,2,2-trichlorocarbonylamino (Troc) moiety led to a significantly higher yield of coupling product compared to the use of a similar acceptor having an azido group at C-2.44 Removal of the Troc moiety was, however, problematic and led to a low yield of product. Another successful example of the use of a glucuronic acid donor involved a glycosylation with an acceptor locked in 1C_4 conformation by formation of a 1,6-anhydro-bridge.27 Opening of the anhydro-bridge requires, however, strong acidic conditions that may compromise the preparation of modular building blocks. Methylation of hydroxyls of glucuronic acid donors also appears to improve the yield of glycosylation but such an approach can only provide HS-oligosaccharide analogs.45
Experimental

General procedures. 1H and 13C (data from HSQC) NMR spectra were recorded on Varian Mercury 300 MHz, Varian INOVA 500 MHz, 600 MHz or 800 MHz spectrometers. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as the internal standard. NMR data is presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet and/or multiple resonances), coupling constant in Hertz (Hz), integration. All NMR signals were assigned on the basis of 1H NMR, COSY and HSQC experiments. Mass spectra were recorded on an ABISciex 5800 MALDi-TOF-TOF or Shimadzu LCMS-IT-TOF mass spectrometer. The matrix used was 2,5-dihydroxy-benzoic acid (DHB). TLC-analysis was performed on Silica gel 60 F254 (EMD Chemicals inc.) with detection by UV-absorption (254 nm) when applicable, and by spraying with a solution of (NH$_4$)$_6$Mo$_7$O$_{24}$.H$_2$O (25 g/L) in 5% sulfuric acid in ethanol followed by charring. CH$_2$Cl$_2$ was freshly distilled from calcium hydride under nitrogen prior to use. Acid washed molecular sieves (4Å) were flame activated in vacuo. All reactions were carried out under an argon atmosphere.

General procedure for glycosylations. Glycosyl donor (1.2 equiv based on acceptor) and acceptor (1.0 equiv) were combined in a flask, co-evaporated with toluene (3×3 mL), and dissolved in DCM to maintain a concentration of 0.02 M (based on donor). Powdered freshly activated 4 Å molecular sieves (weight of sieves equal to the combined weight of donor and acceptor) were added, and the mixture was stirred for 30 min at ambient temperature and then cooled to -30 °C. TfOH (0.1 equiv unless otherwise specified) was added to the mixture, and stirring was continued until TLC indicated disappearance of glycosyl donor. The reaction mixture was allowed to warm to 5 °C and then quenched by the addition of DTBMP. The mixture was filtered, the filtrate was concentrated in vacuo, and the residue was purified by silica gel column chromatography using a gradient of hexane/EtOAc (6/1 → 3/1, v/v) to give pure product.

General procedure for benzylidene acetal cleavage. A solution of monosaccharide in a mixture of DCM:TFA:H$_2$O (0.06 M, 10/1/0.1, v/v/v) was stirred at ambient temperature for 30 min. The reaction mixture was concentrated in vacuo, and the residue was coevaporated with
toluene followed by purification using silica gel column chromatography using a gradient of hexanes and EtOAc to give product.

General procedure for TEMPO/BAIB-mediated oxidation and esterification by diazomethane. To a vigorously stirred solution of the diol (0.3 M solution) in a mixture of DCM:H₂O (2/1, v/v) was added TEMPO (0.2 equiv) and BAIB (2.5 equiv). Stirring was continued until TLC indicated complete conversion of the starting material to a spot of lower Rf. The reaction mixture was quenched by the addition of aqueous Na₂S₂O₃ (10%, 10 mL). The mixture was extracted with EtOAc (2 × 10 mL), and the combined aqueous layers were back-extracted with EtOAc (10 mL). The combined organic layers were dried (MgSO₄), filtered, and the filtrate was concentrated *in vacuo*. The oily residue was dissolved in THF (0.1 M) and treated with an excess of freshly prepared ethereal solution of diazomethane until the reaction mixture stayed yellow. The excess diazomethane was quenched by the addition of AcOH until the reaction mixture became colorless. The mixture was concentrated *in vacuo* and coevaporated with toluene, and the residue was purified by silica gel column chromatography using a gradient of hexanes and EtOAc to yield a methyl ester.

General procedure for synthesis of Fmoc-protected monosaccharides. To a solution of monosaccharide (0.03 M) in DCM at 0 °C was added 9-fluorenlymethoxycarbonyl chloride (10 equiv) and DMAP (0.01 equiv). The reaction mixture was brought to room temperature, and stirring was continued until TLC indicated complete consumption of the starting material (~2 h). After quenching the reaction with MeOH (50 µL), the mixture was diluted with DCM (50 mL) and washed with saturated aqueous sodium bicarbonate (2 × 50 mL) and brine (50 mL). The organic phase was dried (MgSO₄), filtered, and the filtrate was concentrated *in vacuo*. The residue was purified by silica gel column chromatography using a gradient of hexanes and EtOAc to yield Fmoc carbonate-protected monosaccharide.

General procedure for preparation of trichloroacetimidates. Monosaccharide was dissolved in THF (0.05 M) followed by the addition of HF·pyridine (100 equiv). After stirring for 18 h, the
reaction mixture was diluted with DCM (50 mL) and washed with water (50 mL), saturated aqueous sodium bicarbonate (50 mL), and brine (50 mL). The organic phase was dried (MgSO$_4$) and filtered, and the filtrate was concentrated in vacuo. The residue was chromatographed over silica gel using a gradient of hexanes and EtOAc to give pure lactol. To a solution of the lactol in DCM (0.05 M) was added trichloroacetonitrile (5 eq.) and NaH (60%, 1 eq.). After stirring at room temperature for 1.5 h, the reaction mixture was concentrated in vacuo. The residue was chromatographed over silica gel using a mixture of hexanes and EtOAc containing 0.01% pyridine to yield a trichloroacetimidate donor, which was used directly for glycosylations.

Dimethylhexylsilyl 2-O-acetyl-3-O-benzyl-4,6-O-benzylidene-β-D-glucopyranoside (2). A solution of compound 1 (1.20 g, 2.40 mmol) in a mixture of pyridine and acetic anhydride (4/1, v/v, 0.2 M) was stirred for 2 h at ambient temperature. The reaction mixture was co-evaporated with toluene under reduced pressure and the residue was purified by silica gel column chromatography using a gradient of hexanes/EtOAc (3/1 → 2/1, v/v) to give compound 2 as oil (1.12 g, 87%). 1H NMR (800 MHz, CDCl$_3$) δ 7.57 – 7.25 (m, 10H, CH Aromatic), 5.57 (s, 1H, CH benzylidene), 4.97 (dd, $J = 9.2$, 7.6 Hz, 1H, H-2), 4.86 (d, $J = 12.2$ Hz, 1H, CHHBn), 4.73 – 4.61 (m, 2H, H-1, CHHBn), 4.31 (dd, $J = 10.5$, 5.0 Hz, 1H, H-6a), 3.80 (m, 2H, H-6b, H-4), 3.69 (t, $J = 9.2$ Hz, 1H, H-3), 3.43 (td, $J = 9.8$, 5.0 Hz, 1H, H-5), 1.98 (s, 3H, COCH$_3$), 1.57-1.53 (m, 1H, CH(CH$_3$)$_2$), 0.93 – 0.68 (m, 12H, C(CH$_3$)$_3$ and CH(CH$_3$)$_3$), 0.14 (s, 3H, SiCH$_3$), 0.12 (s, 3H, SiCH$_3$). 13C NMR (201 MHz, CDCl$_3$) δ 126.5, 131.4, 131.0, 129.0, 128.2, 126.0, 102.2, 97.2, 82.1, 78.9, 75.3, 73.7, 69.5, 69.1, 67.0, 63.4, 21.9, 21.5, 21.1, 20.6, -0.8, -1.9. HRMS: m/z: calcd for C$_{30}$H$_{42}$O$_7$SiNa: 565.2597; found: 565.2605 [M+Na]$^+$.

