This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Hierarchical structures of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets were prepared by combining the versatile sol-gel process with a hydrothermal reaction. Graphene@Fe$_3$O$_4$ composites were first synthesized by the reduction reaction between FeCl$_3$ and diethylene glycol (DEG) in the presence of GO. Then, graphene@Fe$_3$O$_4$ was coated with SiO$_2$ to obtain graphene@Fe$_3$O$_4$@SiO$_2$. Finally, NiO nanosheets were grown perpendicularly on the surface of graphene@Fe$_3$O$_4$@SiO$_2$ and graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets hierarchical structures were formed. Moreover, the microwave absorption properties of both graphene@Fe$_3$O$_4$ and graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets were investigated between 2-18 GHz microwave frequency bands. The electromagnetic data demonstrates that graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets hierarchical structures exhibit significantly enhanced microwave absorption properties compared with graphene@Fe$_3$O$_4$, which probably originate from the unique hierarchical structure with a large surface area and high porosity.

1. Introduction

Electromagnetic (EM) interference problems have emerged due to the increasing usage of electronic devices and communication facilities in industry, commerce and military affairs [1]. A good way to solve this problem is to use microwave absorption materials to attenuate those
unwanted electromagnetic energies. The idea EM absorbers are required to have wide absorption
frequency range, strong absorption properties, low density, good thermal stability, and antioxidant
capability [2]. To date, EM absorption properties of various nanostructures have been investigated
in order to reach the ideal targets [3-10]. Among these nanostructures, carbon-based composites
exhibit good absorption properties.

Graphene, a new class of two-dimensional carbon nanostructure, has attracted much attention
for its unique physical, chemical, and mechanical properties [11]. Graphene possesses not only a
stable structure but also high specific surface area and excellent electronic conductivity. These
properties make graphene very promising as a lightweight EM absorber [12]. However, the high
carrier mobility is harmful to its EM absorption in terms of impedance match mechanism. One of
the effective ways to solve the problem is to couple graphene with magnetic constituents [13-17].

Qi and co-works fabricated graphene-Fe$_3$O$_4$ nanohybrids, the maximum reflection loss of the
nanohybrids was up to -40.36 dB with a thickness of 5.0 mm at 7.04 GHz, and the absorption
bandwidth with reflection loss less than -10 dB was about 2 GHz [13]. He et.al prepared laminated
magnetic graphene, and the maximum reflection loss was -26.4 dB with a thickness of 4.0 mm at
5.3 GHz, and the absorption bandwidth with reflection loss less than -10 dB was 2 GHz [14]. Yang
et.al synthesized bowl-like Fe$_3$O$_4$ hollow spheres/reduced graphene oxide nanocomposites, the
as-synthesized nanocomposites with a coating layer thickness of 2.0 mm exhibited a maximum
absorption of -24 dB at 12.9 GHz as well as a bandwidth of 4.9 GHz (from frequency of 10.8-15.7
GHz) corresponding to reflection loss at -10 dB [15]. Ouyang et.al investigated the
electromagnetic absorption properties of graphene/Fe$_3$O$_4$@Fe/ZnO quaternary nanocomposites,
the results showed that the maximum R_L values were lower than -30 dB for the quaternary
nanocomposites with a thickness of 2.5-5 mm and the absorption bandwidth with R_L values less than -20 dB was up to 7.3 GHz (in the frequency range of 5.9-15.2 GHz) [16]. Chen et al. investigated the microwave absorption properties of mono-dispersed RGO-hematite nanocomposites, the results showed that the nanocomposites not only exhibited a larger reflection loss (-78 dB at 15.4 GHz), but also a wider absorption band (less than -10 dB from 11.3 to 18 GHz) [17]. It can be concluded from the above-mentioned research literatures that good EM absorption properties with lightweight and wide absorption frequency band can be realized by reasonable construction of graphene-based nanocomposites. However, these research articles are focusing mostly on the two-dimensional graphene-based nanocomposites, and only a few studies are looking at the graphene-based hierarchical structures. It is well-known that the absorption properties of a material are closely related to the structure of microwave absorber [18]. Recent advances show that excellent microwave absorption properties can be obtained from hierarchical nanostructures with complicated geometrical morphologies [19].

