Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/foodfunction

| 1  | A novel PPARgamma agonist monascin potentially applied in                           |
|----|-------------------------------------------------------------------------------------|
| 2  | diabetes prevention                                                                 |
| 3  |                                                                                     |
| 4  | Running title: Anti-diabetic effect of monascin                                     |
| 5  |                                                                                     |
| 6  | Wei-Hsuan Hsu <sup>†</sup> Tzu-Ming Pan*                                            |
| 7  |                                                                                     |
| 8  | Department of Biochemical Science & Technology, College of Life Science,            |
| 9  | National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan    |
| 10 |                                                                                     |
| 11 | <sup>†</sup> These authors contributed equally to this work                         |
| 12 |                                                                                     |
| 13 | *Corresponding author: Department of Biochemical Science & Technology,              |
| 14 | College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, |
| 15 | Taipei, 10617, Taiwan                                                               |
| 16 |                                                                                     |
| 17 | Tel: +886-2-33664519 ext 10, Fax: +886-2-33663838, E-mail: tmpan@ntu.edu.tw         |

# 18 Abstract

| 19 | Edible fungi of the Monascus species have been used as traditional Chinese               |
|----|------------------------------------------------------------------------------------------|
| 20 | medicine in eastern Asia for several centuries. Monascus-fermented products possess      |
| 21 | a number of functional secondary metabolites, including the anti-inflammatory            |
| 22 | pigments monascin and ankaflavin. Monascin has been shown to prevent or                  |
| 23 | ameliorate several conditions, including hypercholesterolemia, hyperlipidemia,           |
| 24 | diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia,       |
| 25 | attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory        |
| 26 | cytokines production. In our recent study, we have found that monascin is a              |
| 27 | peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. This               |
| 28 | PPARgamma agonist activity had been investigated and exerted benefits for inhibition     |
| 29 | of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas               |
| 30 | impairment caused advanced glycation endproducts (AGEs), promotion of insulin            |
| 31 | expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced        |
| 32 | hepatic stella cells (HSCs) activation in past several years. Moreover, our studies also |
| 33 | demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2    |
| 34 | (Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal-resulted in        |
| 35 | pancreas dysfunction. In this review, we focus on the chemo-preventive properties of     |
| 36 | monascin against metabolic syndrome through PPARgamma and Nrf2 pathways.                 |

- 37
- 38 Keywords: monascin, peroxisome proliferator-activated receptor-gamma
  39 (PPARgamma) agonist, methylglyoxal (MG), advanced glycation endproducts
  40 (AGEs), nuclear factor-erythroid 2-related factor 2 (Nrf2)
  41

# 42 Contents

- 43 1. Introduction
- 44 2. Anti-inflammation and antioxidation of monascin
- 45 3. Anti-diabetic effect of monascin
- 46 4. Conclusions

# Food & Function Accepted Manuscript

| 47 | 1. | Intr | odu | ctio | n |
|----|----|------|-----|------|---|
|----|----|------|-----|------|---|

| 48         | Monascus was classified and named in 1884 by the French scientist van                                       |
|------------|-------------------------------------------------------------------------------------------------------------|
| 49         | Tieghem. <sup>1</sup> The genus <i>Monascus</i> belongs to the family Monascaceae, order Eurotiales,        |
| 50         | class Ascomycetes, phylum Ascomycota, and kingdom Fungi. Thus far, 58 Monascus                              |
| 51         | strains have been deposited in the American Type Culture Collection; however, most                          |
| 52         | strains belong to only 3 species: Monascus pilosus, Monascus purpureus, and                                 |
| 53         | Monascus ruber. <sup>2</sup> Monascus-fermented products, especially those produced by                      |
| 54         | solid-state rice fermentation, have been used as food colorants and dietary material for                    |
| 55         | more than 1,000 years. Monascus-fermented rice, also known as red mold rice, is a                           |
| 56         | common foodstuff and traditional health remedy in Asian countries. Red mold rice,                           |
| 57         | largely produced by M. purpureus contains various chemical components, some of                              |
| 58         | which have been purified and identified, including monascolins, <sup>3,4</sup> $\gamma$ -aminobutyric       |
| 59         | acid, <sup>5</sup> pigments such as monascin and ankaflavin, <sup>6</sup> and antioxidant such as dimerumic |
| 60         | acid. <sup>7</sup> It was reported that monascin is the major constituent of the azaphilonoid               |
| 61         | compound. The structure of monascin is shown in Fig. 1a, and which has been                                 |
| 62         | recently reported to be a PPARgamma agonist in our study (Fig. 1b). <sup>8</sup> It is suggests             |
| 63         | that monascin plays a role for PPARgamma activation.                                                        |
| <b>C A</b> | Unmanalyzamic is appointed with matein elycoption, advanced elycoption and                                  |