Dimethylhexylsilyl 2-O-levulinoyl-3-O-benzyl-4,6-O-benzylidene-β-D-glucopyranoside (3). A suspension of DCC (1.20 g, 6.0 mmol) and DMAP (12 mg, 0.09 mmol) in DCM (5 mL) was added to a solution of compound 1 (1.00 g, 1.99 mmol) and levulinic acid (0.46 g, 3.99 mmol) in DCM (5 mL) at 0 °C. After stirring for 2 h at ambient temperature, TLC analysis (hexanes/EtOAc, 7/3, v/v) indicated consumption of the starting material. The mixture was filtered over pad of celite and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of hexanes/EtOAc (4/1 → 2/1,
v/v) to give compound 3 as oil (1.07 g, 90%). 1H NMR (300 MHz, CDCl$_3$) δ 7.43 – 7.08 (m, 10H, CH Aromatic), 5.44 (s, 1H, CH benzylidene), 4.85 (dd, $J = 8.8$, 7.5 Hz, 1H, H-2), 4.73 (d, $J = 12.1$ Hz, 1H, CHHBn), 4.62 – 4.51 (m, 2H, H-1, CHHBn), 4.18 (dd, $J = 10.5$, 5.0 Hz, 1H, H-6a), 3.73 – 3.53 (m, 3H, H-3, H-5, H-6b), 3.32 (dt, $J = 9.4$, 4.8 Hz, 1H, H-4), 2.66 – 2.34 (m, 4H, 2xCH$_2$ Lev), 2.04 (s, 3H, CH$_3$ Lev), 1.55 – 1.41 (m, 1H, CH(CH$_3$)$_2$), 0.76 – 0.67 (m, 12H, C(CH$_3$)$_2$ and CH(CH$_3$)$_2$), 0.02 (s, 3H, SiCH$_3$), 0.00 (s, 3H, SiCH$_3$). 13C NMR (75 MHz, CDCl$_3$) δ 130.0, 128.5, 128.4, 128.3, 128.2, 101.8, 96.5, 82.0, 78.7, 75.6, 74.2, 69.0, 66.5, 38.0, 34.1, 30.1, 28.1, 19.0, -1.8, -1.7. HRMS: m/z: calcd for C$_{33}$H$_{46}$O$_8$SiNa: 621.2860; found: 621.2869 [M+Na]$^+$.

Dimethylthexylsilyl 2-O-(4-acetoxy-2,2-dimethylbunolate)-3-O-benzyl-4,6-O-benzylidene-β-D-glucopyranoside (4). To a stirring solution of compound 1 (2.70 g, 5.34 mmol) in pyridine (18 mL), DMAP (0.70 g, 5.54 mmol) and 4-acetoxy-2,2-dimethyl butanoyl chloride (1 mL, 10.67 mmol) was added at 0 °C. After stirring for 4 h at ambient temperature, TLC analysis (hexanes/EtOAc, 70/30, v/v) indicated the consumption of the starting material. The reaction mixture was diluted with EtOAc (30 mL) and washed with aqueous NaHCO$_3$ (10%), H$_2$O, brine. The combined organic layers were dried (MgSO$_4$), filtered and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of hexanes/EtOAc (4/1 → 2/1, v/v) to obtain compound 4 as oil (3.0 g, 86%). 1H NMR (300 MHz, CDCl$_3$) δ 7.51– 7.20 (m, 10H, CH Aromatic), 5.56 (s, 1H, CH benzylidene), 5.02 (dd, $J = 8.8$, 7.2, 1.3 Hz, 1H, H-2), 4.92 (d, $J = 11.6$ Hz, 1H, CHHBn), 4.81 (d, $J = 7.1$ Hz, 1H, H-1), 4.63 (d, $J = 11.7$ Hz, 1H, CHHBn), 4.32 (t, $J = 10.5$ Hz, 1H, H-4), 4.07 (t, $J = 7.2$ Hz, 2H, CH$_2$ PivOAc), 3.88 – 3.73 (m, 3H, H-3, H-6a, H-6b), 3.49 (m, 1H, H-5), 1.97 (d, $J = 1.3$ Hz, 3H, CH$_3$ PivOAc), 1.85 (t, $J = 7.4$ Hz, 2H, CH$_2$ PivOAc), 1.62 (m, $J = 6.8$ Hz, 1H, CH(CH$_3$)$_2$), 1.18 (t, $J = 2.6$ Hz, 6H, 2xCH$_3$ PivOAc), 0.92 – 0.80 (m, 12H, C(CH$_3$)$_2$ and CH(CH$_3$)$_2$), 0.20 – 0.11 (m, 6H, Si(CH$_3$)$_2$). 13C NMR (151 MHz, CDCl$_3$) δ 129.7, 129.1, 128.0, 127.5, 124.9, 101.8, 96.4, 81.3, 79.5, 74.0, 73.8, 73.7, 69.2, 68.3, 66.1, 62.2, 38.6, 34.6, 24.7, 21.5, 19.2. HRMS: m/z: calcd for C$_{36}$H$_{52}$O$_8$SiNa: 679.3278; found: 679.3289 [M+Na]$^+$.

10
Dimethylthexylsilyl 2-O-acetyl-3-O-benzyl-β-D-glucopyranoside (5). Compound 5 (710 mg, 77%) was prepared according to the general procedure for benzylidene acetal cleavage starting from compound 2 (1.10 g, 2.03 mmol). 1H NMR (600 MHz, CDcl3) δ 7.39 – 7.23 (m, 5H, CH Aromatic), 4.93 (t, J = 9.5 Hz, 1H, H-2), 4.74 (d, J = 11.6 Hz, 1H, CHBn), 4.70 – 4.61 (m, 2H, H-1, CHH/Bn), 3.89 – 3.81 (d, J = 10.5 Hz, 1H, H-6a), 3.74 (d, J = 10.5 Hz, 1H, H-6b), 3.68 (t, J = 9.3 Hz, 1H, H-4), 3.51 (t, J = 9.2 Hz, 1H, H-3), 3.30-3.35 (m, 1H, H-5), 1.99 (s, 3H, COCH3), 1.57-1.50 (m, 1H, CH(CH3)2), 0.95-0.70 (m, 12H, C(CH3)2 and CH(CH3)2), 0.15 (s, 3H, SiCH3), 0.13 (s, 3H, SiCH3). 13C NMR (151 MHz, CDCl3) δ 127.7, 96.1, 82.5, 75.1, 74.6, 74.3, 70.6, 62.6, 34.0, 21.1, 19.3, 18.6, -2.4, -2.5. HRMS: m/z: calcd for C23H38O7SiNa: 477.2284; found: 477.2290 [M+Na]+.

Dimethylthexylsilyl 2-O-levulinoyl-3-O-benzyl-β-D-glucopyranoside (6). Compound 5 (690 mg, 81%) was prepared according to the general procedure for benzylidene acetal cleavage starting from compound 3 (1.00 g, 1.67 mmol). 1H NMR (600 MHz, CDCl3) δ 7.39 – 7.25 (m, 5H, CH Aromatic), 4.93 (t, J = 9.5 Hz, 1H, H-2), 4.81 (d, J = 11.8 Hz, 1H, CHH/Bn), 4.71 – 4.61 (m, 2H, H-1, CHH/Bn), 3.87-3.74 (m, 2H, H-6), 3.66 (t, J = 9.3 Hz, 1H, H-4), 3.51 (t, J = 9.3 Hz, 1H, H-3), 3.37 (m, 1H, H-5), 2.80-2.46 (m, 4H, CH2 Lev), 2.17 (s, 3H, COCH3), 1.63-1.57 (m, 1H, CH(CH3)2), 0.88 – 0.80 (m, 12H, C(CH3)2 and CH(CH3)2), 0.15 (s, 3H, SiCH3), 0.13 (s, 3H, SiCH3). 13C NMR (151 MHz, CDCl3) δ 128.0, 95.8, 82.6, 75.1, 74.2, 70.6, 62.7, 42.2, 37.7, 29.8, 27.9, 25.0, 23.4, 19.8, 18.4, -1.8, -3.3. HRMS: m/z: calcd for C26H42O8SiNa: 533.2547; found: 533.2555[M+Na]+.