NiO is an important transition-metal oxide that has been extensively studied in the area of supercapacitors because of its large surface area [20]. The large surface area of absorber helps the enhancement of microwave absorption [19]. Herein, the hierarchical structures consisting of graphene, $\text{Fe}_3\text{O}_4@\text{SiO}_2$ and NiO nanosheet were fabricated via a multi-step route, and the microwave absorption properties were investigated. The results show that the hierarchical structure exhibits enhanced EM absorption in terms of both the maximum reflection loss value and the absorption bandwidth compared with two-dimensional nanocomposites of graphene@Fe_3O_4. The maximum reflection loss value can reach -51.5 dB at 14.6 GHz with a thickness of only 1.8 mm and the bandwidth corresponding to the reflection loss below -10 dB is 5.1 GHz (from 12.4 to
2. Experimental

All of the chemicals and reagents were purchased from Sinopharm Chemical Reagent Co., Ltd, China and used as received. Deionized water was used for all experiments.

2.1 Preparation of graphene@Fe₃O₄@SiO₂@NiO nanosheets hierarchical structures

Graphene Oxide (GO) was synthesized using natural graphite flakes according to the literature method [21]. The preparation of graphene@Fe₃O₄ was carried out by the reduction reaction between FeCl₃ and diethylene glycol (DEG) in the presence of GO [22]. graphene@Fe₃O₄@SiO₂@NiO nanosheets hierarchical structures were prepared according to the literature method [23]. Briefly, as-prepared graphene@Fe₃O₄ was dispersed in a mixture of ethanol (40 mL), water (10 mL) and ammonia (1 mL). Then, 0.2 mL of tetraethylorthosilicate (TEOS) was added dropwise, and the reaction was allowed to proceed for 10 h under stirring. The resulting graphene@Fe₃O₄@SiO₂ composites were washed four times with ethanol by magnetic decantation and dispersed in a blue-cap glass bottle containing 40 mL of DI water and ethanol by ultrasonication for 40 min, followed by addition of 2 g of urea under mild stirring. After 5 min, 6 mL of Ni(NO₃)₂ (0.1 M) were added dropwise, and the mixture was stirred for another 5 min before the glass bottle was heated at 105°C in an electric oven for 12 h. After cooling down naturally, the product was harvested by several rinse-centrifugation cycles and fully dried at 60°C, then the black precipitates were sintered at 400°C for 2 h under argon atmosphere to obtain the final composites of graphene@Fe₃O₄@SiO₂@NiO nanosheets.

2.2 Characterization

The obtained product was characterized by X-ray diffraction (XRD, PANalytical, Holland),
transmission electron microscopy (TEM, Philips Tecnai-12 transmission electron microscopy), X-Ray photoelectron spectroscopy (ESCALAB 250, Thermofisher Co), vibrating sample magnetometer (VSM). The electromagnetic parameters were analyzed using a HP8753D vector network analyzer. The measured samples were prepared by uniformly mixing 25 wt % of the sample with a paraffin matrix.

3. Results and discussion

Fig. 1 XRD patterns of GO, RGO (reduced graphene oxide), graphene@Fe₃O₄, graphene@Fe₃O₄@SiO₂ and graphene@Fe₃O₄@SiO₂@NiO nanosheets (A), room-temperature magnetization curves (B), typical N₂ adsorption–desorption isotherms (C) of graphene@Fe₃O₄ (curve a) and graphene@Fe₃O₄@SiO₂@NiO nanosheets (curve b). (RGO was obtained by thermal expansion reduction of GO at 400 °C for 2 h under argon atmosphere.)