Hyperglycemia is associated with protein glycation; advanced glycation endproducts (AGEs) are generated by the nonenzymatic interaction between

carbohydrates and proteins. AGEs have properties to generate free radicals and

66

| 67 | undergo autoxidation to generate other reactive intermediates, thereby resulting in the         |
|----|-------------------------------------------------------------------------------------------------|
| 68 | development of diabetes.9 Methylglyoxal (MG) is a highly reactive dicarbonyl                    |
| 69 | metabolite produced during glucose metabolism <sup>10</sup> and is a major precursor of AGEs    |
| 70 | involved in the pathogenesis of diabetes and inflammation. Studies suggest that AGEs            |
| 71 | and MG can generate large amounts of proinflammatory cytokines through receptor                 |
| 72 | for AGEs (RAGE) activation, and these results are related to the modulation of                  |
| 73 | inflammatory molecules through oxidative stress. <sup>10</sup>                                  |
| 74 | PPARgamma ligands are reported to activate the phosphatidylinositol                             |
| 75 | 3-kinase/Akt pathway, which can elevate insulin sensitivity to downregulate blood               |
| 76 | glucose. <sup>11</sup> Moreover, PPARgamma ligands have been reported to exert                  |
| 77 | anti-inflammatory activity by inhibiting inflammatory gene expression while                     |
| 78 | PPARgamma agonists bind to PPARs. <sup>12</sup> Many phytochemicals, including auraptene,       |
| 79 | resveratrol, 6-shogaol, and isoprenoid, are considered to function as PPARgamma                 |
| 80 | agonists and demonstrate anti-inflammatory activity by interfering with nuclear                 |
| 81 | factor-kappa B (NFKB) signaling. <sup>13</sup> Several flavonoids, such as rutin and quercetin, |
| 82 | elevate PPARgamma mRNA expression, which attenuates inflammation and insulin                    |
| 83 | resistance. <sup>14,15</sup> The transcriptional activity of PPARgamma is modulated through     |
| 84 | phosphorylation by kinases such as c-Jun N-terminal kinases (JNK). PPARgamma                    |

| 85 | loses its transcriptional activity by JNK phosphorylation at serine 82, and is     |
|----|------------------------------------------------------------------------------------|
| 86 | subsequently degraded by the ubiquitin pathway. Treating diabetes with PPAR gamma  |
| 87 | ligands (agonists), such as pioglitazone, can prevent PPARgamma phosphorylation by |
| 88 | altering its structure. <sup>16</sup>                                              |

PPARgamma is expressed in islet beta cells<sup>17</sup> and is important for a variety of 89 pancreatic functions, including beta cell survival,<sup>18</sup> pancreatic and duodenal 90 homeobox-1 (PDX-1) and glucokinase (GCK) regulation,<sup>19</sup> and glucose-stimulated 91 insulin secretion.<sup>20</sup> In addition, PPARgamma is known to affect pancreatic beta cell 92 function and insulin production.<sup>21</sup> Studies have reported that PPARgamma binds to 93 the PDX-1 promoter to upregulate PDX-1 expression and insulin production.<sup>19</sup> A 94 95 recent acute study suggested that AGE injection can initiate beta cell dysfunction and demonstrated that dietary restriction of AGEs significantly improves insulin 96 sensitivity.<sup>22</sup> AGEs also decrease insulin synthesis in pancreatic beta cells by 97 repressing PDX-1 protein expression and inhibiting glucose-stimulated insulin 98 secretion.<sup>23</sup> PDX-1 plays a significant role in both pancreatic development and 99 100 maintenance of beta cell function, but the inhibition of beta cell function caused by 101 AGEs was improved by pioglitazone (PPARgamma agonist) activating PPARgamma.<sup>24</sup> Several lines of evidence indicate that PDX-1 binds to insulin and 102 103 GCK and that GCK catalyzes the first step of glycolysis to regulate glucose