Dimethylthexylsilyl 2-O-(4-acetoxy-2,2-dimethylbunoate)-3-O-benzyl-β-D-glucopyranoside (7). EtSH (1.70 g, 27.42 mmol) and TsOH (0.55 g, 2.75 mmol) were added to a stirred solution of compound 4 (3.00 g, 4.57 mmol) in DCM (10 mL). After stirring at ambient temperature for 1 h, TLC analysis (hexane/EtOAc, 75/25, v/v) indicated the complete consumption of the starting material. The reaction mixture was quenched with Et3N and was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of hexanes/EtOAc (3/1 – 2/1, v/v) to give compound 7 as oil (2.00 g, 77%). 1H NMR (500 MHz, CDCl3) δ 7.40 – 7.26 (m, 5H, CH Aromatic), 4.99 (t, J = 9.5 Hz, 1H, H-2), 4.81 – 4.74 (m, 2H, 0.13 – 0.08 (m, 12H, C(CH3)2 and CH(CH3)2), 0.15 (s, 3H, SiCH3), 0.13 (s, 3H, SiCH3). 13C NMR (151 MHz, CDCl3) δ 128.0, 95.8, 82.6, 75.1, 74.2, 70.6, 62.7, 42.2, 37.7, 29.8, 27.9, 25.0, 23.4, 19.8, 18.4, -1.8, -3.3. HRMS: m/z: calcd for C26H42O8SiNa: 533.2547; found: 533.2555[M+Na]+.
Organic & Biomolecular Chemistry Accepted Manuscript

Dimethylthexylsilyl O-methyl-2-O-acetyl-3-O-benzyl-β-D-glucopyranosyluronate (8).

Compound 8 (581 mg, 77%) was prepared according to the general procedure from compound 15 (0.71 g, 1.56 mmol) using TEMPO (49 mg, 0.31 mmol), BAIB (1.26 g, 3.90 mmol) and freshly prepared solution of diazomethane in Et₂O (2 mL). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.24 (m, 5H, CH Aromatic), 4.93 (t, J = 9.6 Hz, 1H, H-2), 4.83 (d, J = 11.8 Hz, 1H, CHHBN), 4.72 (d, J = 11.8 Hz, 1H, CHHBN), 4.67 (d, J = 7.6 Hz, 1H, H-1), 4.00 (t, J = 9.8 Hz, 1H, H-4), 3.86 – 3.79 (m, 4H, H-5, CO₂CH₃), 3.53 (t, J = 9.6 Hz, 1H, H-3), 1.97 (s, 3H, COCH₃), 1.64 – 1.55 (m, 1H, CH(CH₃)₂), 0.93 – 0.79 (m, 12H C(CH₃)₂ and CH(CH₃)₂), 0.17 (s, 3H, SiCH₃), 0.13 (s, 3H, SiCH₃). ¹³C NMR (126 MHz, CDCl₃) δ 128.0, 96.2, 81.1, 74.3, 73.9, 72.2, 52.7, 33.9, 20.9, 19.8, 15.5, 14.3, -2.8, -3.3. HRMS: m/z: calcd for C₂₉H₄₈O₅SiNa: 591.2965; found: 591.2969 [M+Na]⁺.

Dimethylthexylsilyl O-methyl-2-O-levulinoyl-3-O-benzyl-β-D-glucopyranosyluronate (9).

Compound 9 (498 mg, 68%) was prepared according to the general procedure from compound 6 (0.69 g, 1.35 mmol) using TEMPO (42 mg, 0.27 mmol), BAIB (1.08 g, 3.38 mmol) and freshly prepared solution of diazomethane in Et₂O (2 mL). ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.10 (m, 5H, CH Aromatic), 4.80 (dd, J = 9.5, 7.5 Hz, 1H, H-4), 4.72 – 4.57 (m, 2H, CHHBN, CHHBN), 4.54 (d, J = 7.6 Hz, 1H, H-1), 3.85 (dd, J = 9.8 Hz, 1H, H-4), 3.69 (m, 4H, H-5, CO₂CH₃), 3.40 (t, J = 9.5 Hz, 1H, H-3), 2.68 – 2.26 (m, 4H, 2xCH₂ Lev), 2.02 (s, 3H, CH₃ Lev), 1.44 (q, J = 6.9 Hz, 1H, CH(CH₃)₂), 0.76 – 0.59 (m, 12H, C(CH₃)₂ and CH(CH₃)₂), 0.03 (s, 3H, Si(CH₃)₂), 0.01 (s, 3H, Si(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 129.5, 96.3, 81.4, 74.6, 74.4, 74.2, 72.2, 54.1,
38.1, 34.1, 30.2, 28.1, 20.1, 0.8. HRMS: m/z: calcd for C_{27}H_{42}O_{9}SiNa: 561.2496; found: 561.2502 [M+Na]^+.

Dimethylthexylsilyl O-methyl-2-O-(4-acetoxy-2,2-dimethylbunoate)-3-O-benzyl-β-D-glucopyranosyluronate (10). Compound 10 (1.10 g, 88%) was prepared according to the general procedure from compound 7 (0.71 g, 1.56 mmol) using TEMPO (66 mg, 0.42 mmol), BAIB (1.69 g, 5.28 mmol) and freshly prepared solution of diazomethane in Et_2O (4 mL). \^1H NMR (500 MHz, CDCl_3) \(\delta \) 7.20 – 7.08 (m, 10H, CH Aromatic), 4.83 (t, \(J = 9.3 \), 1H, H-3), 4.74 (d, \(J = 11.5 \) Hz, 1H, CHHBn), 4.62 (d, \(J = 7.3 \) Hz, 1H, H-1), 4.54 (d, \(J = 11.5 \) Hz, 1H, CHHBn), 3.99 – 3.86 (m, 3H, H-4, CH_2 PivOAc), 3.70 (d, 4H, H-5, CO_2CH_3), 3.46 (t, \(J = 9.0 \) Hz, 1H, H-3), 1.83 (s, 3H, CH_3 PivOAc), 1.53 – 1.43 (m, 1H, CH(CH_3)_2), 1.05 (s, 6H, 2xC(CH_3)_2), 0.75 – 0.66 (m, 12H, C(CH_3)_2 and CH(CH_3)_2), 0.04 (s, 3H, SiCH_3), 0.02 (s, 3H, SiCH_3). \(^{13}\)C NMR (126 MHz, CDCl_3) \(\delta \) 128.6, 128.5, 127.5, 128.8, 127.8, 96.4, 74.2, 74.1, 74.1, 61.6, 72.1, 74.1, 52.9, 81.8, 21.2, 38.3, 34.0, 25.4, 18.7, 20.7, 20.2, -1.8, -2.7. HRMS: m/z: calcd for C_{27}H_{42}O_{9}SiNa: 619.2914; found: 619.2924 [M+Na]^+.