The phase and structures of the synthesized samples were characterized by XRD. Fig. 1 (A) shows the XRD patterns of GO, RGO obtained by thermal expansion reduction of GO at 400 °C for 2 h under argon atmosphere, graphene@Fe₃O₄ and graphene@Fe₃O₄@SiO₂@NiO nanosheets.

For GO, the characteristic diffraction peak appears at around 2θ = 9.8° corresponding to the
interlayer spacing of 0.90 nm, which is due to the formation of the oxygen functionalities groups between the layers of GO. In the XRD pattern of RGO, the intense peak at 9.8° disappears and a broad band appears at 25.3° and its interlayer spacing is 0.34 nm. This shift in the d-spacing can be attributed to the successful reduction of GO and formation of graphitic structures. For graphene@Fe₃O₄, the detected diffraction peaks can be indexed in the cubic inverse spinel structure of Fe₃O₄ (JCPDS card, file No.19-0629), an additional small and broad diffraction peak around 23° corresponds to C(002) indicates the synthesis of graphene@Fe₃O₄ composites [22]. After reaction with TEOS, no characteristic peaks in relation to other materials can be detected in graphene@Fe₃O₄@SiO₂, indicating the SiO₂ is amorphous. As for the graphene@Fe₃O₄@SiO₂@NiO nanosheets, the XRD pattern shows new characteristic diffraction peaks, which can be assigned to the cubic NiO structure (JCPDS, No. 71-1179).

The field-dependent magnetization for graphene@Fe₃O₄ and graphene@Fe₃O₄@SiO₂@NiO nanosheets was measured by a vibrating sample magnetometer at room temperature. As shown in Fig.1 (B), both graphene@Fe₃O₄ and graphene@Fe₃O₄@SiO₂@NiO nanosheets exhibit superparamagnetic behavior at room temperature with no coercivity and remanence. The value of M_s (saturation magnetization) decreases from 33.07 emu/g for graphene@Fe₃O₄ to 18.87 emu/g for graphene@Fe₃O₄@SiO₂@NiO nanosheets. This decrease in magnetism is attributed mainly to the decrease in weight ratio of Fe₃O₄ in the nanohybrids. When a magnet is placed beside a bottle filled with graphene@Fe₃O₄ and graphene@Fe₃O₄@SiO₂@NiO nanosheets dispersed in ethanol, the two nanohybrids quickly move along the magnetic field and accumulate near the magnet within a few minutes, leaving the solution transparent (inset of Fig.1 (B)).

The N₂ adsorption–desorption isotherms were measured to gain information about the specific
surface area of the graphene@Fe₃O₄ and graphene@Fe₃O₄@SiO₂@NiO nanosheets (Fig. 1(C)). This isotherm profile can be categorized as type IV with a small hysteresis loop observed at a relative pressure of 0.02–1.0. As calculated by Brunauer-Emmett-Teller (BET) method, graphene@Fe₃O₄@SiO₂@NiO nanosheets hierarchical structures gives rise to a BET area of 257.4 m²g⁻¹ and a relatively high pore volume of 0.551 cm³g⁻¹, compared with 130.0 m²g⁻¹ and 0.093 cm³g⁻¹ for the graphene@Fe₃O₄.