| 104 | responsiveness for insulin release. <sup>25</sup>                                            |
|-----|----------------------------------------------------------------------------------------------|
| 105 | These findings indicated that PPARgamma plays an important role for diabetes                 |
| 106 | improvement. However, we had found that monascin is a PPARgamma agonist to                   |
| 107 | up-regulate insulin sensitivity and inhibited hyperglycemia in AGEs- or MG-treated           |
| 108 | animals in our recent studies.                                                               |
| 109 |                                                                                              |
| 110 | 2. Anti-inflammation and antioxidation of monascin                                           |
| 111 | High carbohydrate diets result in hyperglycemia and insulin resistance. In                   |
| 112 | diabetic patients, there is a positive correlation between high methylglyoxal (MG)           |
| 113 | concentration in the blood and hyperglycemia. Recent studies have shown that MG              |
| 114 | administration results in inflammation. <sup>26</sup>                                        |
| 115 | Several literatures have reported the modulation of inflammatory cytokines                   |
| 116 | through oxidative stress. <sup>27,28</sup> Oxidative stress is increased during diabetes and |
| 117 | hyperinsulinemia; reactive oxygen species have been reported to be generated as a            |
| 118 | result of hyperglycemia, which causes many of the secondary complications of                 |
| 119 | diabetes. <sup>28</sup>                                                                      |
| 120 | We have indicated that monascin can suppress the production of inflammatory                  |
| 121 | factors (tumor necrosis factor-alpha and interleukin-6) from monocytes induced by            |
| 122 | MG depending on PPARgamma regulation and these effects are abolished by                      |

| 123 | PPARgamma inhibitor GW9662. <sup>29</sup> In addition, the anti-inflammatory capacity of      |
|-----|-----------------------------------------------------------------------------------------------|
| 124 | monascin is mediated by the inhibition of JNK, extracellular signal-regulated kinase          |
| 125 | (ERK), and p38 kinases (Fig. 2). <sup>30</sup>                                                |
| 126 | Inflammation is an independent risk factor of cardiovascular diseases and is                  |
| 127 | associated with endothelial dysfunction. Monascus-fermented metabolites, including            |
| 128 | monascin, ankaflavin, and monacolin K, have been found to reduce TNF- $\alpha$ -stimulated    |
| 129 | endothelial adhesiveness as well as downregulating intracellular ROS formation,               |
| 130 | NF-kB activation, and VCAM-1/E-selectin expression in human aortic endothelial                |
| 131 | cells, supporting the notion that the various metabolites from Monascus-fermented             |
| 132 | products might have potential implications in clinical atherosclerosis disease. <sup>31</sup> |
| 133 | Recently, our study also reports that monascin can extend the life span under                 |
| 134 | high-glucose conditions and attenuate oxidative stress in Caenorhabditis elegans. Our         |
| 135 | results indicate that monascin enhanced expression of small heat shock protein                |
| 136 | (sHSP-16), superoxide dismutase (SOD), and glutathione S-transferase (GST).                   |
| 137 | Monascin not only regulates stress response/antioxidant genes to improve oxidative            |
| 138 | stress resistance but also promotes antioxidation and avoid oxidative damage via              |

regulation of the FOXO/DAF-16-dependent insulin signaling pathway.<sup>32</sup>

Moreover, Nrf2 has been found to attenuate oxidative damage by expressions of
heme oxygenase-1 (HO-1), and glutathione-cysteine ligase (GCL).<sup>33</sup> Our study has

| 142 | carried out the Nrf2 regulation by monascin in vivo and in vitro. Results indicated that        |
|-----|-------------------------------------------------------------------------------------------------|
| 143 | monascin inhibited inflammatory cytokine production in S100b (the receptor for                  |
| 144 | AGEs activator)-treated THP-1 monocytes via up-regulation of Nrf2 and alleviated                |
| 145 | p47phox translocation to the membrane; and these effect were abolished by Nrf2                  |
| 146 | inhibitor treatment depending on retinoic acid receptor-alpha. <sup>29</sup> We also found that |
| 147 | monascin markedly activated Nrf2 and attenuated insulin resistance in vitro and in              |
| 148 | vivo pointing out as Fig. 3. <sup>26,29</sup> These findings had pointed out that monascin      |
| 149 | suppressed oxidative stress and inflammation by showing antioxidation.                          |
|     |                                                                                                 |