Dimethylthexylsilyl O-Methyl-2-O-acetyl-3-O-benzyl-4-O-(9-fluorenylmethoxycarbonyl)-β-D-glucopyranosyluronate (11). Compound 11 (784 mg, 94%) was prepared according to the general procedure from compound 8 (570 mg, 1.18 mmol) using Fmoc-Cl (1.22 g, 4.72 mmol) and DMAP (14 mg, 0.12 mmol). \(^1\)H NMR (500 MHz, CDCl_3) \(\delta \) 7.78 (t, \(J = 6.8 \) Hz, 2H, CH Aromatic), 7.63 (dd, \(J = 10.6 \), 7.4 Hz, 2H, CH Aromatic), 7.41 (m, 3H, CH Aromatic), 7.36 – 7.29 (m, 5H, CH Aromatic), 5.15 (t, \(J = 9.6 \) Hz, 1H, H-4), 5.06 (dd, \(J = 9.4 \), 7.3 Hz, 1H, H-2), 4.75 – 4.67 (m, 2H, H-1, CH/HBn), 4.60 (d, \(J = 11.8 \) Hz, 1H, CHHBn), 4.47 (dd, \(J = 10.5 \), 7.1 Hz, 1H, CHH Fmoc), 4.37 (dd, \(J = 10.7 \), 7.5 Hz, 1H, CHH Fmoc), 4.26 (t, \(J = 7.3 \) Hz, 1H, CH_2CH Fmoc), 4.06 (t, \(J = 9.8 \) Hz, 1H, H-4), 3.75 (m, 4H, H-5, CO_2CH_3), 3.68 (t, \(J = 9.8 \) Hz, H-3), 1.98 (s, 3H, COCH_3), 1.63 (m, 1H, CH(CH_3)_2), 1.00 – 0.82 (m, 12H, C(CH_3)_2 and CH(CH_3)_2), 0.20 (s, 3H, SiCH_3), 0.16 (s, 3H, SiCH_3). \(^{13}\)C NMR (126 MHz, CDCl_3) \(\delta \) 119.8, 125.0, 127.7, 127.0, 128.0, 127.7, 75.0, 73.7, 95.8, 73.8, 73.8, 70.2, 70.3, 46.6, 72.3, 79.1, 53.8, 52.7, 20.9, 29.6, 18.6, 19.9, 0.2. HRMS: m/z: calcd for C_{39}H_{48}O_{10}SiNa: 727.2914; found: 727.2920 [M+Na]^+.
Dimethylthexylsilyl \(O\)-methyl-2-\(O\)-levulinoyl-3-\(O\)-benzyl-4-\(O\)-(9-fluorenlymethoxycarbonyl)-\(\beta\)-D-glucopyranosyluronate (12). Compound 12 (490 mg, 87\%). was prepared according to the general procedure from compound 9 (400 mg, 0.75 mmol) using Fmoc-Cl (1.20 g, 4.48 mmol) and DMAP (10 mg, 0.07 mmol). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.80 – 7.70 (m, 2H, CH Aromatic), 7.65 – 7.55 (m, 2H, CH Aromatic), 7.39 (dd, \(J = 7.7, 3.8\) Hz, 2H, CH Aromatic), 7.33 – 7.18 (m, 5H, CH Aromatic), 5.19 – 5.08 (t, \(J = 9.4\) Hz, 1H, H-4), 5.04 (t, \(J = 9.1, 7.5, 1.0\) Hz, 1H, H-2), 4.75 – 4.68 (m, 1H, H-1), 4.70 – 4.58 (m, 2H, CHHBN, CHHBn), 4.44 (m, 1H, CHH Fmoc), 4.34 (m, 1H, CHH Fmoc), 4.28 – 4.19 (m, 1H, CH\(_\)CH Fmoc), 4.03 (m, 1H, H-5), 3.81 – 3.71 (t, \(J = 7.5\) Hz, H-3), 3.69 (s, 3H, CO\(_2\)CH\(_3\)), 2.78 – 2.41 (m, 4H, 2xCH\(_2\) LeV), 2.16 (s, 3H, CH\(_3\) LeV), 1.67 – 1.49 (m, 1H, CH(CH\(_3\))\(_2\)), 0.92 – 0.75 (m, 12H, C(CH\(_3\))\(_2\) and CH(CH\(_3\))\(_2\)), 0.16 (dd, \(J = 11.4, 1.0\) Hz, 6H, Si(CH\(_3\))\(_2\)). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 127.2, 125.2, 120.7, 95.9, 79.3, 75.0, 74.4, 74.0, 72.4, 70.4, 52.4, 46.7, 37.8, 34.0, 29.8, 28.0, 18.5, 19.9, 1.1. HRMS: m/z: calcd for C\(_{42}\)H\(_{52}\)O\(_{11}\)SiNa: 783.3177; found: 783.3189 [M+Na]^+.

Dimethylthexylsilyl \(O\)-methyl-2-\(O\)-(4-acetoxy-2,2dimethylbunoate)-3-\(O\)-benzyl-4-\(O\)-(9-fluorenlymethoxycarbonyl)-\(\beta\)-D-glucopyranosyluronate (13). Compound 13 (0.31 g, 76\%) was prepared according to the general procedure from compound 8 (570 mg, 1.18 mmol) using FmocCl (780 mg, 3.02 mmol) and DMAP (6.0 mg, 0.05 mmol). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.85 – 7.74 (m, 3H, CH Aromatic), 7.72 – 7.42 (m, 7H, CH Aromatic), 7.55 – 7.29 (m, 4H, CH Aromatic), 5.24 (t, \(J = 9.6\) Hz, 1H, H-4), 5.11 (dd, \(J = 8.7, 6.9\) Hz, 1H, H-2), 4.84 (d, \(J = 6.9\) Hz, 1H, H-1), 4.74 – 4.62 (m, 2H, CHHBn, CHHBn), 4.52 – 4.37 (m, 1H, CHH Fmoc), 4.36 – 4.18 (m, 2H, CHH Fmoc, CHFmoc), 4.16 – 4.06 (m, 3H, CH\(_2\) PivOAc), 3.87 (t, \(J = 9.1\) Hz, 1H, H-3), 3.71 (s, 3H, CO\(_2\)CH\(_3\)), 2.00 (s, 3H, CH\(_3\) PivOAc), 1.89 (t, \(J = 7.4\) Hz, 3H, CH\(_3\) PivOAc), 1.59 (s, 1H, CH(CH\(_3\))\(_2\)), 1.22 (s, 6H, 2xCH\(_3\) PivOAc), 0.91 – 0.85 (m, 12H, C(CH\(_3\))\(_2\) and CH(CH\(_3\))\(_2\)), 0.25 – 0.16 (m, 6H, Si(CH\(_3\))\(_2\)). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 128.0, 127.7, 125.1, 120.1, 158.4, 95.9, 79.4, 74.6, 73.8, 73.2, 72.1, 70.3, 61.1, 52.5, 46.4, 38.0, 33.7, 29.4, 25.1, 20.7, 19.5, -9.7. HRMS: m/z: calcd for C\(_{45}\)H\(_{58}\)NaO\(_{12}\)Si: 841.3595; found: 841.3603 [M+Na]^+.
Dimethylthexysilyl \(O\)-(methyl-2-\(O\)-levulinoyl-3-\(O\)-benzyl-4-\(O\)-(9-fluorenylmethoxycarbonyl)-\(\beta \)-D-glucopyranosyluronate)-(1→4)-\(O\)-2-deoxy-2-azido-3-\(O\)-benzyl-6-\(O\)-acetyl-\(\beta \)-D-glucopyranoside (19). Compound 19 (19 mg, 27\%) was prepared according to the general glycosylation procedure from compound 15 (60 mg, 0.08 mmol) and 17 (31 mg, 0.07 mmol) catalyzed by TfOH (1.0 \(\mu \)l, 0.01 mmol). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.75 (t, \(J = 7.2 \) Hz, 2H, CH Aromatic), 7.60 – 7.54 (m, 2H, CH Aromatic), 7.43 – 7.18 (m, 16H, CH Aromatic), 5.04 (d, \(J = 19.1 \), 9.6 Hz, 2H, H-2\', H-4\'), 4.97 (d, \(J = 11.6 \) Hz, 1H, CHHBn), 4.80 (d, \(J = 11.6 \) Hz, 1H, CHHBn), 4.67 – 4.57 (m, 3H, CHHBn, CHHBn, H-1'), 4.49 (d, \(J = 7.7 \) Hz, 1H, H-1), 4.44 – 4.37 (m, 1H, H-6a), 4.31 (dd, \(J = 10.5 \), 7.5 Hz, 2H, CH\(_2\) Fmoc), 4.20 (t, \(J = 7.1 \) Hz, 1H, CH Fmoc), 4.12 (dd, \(J = 11.8 \), 6.1 Hz, 1H, H-6b), 3.85 (d, \(J = 9.8 \) Hz, 1H, H-5'), 3.76 – 3.66 (m, 2H, H-3', H-4'), 3.58 (dd, \(J = 14.1 \), 7.8 Hz, 1H, H-5), 3.47 (s, 3H, CO\(_2\)CH\(_3\)), 3.43 – 3.37 (m, 1H, H-3), 3.29 (dd, \(J = 9.8 \), 7.8 Hz, 1H, H-2), 2.79 – 2.70 (m, 1H, CH\(_2\) Lev), 2.68 – 2.51 (m, 3H, CH\(_2\) Lev), 2.41 – 2.33 (m, 1H, CH\(_2\) Lev), 2.15 (s, 3H, CH\(_3\) Lev), 2.08 (d, \(J = 9.7 \) Hz, 3H, CO\(_2\)CH\(_3\)), 1.64 (dt, \(J = 13.8 \), 6.8 Hz, 1H, CH(CH\(_3\))\(_2\)), 0.88 (m, 12H, C(CH\(_3\))\(_2\) and CH(CH\(_3\))\(_2\)), 0.28 – 0.09 (m, 6H, Si(CH\(_3\))\(_2\)). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 128.6, 128.0, 127.5, 125.3, 120.4, 101.3, 97.0, 81.27, 79.7, 79.0, 75.3, 75.1, 74.7, 74.6, 73.0, 72.8, 72.7, 70.7, 70.7, 52.9, 63.0, 46.8, 69.0, 68.9, 30.0, 21.1, 20.2, 18.7. HRMS: m/z: calcd for C\(_{57}\)H\(_{69}\)N\(_3\)O\(_{16}\)SiNa: 1102.4345; found: 1102.4355 [M+Na]\(^+\)