Fig.2 XPS spectra of Cls of GO (A), survey scan (B), C1s spectrum (C), Fe 2p spectrum (D), Si 2p spectrum (E), Ni 2p spectrum (F).
Surface analysis of GO and the prepared graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets hierarchical nanostructures was carried out using XPS. Fig. 2 (A) shows XPS spectra ofCls spectrum of GO. It clearly displays a considerable degree of oxidation with four components that correspond to carbon atoms in different functional groups: C=C (284.6 eV) in the aromatic rings, C-O (285.4 eV) of epoxy, C=O (288.3 eV) and O-C=O (289.1 eV) groups. The wide scan XPS spectrum (Fig. 2 (B)) of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets hierarchical structures shows photoelectron lines at a binding energy of 104.0, 284.6, 530.3, 711.3 and 852.4 eV attributed to Si2p, C1s, O1s, Fe2p and Ni2p, respectively. Compared with GO (Fig. 2(C)), the oxygen content of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets decreases rapidly, and further suggest a remarkable reduction of GO. In Fig. 2 (D), the binding energy peaks at 710.6 and 723.9 eV are corresponding to Fe 2p$_{3/2}$ and Fe 2p$_{1/2}$, suggesting the existence of Fe$_3$O$_4$[24]. For Fig. 2(E), the peak at 104 ev confirms that the SiO$_2$ exists in the composites of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets. In Fig. 2 (F), the Ni 2p$_{1/2}$ (872.1 eV) and Ni 2p$_{3/2}$ (854.2 eV) peaks are assigned to the Ni(II) ions in NiO. The peak at 855.0 eV was ambiguous, and may be attributed to the Ni$^{2+}$ species on the surface [25]. The energy difference between Ni 2p$_{1/2}$ and 2p$_{3/2}$ peaks is ~17.9 eV, indicating the well-defined symmetry of Ni(II) ion in oxide form [26].
Fig. 3 TEM images of graphene@Fe$_3$O$_4$ (A), graphene@Fe$_3$O$_4$@SiO$_2$ (B) and graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites (C and D), SEM images and corresponding EDX element Ni, Fe, Si and O maps of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets. (Insets: The HRTEM images (A, B and D) and EDX pattern (C))
Fig. 3 shows TEM image of graphene@Fe$_3$O$_4$ (A), graphene@Fe$_3$O$_4$@SiO$_2$ (B), graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites (C, D), SEM and EDS images of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets and EDX element maps of Ni, Fe, Si and O. As shown in Fig. 3 (A), the surfaces of graphene are densely covered by narrowly distributed Fe$_3$O$_4$ nanoparticles with an average size of 5 nm, and no big conglomeration of Fe$_3$O$_4$ nanoparticles or large vacancy on graphene is observed. The lattice fringe spacing (0.25 nm) displayed in HRTEM image (the inset in Fig. 3 (A)) is well consistent with the lattice spacing of (311) planes of cubic magnetite. Fig. 3 (B) shows the TEM image of graphene@Fe$_3$O$_4$@SiO$_2$, it is clear that Fe$_3$O$_4$@SiO$_2$ core-shell microstructures are formed on the surfaces of graphene, and SiO$_2$ layer is mainly coated on the surface of Fe$_3$O$_4$ nanoparticles. The HRTEM image (the inset in Fig. 3 (B)) reveals that the average diameter of the Fe$_3$O$_4$@SiO$_2$ is around 10 nm and the thickness of SiO$_2$ is about 2.5 nm. Fig. 3 (C) displays a typical TEM image of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites. It is obvious that large two-dimensional structures can be observed under TEM microscope, and the corresponding energy-dispersive X-ray (EDX) image confirms the presence of Ni elements in the nanocomposites. The dark line in magnified TEM image (Fig. 3 (D)) demarcates the edge of NiO nanosheets approximately oriented perpendicular to graphene@Fe$_3$O$_4$@SiO$_2$, and the corresponding HRTEM image (the inset in Fig. 3 (D)) reveals lattice fringes with a distance of 0.24 nm corresponding to (111) planes of cubic crystalline NiO. As shown in Fig. 3 (E), SEM images of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets are consistent with the above TEM analysis and the NiO nanosheets are mostly grown upright with a random orientation on top of the graphene@Fe$_3$O$_4$@SiO$_2$ support.
Moreover, EDX (energy dispersive X-ray) mapping results (elements distribution of Ni, Fe, Si and O) further confirm that NiO nanosheets are grown on the surface of graphene@Fe₃O₄@SiO₂ and the contents of C, O, Si, Fe and Ni are 67.3%, 27.92%, 0.83%, 0.02% and 3.94%, respectively.