Dimethylthexysilyl \(O\)-(methyl-2-\(O\)-(4-acetoxy-2,2-dimethylbunoate)-3-\(O\)-benzyl-4-\(O\)-(9-fluorenylmethoxycarbonyl)-\(\beta \)-D-glucopyranosyluronate)-(1→4)-\(O\)-2-deoxy-2-azido-3-\(O\)-benzyl-6-\(O\)-acetyl-\(\beta \)-D-glucopyranoside (20). Compound 20 (28 mg, 36\%) was prepared according to the general glycosylation procedure from compound 16 (70 mg, 0.08 mmol) and 17 (33 mg, 0.07 mmol) catalyzed by TfOH (1.0 \(\mu \)l, 0.01 mmol). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.81 – 7.73 (m, 2H, CH Aromatic), 7.62 – 7.54 (m, 2H, CH Aromatic), 7.47 – 7.18 (m, 15H, CH Aromatic), 5.22 – 5.10 (m, 2H, H-4', H-2'), 5.02 (d, \(J = 11.2 \) Hz, 1H, CHHBn), 4.80 (d, \(J = 11.5 \) Hz, 1H, CHHBn), 4.73 – 4.60 (m, 3H, H-1', CH\(_2\) Fmoc), 4.53 (d, \(J = 7.5 \) Hz, 1H, H-1), 4.42 (dd, \(J = 10.4 \), 7.1 Hz, 1H, H-6a), 4.34 (dd, \(J = 11.8 \), 1.8 Hz, 1H, CHHBn), 4.28 (dd, \(J = 10.4 \), 7.6 Hz, 1H, H-6b), 4.25 – 4.17 (m, 2H, CHHBn, CH Fmoc), 4.12 – 3.96 (m, 3H, CH\(_2\) PivOAc, H-5'), 3.82 (m, \(J = 9.1 \), 5.5 Hz, 2H, H-3', H-4), 3.57 (s, 3H, CO\(_2\)CH\(_3\)), 3.51 (dd, \(J = 8.4 \), 4.0 Hz, 1H, H-
Dimethylhexylsilyl O-(methyl-2-O-acetyl-3,4-O-benzyl-β-D-glucopyranosyluronate)-
(1→4)-O-2-deoxy-2-azido-3-O-benzyl-6-O-acetyl-β-D-glucopyranoside (22). Compound 22
(16 mg, 22%) was prepared according to the general glycosylation procedure from compound 21
(55 mg, 0.10 mmol) and 17 (38 mg, 0.13 mmol) catalyzed by TfOH (1.0 µl, 0.01 mmol). 1H
NMR (500 MHz, CDCl3) δ 7.41 – 7.17 (m, 15H, CH Aromatic), 5.05 – 4.99 (m, 1H, H-2’), 4.95
d, J = 11.2 Hz, 1H, CHHBn), 4.78 (d, J = 11.5 Hz, 1H, CHHBn), 4.72 (d, J = 11.0 Hz, 2H,
CHHBn, CHHBn), 4.63 (d, J = 11.5 Hz, 1H, CHHBn), 4.60 – 4.55 (m, 2H, CHHBn, H-1’). 4.45
d, J = 7.7 Hz, 1H, H-1), 4.38 (dd, J = 11.6, 1.9 Hz, 1H, H-6a), 4.08 (dd, J = 11.6, 6.4 Hz, 1H, H-
6b), 3.91 (t, J = 9.1 Hz, 1H, H-4’), 3.84 (d, J = 9.5 Hz, 1H, H-5’), 3.70 – 3.59 (m, 2H, H-4, H-3’),
3.53 (s, 3H, CO2CH3), 3.43 (d, J = 6.9 Hz, 1H, H-4), 3.38 – 3.31 (m, 1H, H-3), 3.27 (dd, J = 9.8,
7.7 Hz, 1H, H-2), 2.10 – 2.02 (s, 3H, COCH3), 1.94 (s, 3H, COCH3), 1.71 – 1.59 (m, 1H,
CH(CH3)2), 0.93 – 0.82 (m, 12H, C(CH3)2 and CH(CH3)2), 0.19 (s, 3H, SiCH3), 0.15 (s, 3H, SiCH3). 13C
NMR (126 MHz, CDCl3) δ 129.0, 128.8, 128.5, 128.4, 127.9, 127.7, 127.6, 127.5,
101.3, 96.7, 81.9, 80.9, 79.3, 78.48, 75.6, 75.1, 75.0, 74.5, 73.0, 72.7, 68.6, 63.3, 62.5, 62.5, 52.4,
33.9, 29.7, 20.8, 20.8, 20.3, 20.25, 19.9, 19.3, 18.5, 18.4, 17.9. HRMS: m/z: calcd for
C46H61N3O17SiNa: 914.3871; found: 914.3879 [M+Na]+.

Dimethylhexylsilyl O-(methyl-2-O-levulinoyl-3,4-O-benzyl-β-D-glucopyranosyluronate)-
(1→4)-O-2-deoxy-2-azido-3-O-benzyl-6-O-acetyl-β-D-glucopyranoside (24). Compound 24
(76 mg, 61%) was prepared according to the general glycosylation procedure from compound 23
(100 mg, 0.16 mmol) and 17 (63 mg, 0.13 mmol) catalyzed by TfOH (1.5 µl, 0.016 mmol). 1H
NMR (500 MHz, CDCl₃) δ 7.41 – 7.17 (m, 15H, CH Aromatic), 5.06 – 4.99 (m, 1H, H-2'), 4.96 (d, J = 11.1 Hz, 1H, CHHBN), 4.80 – 4.64 (m, 4H, CH₂ Bn), 4.57 (dd, J = 9.4, 3.4 Hz, 2H, CHHBN, H-1'), 4.48 (d, J = 7.7 Hz, 1H, H-1), 4.42 (dd, J = 11.7, 1.8 Hz, 1H, H-6a), 4.14 (dd, J = 11.8, 5.9 Hz, 1H, H-6b), 3.94 – 3.88 (m, 1H, H-4'), 3.85 (d, J = 9.5 Hz, 1H, H-5'), 3.68 (dt, J = 17.8, 9.3 Hz, 2H, H-4', H-5'), 3.59 – 3.50 (m, 4H, H-5, COOCH₃), 3.39 – 3.32 (m, 1H, H-3), 3.27 (dd, J = 9.8, 7.8 Hz, 1H, H-2), 2.79 – 2.69 (m, 1H, CH₂ Lev), 2.66 – 2.50 (m, 2H, CH₂ Lev), 2.36 – 2.27 (m, 1H, CH₂ Lev), 2.15 (s, 3H, CH₃ Lev), 2.06 (s, 3H, COCH₃), 1.63 (td, J = 13.7, 6.9 Hz, 1H, CH(CH₃)₂), 0.93 – 0.82 (m, 12H, C(CH₃)₂ and CH(CH₃)₂), 0.19 (s, 3H, SiCH₃), 0.15 (s, 3H, SiCH₃). \(^{13}\)C NMR (126 MHz, CDCl₃) δ 128.7, 128.6, 128.3, 128.2, 128.1, 128.0, 127.4, 127.3, 127.2, 127.1, 101.5, 97.0, 82.2, 81.2, 79.5, 78.5, 75.3, 75.2, 74.8, 73.6, 72.8, 68.8, 62.9, 62.9, 52.7, 37.8, 34.0, 29.9, 20.8, 20.1, 18.4, -2.1, -3.1. HRMS: m/z: calcd for C₄₉H₆₅N₅O₁₄SiNa: 970.4134; found: 970.4137 [M+Na]+.

Dimethylthexylsilyl O-(methyl-2-O-(4-acetoxo-2,2-dimethylbunoate)-3,4-O-benzyl-ß-D-glucopyranosyluronate)-(1→4)-O-2-deoxy-2-azido-3-O-benzyl-6-O-acetyl-ß-D-glucopyranoside (26). Compound 26 (95 mg, 71%) was prepared according to the general procedure from compound 25 (109 mg, 0.16 mmol) and compound 17 (63 mg, 0.13 mmol) catalyzed by TfOH (1.4 μl, 0.01 mmol). \(^{1}\)H NMR (500 MHz, CDCl₃) δ 7.34 – 6.96 (m, 15H, CH Aromatic), 4.98 – 4.89 (t, J = 9.3 Hz, 1H, H-2'), 4.82 (d, J = 10.8 Hz, 1H, CHHBN), 4.64 (d, J = 11.4 Hz, 1H, CHHBN), 4.59 – 4.40 (m, 5H, CH₂ Bn, H-1'), 4.35 (d, J = 7.7 Hz, 1H, H-1), 4.17 (dd, J = 11.7, 1.8 Hz, 1H, H-6a), 4.03 (dd, J = 11.8, 5.9 Hz, 1H, H-6b), 3.86 (dd, J = 16.5, 8.2 Hz, 3H, H-4', CH₂ PivOAc), 3.76 (d, J = 9.3 Hz, 1H, H-5'), 3.68 (dd, J = 9.8, 8.7 Hz, 1H, H-4), 3.53 (t, J = 8.6 Hz, 1H, H-3'), 3.45 (s, 3H, CO₂CH₃), 3.36 – 3.29 (m, 1H, H-5), 3.24 – 3.17 (t, J = 9.3 Hz, 1H, H-3), 3.12 (m, J = 9.9, 7.7 Hz, 1H, H-2), 1.92 (d, J = 5.6 Hz, 3H, CH₃ PivOAc), 1.82 (s, 3H, COCH₃), 1.77 – 1.63 (m, 2H, CH₂ PivOAc), 1.50 (dd, J = 20.6, 13.7 Hz, 1H, CH(CH₃)₂), 1.00 (d, J = 12.6 Hz, 6H, 2X CH₃ PivOAc), 0.72 (dd, J = 14.4, 7.5 Hz, 12H, C(CH₃)₂ and CH(CH₃)₂), 0.09 – 0.05 (m, 6H, Si(CH₃)₂). \(^{13}\)C NMR (126 MHz, CDCl₃) δ 128.6, 128.4, 128.5, 128.5, 128.1, 127.9, 127.8, 127.7, 127.3, 127.2, 100.2, 96.9, 82.0, 80.8, 79.5, 76.5, 75.5, 75.0, 74.8, 73.3, 72.8, 68.7, 62.9, 61.5, 52.8, 38.5, 34.2, 31.1, 21.2, 25.2, 20.9, 20.2, 18.6, -3.0, -1.9. HRMS: m/z: calcd for C₅₂H₇₁N₅O₁₅SiNa: 1028.4552; found: 1028.4560 [M+Na]+.
Dimethylthexylsilyl \(O-(\text{methyl}-2-O-(4-\text{acetoxy-2,2-dimethylbunoate})-3-O-benzyl-4-O-(2-methyl-napthyl)-\beta-D-glucpyranosyluronate)-(1 \to 4)-O-2-deoxy-2-azido-3-O-benzyl-6-O-\text{levulinoyl-\beta-D-glucopyranoside} \) (29). Compound 29 (88 mg, 85\%) was prepared according to the general glycosylation procedure from compound 27 (83 mg, 0.11 mmol) and compound 28 (50 mg, 0.09 mmol) catalyzed by TfOH (1.0 \(\mu \)l, 0.01 mmol). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.86 – 7.73 (m, 2H, \(CH \) Aromatic), 7.62 (d, \(J = 14.7 \) Hz, 1H, \(CH \) Aromatic), 7.51 – 7.15 (m, 13H, \(CH \) Aromatic), 5.20 – 5.10 (t, \(J = 9.7 \) Hz, 1H, H-2‘), 5.03 (dt, \(J = 14.9, 5.3 \) Hz, 1H, C\(H HBn \)), 4.84 (t, \(J = 12.3 \) Hz, 2H, \(CH \) napthylidene, C\(H HBn \)), 4.80 – 4.67 (m, 3H, \(CH \) napthylidene, C\(H HBn \), H-1’), 4.56 – 4.50 (d, \(J = 9.3 \) Hz, 1H, H-1), 4.36 – 4.22 (m, 2H, H-6\(a_1 \), H-6\(b_1 \)), 4.15 – 4.00 (m, 2H, H-5’, H-4’), 3.95 – 3.85 (m, 2H, H-3’, H-4), 3.57 (s, 3H, COO\(CH_3 \)), 3.52 – 3.46 (m, 1H, H-5), 3.40 – 3.26 (m, 2H, H-3, H-2), 2.90 – 2.71 (m, 2H, \(CH_2 \) Lev), 2.69 – 2.53 (m, 2H, \(CH_2 \) Lev), 2.24 – 2.19 (s, 3H, \(CH_3 \) Lev), 1.99 (s, 3H, COO\(CH_3 \)), 1.95 – 1.83 (m, 2H, \(CH_2 \) Piv\(OAc \)), 1.59 (m, 1H, \(CH(CH_3)_2 \)), 1.20 (dd, \(J = 3.5, 1.3 \) Hz, 6H, 2\(xCH_3 \) Piv\(OAc \)), 0.91 (d, 12H, C\((CH_3)_2 \) and \(CH(CH_3)_2 \)), 0.24 – 0.13 (m, 6H, Si\((CH_3)_2 \)). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 129.0, 128.8, 128.3, 128.2, 128.0, 127.7, 127.5, 127.1, 126.6, 126.1, 125.7, 125.3, 99.9, 96.7, 81.7, 80.6, 79.6, 79.4, 79.3, 76.0, 75.4, 73.1, 75.4, 74.7, 74.5, 72.5, 68.4, 62.6, 61.3, 52.5, 51.9, 38.4, 37.9, 34.0, 30.3, 29.7, 28.0, 25.9, 25.3, 21.6, 20.9, 19.9, 18.2, 2.0. HRMS: m/z: calcd for C\(_{59}H_{77}N_5O_{16}SiNa \): 1134.4971; found: 1134.4977 [M+Na]\(^+\).