Fig. 4 Complex permittivity (A), permeability (B), dielectric loss tangent and magnetic loss tangent (C) from 2 to 18 GHz for graphene@Fe₃O₄ and graphene@Fe₃O₄@SiO₂@NiO nanosheets composites with 25 wt.%. The microwave absorption property of materials is generally determined by the complex relative permittivity and permeability as well as the tangent loss of both dielectric tangent loss (\(\tan\delta_\varepsilon = \varepsilon''/\varepsilon'\)) and magnetic tangent loss (\(\tan\delta_\mu = \mu''/\mu'\)). Fig. 4 (A) presents the real part (\(\varepsilon'\)) and imaginary (\(\varepsilon''\)) of the complex permittivity of graphene@Fe₃O₄, graphene@Fe₃O₄@SiO₂ and
graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites. For the graphene@Fe$_3$O$_4$ composites, the ε' value is in the range of 7.1-6.4 and ε'' is in the range of 1.1-1.9. When the graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets hierarchical structures are fabricated, the ε' value increases to a range of 15.6-8.3 and ε'' value floats in the range of 9.8-1.2. It can be seen that both ε' and ε'' values of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composite are higher than those of graphene@Fe$_3$O$_4$. The real part (ε') is mainly associated with the amount of polarization occurring in the material, and the imaginary part (ε'') is related to the dissipation of energy. The dielectric performance of the material depends on ionic, electronic, orientational (arising due to the presence of bound charges) and space charge polarization (due to the heterogeneity in the system). In a heterogeneous system, the accumulation of virtual charges at the interface of two media having different dielectric constants leads to interfacial polarization, which is known as Maxwell-Wagner polarization [27]. Here, the higher ε' for graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets is mainly arising from the introduction of NiO since it exhibits an intrinsic property of NiO (the static dielectric constant of bulk NiO is 10.31 or 11.75.), and ε'' for graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets may be ascribe to the enhanced polarization induced by the multi-interfaces and triple junctions (graphene@Fe$_3$O$_4$, Fe$_3$O$_4$@SiO$_2$, SiO$_2$@NiO nanosheets) as well as associated loss mechanism.

Fig. 4 (B) shows the real part (μ') and imaginary part (μ'') of the complex permeability of graphene@Fe$_3$O$_4$ and graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites. Compared with graphene@Fe$_3$O$_4$, the μ' value of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets is lower in the range of 2-11 GHz and exhibits low difference in range of 11-18 GHz, while the μ'' is higher.
through the whole frequency range. Higher values of μ'' for graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites can be attributed to the magnetic losses in NiO nanosheets.

Fig. 4(C) shows the dielectric tangents $\tan\delta_\varepsilon$ loss and magnetic tangent loss of $\tan\delta_\mu$ of graphene@Fe$_3$O$_4$ and graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites. It is clear that graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites possess a far higher dielectric tangent loss than graphene@Fe$_3$O$_4$. The enhanced dielectric loss could stem from the enhanced interfacial polarization relaxation in graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites. For the magnetic tangent loss, the value of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets is slightly greater than that of graphene@Fe$_3$O$_4$ composites. It indicates that graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites may possess better microwave absorption properties. In addition, it is worth noting that the dielectric tangent loss of the two composites is greater than the magnetic tangent loss, suggesting that the dielectric loss makes a major contribution to the electromagnetic loss.
Fig. 5 The calculated reflection losses for graphene@Fe$_3$O$_4$ (A), graphene@Fe$_3$O$_4$@SiO$_2$ (B) and graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets (C) paraffin wax composites with different thicknesses in the frequency range of 2-18 GHz.