\(N-(\text{Benzyl})-\text{benzxyloxycarbonyl-5-aminopentyl-\text{O-}(\text{methyl}-2-O-(4-\text{acetoxy-2,2-dimethylbunoate})-3-O-benzyl-4-O-(2-methyl-napthyl)-\beta-D-glucpyranosyluronate)-(1 \to 4)-O-2-deoxy-2-azido-3-O-benzyl-6-O-\text{levulinoyl-\alpha-D-glucopyranoside} \) (31). Compound compound 31 (152 mg, 64\%) was prepared according to the general glycosylation procedure from compound 27 (164 mg, 0.22 mmol) and compound 30 (130 mg, 0.19 mmol) catalyzed by TfOH (6.0 \(\mu \)l, 0.07 mmol). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.86 – 7.74 (m, 3H, \(CH \) Aromatic), 7.64 (s, 1H, \(CH \) Aromatic), 7.53 – 7.43 (m, 3H, \(CH \) Aromatic), 7.42 – 7.16 (m, 20H, \(CH \) Aromatic), 5.28 – 5.14 (m, 4H, \(CH_2 \) Cbz, H-2’, \(CHHNAP \)), 4.93 – 4.65 (m, 7H, \(CHHNAP, 2 \times CH_2Bn, H-1’, H-1) \), 4.58 – 4.49 (m, 2H, N\(CH_2Bn \)), 4.46 – 4.39 (m, 1H, H-6a), 4.25 (dd, \(J = 14.6, 10.5 \) Hz, 2H, H-6b, H-5’), 4.08 (dt, \(J = 15.6, 8.4 \) Hz, 3H, H-4’, \(CH_2 \) Piv\(OAc \)), 4.02 – 3.87 (m, 3H,
N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl-O-(methyl-2-O-(4-acetoxy-2,2-dimethylbunoate)-3-O-benzyl-4-O-(2-methyl-naphthyl)-β-D-glucopyranosyluronate)-(1→4)-O-2-deoxy-2-azido-3-O-benzyl-α-D-glucopyranoside (32). Hydrazine acetate (10 mg, 0.10 mmol) was added to a solution of compound 31 (90 mg, 0.07 mmol) in a mixture of ethanol and toluene (2/1, v/v, 2 mL) and the reaction mixture was stirred at ambient temperature for 2 h. TLC analysis (hexanes/EtOAc, 80/20, v/v) showed complete consumption of the starting material. The reaction mixture was diluted with DCM (10 mL), washed with water and brine. The organic layer was dried (MgSO₄), filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of toluene/EtOAc (4/1→3/1, v/v) to give compound 32 as oil (70 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 7.82 – 7.73 (m, 3H, CH Aromatic), 7.61 (s, 1H, CH Aromatic), 7.49 – 7.40 (m, 4H, CH Aromatic), 7.40 – 7.20 (m, 18H, CH Aromatic), 7.17 (d, J = 7.2 Hz, 1H, CH Aromatic), 5.23 – 5.09 (m, 4H, CH₂ Cbz, H-2’, CHHNAP), 4.88 – 4.62 (m, 7H, CHHNAP, CHHBN, CH/Bn, H-1’, H-1), 4.50 (d, J = 11.8 Hz, 2H, NCH₂Bn), 4.15 – 3.98 (m, 5H, CH₂ PivOAc, H-6a, H-5’, H-4’), 3.97 – 3.87 (m, 2H, H-4, H-3’), 3.85 – 3.70 (m, 2H, H-6b, H-3), 3.66 – 3.55 (m, 3H, OCHH Linker, H-5), 3.53 (s, 3H, COOCH₃), 3.43 – 3.13 (m, 4H, OCHH Linker, NCH₂Bn, H-2), 2.00 (d, J = 5.5 Hz, 3H, CH₃ PivOAc), 1.86 (t, J = 7.4 Hz, 2H, CH₂ PivOAc), 1.70 – 1.45 (m, 4H, 2x CH₂ Linker), 1.41 – 1.23 (m, 2H, CH₂ Linker). ¹³C NMR (126 MHz, CDCl₃) δ 128.2, 128.1, 127.9, 127.7, 127.5, 127.2, 126.7, 125.9, 125.8, 100.4, 97.8, 81.8, 79.8, 77.0, 76.6, 75.1, 74.8, 74.7, 74.6, 73.2, 70.9, 68.2,
N-(Benzyl)-benzyloxy carbonyl-5-aminopentyl-\(O\)-(methyl-2-\(O\)-(4-acetoxy-2,2-dimethyl bunoate)-3-\(O\)-benzyl-4-\(O\)-(2-methyl-napthyl)-\(\beta\)-D-glucopyranosyluronate)-(1→4)-\(O\)-2-deoxy-2-azido-3-\(O\)-benzyl-6-\(O\)-sulfonato-\(\beta\)-D-glucopyranoside sodium salt (33). Sulfur trioxide pyridine complex (68 mg, 0.06 mmol) was added to a solution of the compound 32 (55 mg 0.35 mmol,) in DMF (6 mL) and the resulting mixture was stirred for 2 h at ambient temperature. TLC analysis (CHCl\(_3\)/CH\(_3\)OH, 9/1, v/v) indicated complete consumption of starting material. NaHCO\(_3\) (58 mg, 0.69 mmol) was added to the reaction mixture and it was continued to stir for additional 10 min. The crude mixture was filtered through a syringe filter and concentrated under reduced pressure (bath temperature 20 °C). The residue was passed through a column of iatrobeads using a gradient of CHCl\(_3\)/CH\(_3\)OH (97/3 → 90/10, v/v). The fractions containing product were concentrated under reduced pressure (bath temperature 20 °C), and the residue was immediately passed through a column of Biorad resin (Na\(^+\), 0.6 × 5 cm, CH\(_3\)OH), providing compound 33 as an amorphous powder (57 mg, 77%). \(^1\)H NMR (500 MHz, CD\(_3\)OD) \(\delta\) 7.85 - 7.80 (m, 1H, CH Aromatic), 7.78 (dd, \(J\) = 7.2, 3.5 Hz, 2H, CH Aromatic), 7.67 (d, \(J\) = 1.5 Hz, 1H, CH Aromatic), 7.50 - 7.19 (m, 24H, CH Aromatic), 5.25 – 5.03 (m, 5H, H-1', H-2', CH\(_2\) Cbz, CHHNAP), 4.87 (s, 4H, 4 x CH\(_2\)Bn, H-1), 4.64 – 4.57 (m, 1H, CHHNAP), 4.54 (d, \(J\) = 4.2 Hz, 2H, NCH\(_2\)Bn), 4.40 (d, \(J\) = 10.8 Hz, 1H, H-6a), 4.28 (d, \(J\) = 9.2 Hz, 1H, H-5'), 4.17 (s, 1H, H-6b), 4.12 – 3.96 (m, 5H, CH\(_2\) PivoAc, H-4, H-3', H-4', OCH\(_2\) Linker), 3.88 – 3.65 (m, 2H, H-3, H-5), 3.58 (s, 3H, CO\(_2\)CH\(_3\)), 3.40 -3.20 (m, 4H, H-2, OCH\(_2\) Linker, NCH\(_2\) Linker), 1.95 (s, 3H, CH\(_3\) PivoAc), 1.88 (t, \(J\) = 6.7 Hz, 2H, CH\(_2\) PivoAc), 1.60 – 1.50 (m, 4H, 2 x CH\(_2\) Linker), 1.43 – 1.27 (m, 2H, CH\(_2\) Linker). \(^{13}\)C NMR (126 MHz, CD\(_3\)OD) \(\delta\) 128.1, 127.6, 127.5, 127.3, 125.8, 98.7, 97.6, 80.9, 77.2, 75.9, 74.7, 74.6, 74.4, 74.3, 74.0, 69.6, 66.4, 64.9, 64.6, 61.7, 61.0, 51.3, 49.7, 47.7, 46.0, 43.5, 38.5, 28.3, 23.6, 18.9. ESI MS: m/z: calcd for C\(_{66}\)H\(_{76}\)N\(_4\)O\(_{16}\)S: 1259.4746; found: 1259.4740 [M-Na]+.
α-D-glucopyranoside disodium salt (34). A premixed solution of aqueous H₂O₂ (50%, 110 μL, 3.90 mmol) and 1 M LiOH (1.90 mL, 1.90 mmol) were added to a solution of compound 33 (50 mg, 0.04 mmol) in THF (4 mL). The resulting mixture was stirred at ambient temperature for 8 h. An aqueous solution of NaOH (0.50 mL, 4 N) was added to the mixture (pH 14). The reaction mixture was stirred for additional 18 h at ambient temperature. The mixture was then treated with AcOH (pH 8-8.5), and concentrated under reduced pressure (bath temperature 20 °C). The residue was vortexed with water and purified by C18 column using a gradient of H₂O/CH₃OH (9/1 → 7/3, v/v). The appropriate fractions were concentrated under reduced pressure (bath temperature 20 °C), and the residue was passed through a column of Biorad resin (Na⁺, 0.6 × 5 cm, CH₃OH) to obtain compound 34 as powder (37 mg, 84%). ¹H NMR (500 MHz, CD₃OD) δ 7.83 – 7.79 (m, 1H, CH Aromatic), 7.79 – 7.72 (m, 3H, CH Aromatic), 7.54 – 7.50 (m, 2H, CH Aromatic), 7.50 – 7.38 (m, 5H, CH Aromatic), 7.37 – 7.18 (m, 15H, CH Aromatic), 5.27 – 5.13 (m, 3H, CH₂ Cbz, CHHNAP), 4.97 (dd, J = 17.3, 11.1 Hz, 2H, 2 x CHHBn), 4.90-4.80 (m, 4H, 2 x CHHBn, H-1, H-1’), 4.69 (d, J = 11.3 Hz, 1H, CHHNAP), 4.60 – 4.50 (m, 3H, NCH₂Ph, H-6a), 4.35 (d, J = 11.0 Hz, 1H, H-6b), 3.99 – 3.86 (m, 5H, H-4’, H-5’, H-3, H-4, H-5), 3.70 -3.63 (m, 2H, OCH/H Linker, H-3’), 3.55 (dd, J = 9.2, 7.8 Hz, 1H, H-2’), 3.48 – 3.38 (m, 1H, OCH/H Linker), 3.36 -3.00 (m, 3H, CH₂N Linker, H-2), 1.65-1.50 (m, 4H, 2 x CH₂ Linker), 1.46 – 1.28 (m, 2H, CH₂ Linker). ¹³C NMR (126 MHz, CD₃OD) δ 128.6, 128.5, 127.9, 127.6, 127.3, 127.2, 127.1, 127.0, 126.1, 125.9,125.3, 103.6, 97.5, 84.5, 80.7, 79.5, 77.9, 77.8, 74.9, 74.5, 74.4, 74.1, 69.7, 69.6, 67.4, 67.0, 65.9, 62.6, 51.5, 50.0, 48.0, 46.4, 28.2, 27.9, 27.3, 22.9. ESI MS: m/z: calcd for C₆₅H₇₃N₄O₁₅S: 1245.4590; found: 1245.4585 [M-2NaH⁺].

N-(Benzyl)-benzyloxy carbonyl-5-aminopentyl-O-3-O-benzyl-4-O-(2-methyl-napthal)-β-D-glucopyranosyluronate)-(1→4)-O-2-deoxy-2-acetamido-3-O-benzyl-6-O-sulfonato-α-D-glucopyranoside disodium salt (35). Aqueous NaOH (0.1 M, 367 μL, 0.04 mmol) and PMe₃ in THF (1 M, 92 μL, 0.09 mmol) were added to a stirred solution of compound 34 (20 mg, 0.02 mmol) in THF (2 mL) at ambient temperature. After stirring for 3 h, TLC analysis (EtOAc/Pyr./AcOH/H₂O, 8/5/3/1) showed complete consumption of the starting material. The mixture was then treated with AcOH (pH 8-8.5), and was concentrated under reduced pressure (bath temperature 20 °C). The residue was vortexed with water and purified by C18 column
using a gradient of H₂O/CH₃OH (9/1 → 5/5, v/v). The appropriate fractions were concentrated under reduced pressure (bath temperature 20 °C), and the residue was passed through a column of Biorad resin (Na⁺, 0.6 × 5 cm, CH₃OH) to give an intermediate amine as a powder (14 mg). Acetic anhydride (15 µL, 0.13 mmol) was added to a solution of the amine (14 mg, 0.01 mmol) in CH₃OH (1 mL) and Et₃N (27 µL, 0.26 mmol) at 0 °C. After stirring for 1 h at ambient temperature, the mixture was co-evaporated with toluene under reduced pressure (bath temperature 20 °C). The residue was purified by a C18 column using a gradient of H₂O/CH₃OH (9/1 → 7/3, v/v). The appropriate fractions were concentrated under reduced pressure (bath temperature 20 °C), and the residue was passed through a column of Biorad resin (Na⁺, 0.6 × 5 cm, CH₃OH) to give compound 35 as oil (12 mg, 83%). ¹H NMR (500 MHz, CD₃OD) δ 7.89 – 7.12 (m, 26H, C₆H₄ Aromatic), 5.18 – 4.99 (m, 3H, CH₅NAP, CH₂Bn), 5.00 – 4.91 (dd, J = 36.4, 17.1 Hz, 1H, CH₂Bn), 4.99 – 4.72 (m, 2H, H-1, CHHNAP), 4.69 (d, J = 17.4 Hz, 1H, H-1ʹ), 4.61 (d, J = 11.2 Hz, 1H, CH₂Bn), 4.54 (s, 2H, CH₂Cbz), 4.51 – 4.41 (m, 1H, H-6a), 4.31 – 4.20 (m, 1H, H-6b), 4.08 (m, 1H, H-2), 3.92 – 3.66 (m, 5H, H-3, H-4, H-5, H-4ʹ, H-5ʹ), 3.66 – 3.54 (m, 2H, H-3ʹ, OCH₂H Linker), 3.50 (t, J = 6.0 Hz, 1H, H-2ʹ), 3.38 – 3.29 (m, 3H, OCH₂H Linker, CH₂N Linker,), 1.96 – 1.67 (m, 3H, COCH₃), 1.67 – 1.14 (m, 4H, 2 x CH₂ Linker), 1.41 – 0.93 (m, 2H, CH₂ Linker). ¹³C NMR (126 MHz, CD₃OD) δ 127.9, 127.2, 127.2, 126.8, 125.5, 103.5, 97.1, 84.6, 80.5, 77.8, 77.2, 75.0, 74.8, 74.7, 74.6, 74.3, 74.2, 74.2, 74.0, 70.1, 69.6, 68.3, 67.5, 67.1, 66.3, 66.2, 52.8, 50.1, 48.5, 48.0, 46.5, 29.4, 28.0, 23.0, 21.2. ESI MS: m/z: calcd for C₆₇H₇₇N₂O₂₀S: 1261.4790; found: 1261.4783 [M-2Na+H]⁺.

5-aminopentyl-Ο-β-D-glucopyranosyluronate-(1→4)-Ο-2-deoxy-2-acetamido-6-Ο-sulfonato-α-D-glucopyranoside disodium salt (36): A suspension of Pd/C (10%, 15 mg) was added to a solution of compound 35 (10.0 mg, 0.01 mmol) in a mixture of CH₃OH/H₂O/CH₃CO₂H (1/1/0.01, v/v/v, 3 mL). The reaction mixture was stirred for 12 h under an atmosphere of hydrogen and then filtered through a PTFE syringe filter (0.2 mm, 13 mm), washed with a mixture of CH₃OH and H₂O (1/1, v/v, 2 mL), and the solvents were concentrated under reduced pressure. The residue was dissolved in a mixture of distilled water/CH₃CO₂H (1/0.01, v/v, 3 mL), and Pd(OH)₂ on carbon (Degussa type, 20%, 15 mg) was added. The mixture was stirred for 12 h under an atmosphere of hydrogen and then filtered through a PTFE
syringe filter. The residue was washed with H$_2$O (2 mL) and after freeze drying the filtrate, the residue was dissolved in H$_2$O and passed through a column of BioRad resin (Na$^+$, 0.6 × 2.5 cm, H$_2$O). The appropriate fractions were freeze dried to give compound 36 as white solid (3.9 mg, 86%). 1H NMR (500 MHz, D$_2$O) δ 4.79 (d, $J = 3.4$ Hz, 1H, H-1), 4.48 (d, $J = 6.2$ Hz, 1H, H-1'), 4.35 (dd, $J = 11.2$, 2.0 Hz, 1H, H-6a), 4.17 (m, 1H, H-6b), 4.03 – 3.92 (m, 1H, H-5), 3.85 – 3.78 (m, 2H, H-2, H-3), 3.71 – 3.52 (m, 3H, H-4, H-4', OCH$_2$H Linker), 3.48 – 3.35 (m, 3H, H-3', H-5', OCH$_2$H Linker), 3.24 (t, $J = 3.4$ Hz, 1H, H-2'), 2.98 – 2.86 (t, $J = 7.7$ Hz, 2H, CH$_2$N Linker), 1.97 – 1.90 (s, 3H, COCH$_3$), 1.68 – 1.47 (m, 4H, 2 x CH$_2$ Linker), 1.42 – 1.30 (m, 2H, CH$_2$ Linker). 13C NMR (126 MHz, D$_2$O) δ 102.3, 96.4, 79.5, 75.7, 75.3, 73.0, 71.7, 69.4, 68.6, 68.0, 66.8, 53.2, 39.4, 28.0, 21.9, 26.2, 22.3. ESI MS: m/z: calcd for C$_{19}$H$_{33}$N$_2$O$_{15}$S: 561.1607; found: 561.1600 [M-2Na+H]$^+$.

Acknowledgements

This research was supported by the National Institute of General Medicine (NIGMS) of the National Institutes of Health (NIH) (Grant No. 2R01GM065248).

References

Figure 1. Orthogonal protecting groups for disaccharide building blocks.

Scheme 1. Chemical synthesis of differently protected glucuronyl donors. Reagents and conditions: a) Ac₂O, pyridine (87%); b) levulinic acid, DCC, DMAP, CH₂Cl₂ (90%); c) PivOAcCl, DMAP, pyridine (86%); d) CF₃C(O)OH, CH₂Cl₂ (5, 77%, 6, 81%), or EtSH, TsOH, DCM (7, 77%); e) TEMPO, BIAB, CH₂Cl₂, H₂O then CH₂N₂, Et₂O (8, 77%, 9, 68%, 10, 88%); f) FmocCl, DMAP, pyridine, (11, 94%, 12, 87%, 13, 76%); g) HF.pyridine, THF then Cl₃CCN, NaH, DCM.
Scheme 2. Chemical glycosylations using uronyl donors.

Scheme 3. Improved glucuronyl donors.
Scheme 4. Deprotection and sulfation. Reagents and conditions: a) TfOH, DCM, -30°C (64%); b) H₂NNH₂ AcOH, toluene/EtOH (65%); c) Pyr.SO₃, DMF (77%); d) LiOH, H₂O₂, THF then NaOH, MeOH (84%); e) PMe₃, THF, NaOH then Ac₂O; MeOH (83%); f) Pd/C, H₂ then Pd(OH)₂ (86%).

Scheme 5. Reagents and conditions: a) NIS, AgOTf, DCM, 0°C, then Et₃N in DCM (70%, two-steps); b) NIS, AgOTf, DCM, 0°C, (85%,); c) EtSH, TsOH, DCM, then TEMPO, BIAB, CH₂Cl₂, H₂O then CH₂N₂, Et₂O (50%, three-steps).
Entry for the table of contents:

A streamlined approach has been developed for the preparation of modular disaccharide building blocks for the assembly of libraries of HS oligosaccharides that avoids post-glycosylation oxidation.