To further study the microwave absorption properties, the reflection losses (R_L) of the NiO@SiO$_2$@graphene and SiO$_2$@graphene composites can be evaluated by

$$R_L (\text{dB}) = 20 \log \left| \frac{Z_{in} - 1}{Z_{in} + 1} \right|$$

(1)

While the normalized input impedance (Z_{in}) was calculated by

$$Z_{in} = \sqrt{\frac{\mu_r}{\varepsilon_r}} \tanh \left(\frac{2\pi fd}{c} \sqrt{\mu_r \varepsilon_r} \right)$$

(2)

where f is the microwave frequency, d is the thickness of the absorb layer, c is the velocity of electromagnetic wave in vacuum, and ε_r and μ_r are the complex relative permittivity and permeability, respectively. The calculated reflection loss (R_L) curves of the graphene@Fe$_3$O$_4$ and graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites with different thickness are shown in Figure 5. In the investigated region, graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets composites exhibit significantly enhanced microwave absorption compared with graphene@Fe$_3$O$_4$. As shown in Fig.5 (A), graphene@Fe$_3$O$_4$ composites exhibit the maximum R_L of -11.7 dB at the optimal sample thickness of 2.0 mm and the R_L values under -10 dB absorption frequency range from 15.4 to 16.5 GHz. After coating SiO$_2$ on Fe$_3$O$_4$ surfaces, the maximum R_L increases to -22.1 dB and the R_L
values under -10 dB is 2.2 GHz (Fig. 5 (B)). When NiO nanosheets are fabricated on the surfaces of graphene@Fe₃O₄@SiO₂ and form the hierarchical structures, the maximum Rₐ value increases to -51.5 dB at 14.6 GHz with a thickness of only 1.8 mm and a bandwidth corresponding to the reflection loss below -10 dB is 5.1 GHz (from 12.4 to 17.5 GHz) (Fig. 5(B)). It is clear that graphene@Fe₃O₄@SiO₂@NiO nanosheets composites display enhanced microwave absorption properties in terms of both the maximum Rₐ values and the absorption bandwidths. In addition, the effect of wt% incorporation of absorbers on the microwave absorption of measured samples was also investigated. Fig. 6 shows the theoretical Rₐ of graphene@Fe₃O₄@SiO₂@NiO nanosheets-wax composites with different loadings in the range of 2-18 GHz at a thickness of 1.8 mm. It is clearly that 25 wt% graphene@Fe₃O₄@SiO₂@NiO nanosheets-wax composites show the best microwave absorption performance, and the suitable loadings of absorbers is 25 wt%.

Fig. 6 the reflection loss of the graphene@Fe₃O₄@SiO₂@NiO nanosheets-wax composites with different loadings at a thickness of 1.8 mm.

The enhanced absorption properties of graphene@Fe₃O₄@SiO₂@NiO nanosheets hierarchical structures can be explained by the following facts. Firstly, the multi-interfaces and triple junctions (graphene@Fe₃O₄, Fe₃O₄@SiO₂, SiO₂@NiO) are advantageous for electromagnetic attenuation due to the existing interfacial polarization [28]. Secondly, the NiO nanosheets and the void space
existing between Fe$_3$O$_4$ and NiO nanosheets result in relatively large specific surfaces areas and high porosities, providing more active sites for reflection and scattering of electromagnetic wave [29]. Finally, the void space between Fe$_3$O$_4$ and NiO nanoflower can effectively interrupt the spread of electromagnetic wave and generate dissipation due to the existing impedance difference and enhanced the microwave absorption properties [30].

4. Conclusion

In summary, hierarchical structures of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets were prepared by combining the versatile sol-gel process with hydrothermal reaction. When evaluated as microwave absorbers, the hierarchical structures exhibit enhanced microwave absorption properties in terms of both the maximum reflection loss value and the absorption bandwidth. The maximum reflection loss of graphene@Fe$_3$O$_4$@SiO$_2$@NiO nanosheets is -51.5 dB at 14.6 GHz and the absorption bandwidth with a reflection loss below -10 dB ranges from 12.4 to 17.5 GHz with a thickness of only 1.8 mm. Thus, it is believed that such hierarchical structures will find their wide applications in microwave absorbing area.

References

Graphical Abstract

20x14mm (600 x 600 DPI)