### 150

### 151 **3.** Anti-diabetic effect of monascin

152 Diabetes mellitus, which is characterised by hyperglycemia, is an endocrine disorder resulting from insulin deficiency that leads to high blood glucose 153 concentration.<sup>34</sup> Type 2 diabetes and obesity are chronic diseases that promote the 154 development of insulin resistance, inflammation, and atherosclerosis.<sup>35</sup> Type 2 155 diabetes is a chronic disease caused by deficient insulin secretion or ineffective 156 insulin activity, thereby negatively affecting carbohydrate metabolism.36 High 157 158 triacylglycerol levels in the blood tend to coexist with low levels of high-density lipoprotein cholesterol (HDL-C), contributing to a condition called diabetic 159 dyslipidemia or hypertriglyceridemia.<sup>37</sup> The total cholesterol (TC) and total 160

| 161 | triacylglycerol (TG) cause an increased risk of heart disease, which should be                            |
|-----|-----------------------------------------------------------------------------------------------------------|
| 162 | controlled as tightly as possible in diabetes mellitus. <sup>38</sup> Insulin resistance in type 2        |
| 163 | diabetic patients is thought to be associated with the induction of inflammatory                          |
| 164 | cytokines such as TNF-alpha and IL-6.39 The TNF-alpha impairs insulin-dependent                           |
| 165 | signal transduction through a mechanism involving downregulation of the insulin                           |
| 166 | receptor (IR) and IR substrate-1 protein (IRS-1), inhibition of IR and IRS-1 tyrosine                     |
| 167 | phosphorylation, increased protein tyrosine phosphatase 1B (PTP1B) activity, and                          |
| 168 | inhibition of the insulin-stimulated glucose transporter (GLUT), thereby resulting in                     |
| 169 | hyperglycemia. <sup>38</sup> Results of our recent study have shown that monascin can attenuate           |
| 170 | JNK phosphorylation and suppress PPARgamma phosphorylation in C2C12                                       |
| 171 | myotubes treated with TNF-alpha and thereby improve insulin sensitivity.40 In                             |
| 172 | addition, monascin also inhibits protein tyrosine (Tyr) phosphatase 1B (PTP1B)                            |
| 173 | expression to attenuate insulin resistance, resulting in GLUT translocation to plasma                     |
| 174 | membrane and subsequently promoting glucose uptake as shown in Fig. 4.40                                  |
| 175 | In vitro studies suggest that MG impairs insulin mediated glucose uptake in                               |
| 176 | adipocytes <sup>41</sup> and reduces insulin sensitivity for 30 min in L6 muscle cells treated with       |
| 177 | 2.5 mM MG. <sup>42</sup> Moreover, 1 mM MG suppresses insulin secretion and production in                 |
| 178 | INS-1E pancreatic islet $\beta$ -cells. <sup>43</sup> In vivo studies demonstrate that MG impairs insulin |
| 179 | transcription factor pancreatic and duodenal homeobox-1 (PDX-1) to result in                              |

180 diabetes.<sup>44,45</sup>

| 181 | Recently, monascin has been reported to act as PPARgamma agonist, <sup>8</sup> and the in          |
|-----|----------------------------------------------------------------------------------------------------|
| 182 | vitro (MG-treated RIN-m5F cells) and in vivo (MG-treated Balb/c mice) results                      |
| 183 | indicated that MG leads to marked PPARgamma phosphorylation (serine 82); this                      |
| 184 | effect led to reduction in PDX-1, GCK, and insulin expression. Monascin and                        |
| 185 | rosiglitazone protected impairment of insulin expression in MG-treated animals                     |
| 186 | confirmed by immunohistochemical stain for pancreatic insulin (Fig. 5). <sup>26</sup> Moreover,    |
| 187 | monascin also prevented hyperglycemia and significantly downregulated blood                        |
| 188 | glucose during oral glucose tolerance test (OGTT) in fructose-rich diet-induced                    |
| 189 | C57BL/6 mice, and the potential mechanism was shown as Fig. $6.^{46}$                              |
| 190 | Hepatic stellate cells (HSCs) express the receptor for AGEs (RAGE) <sup>47</sup> and also          |
| 191 | express many components of the NADPH oxidase complex, such as p47phox.                             |
| 192 | Importantly, one study has implicated p47phox-derived reactive oxygen species (ROS)                |
| 193 | in HSCs activation, suggesting that hepatic fibrosis is always involved in diabetes. <sup>48</sup> |
| 194 | To gain better insights into the role of AGEs in HSCs, we investigated the effect of               |
| 195 | AGEs on ROS production by HSCs. Carboxymethyllysine (CML) is a key AGE with                        |
| 196 | highly reactive dicarbonyl metabolites (e.g., methylglyoxal) and promotes lipid                    |
| 197 | peroxidation to generate malondialdehyde (MDA).49 We had investigated the                          |
| 198 | inhibitory effect of Monascus-fermented metabolite monascin on CML-induced                         |

| 199 | RAGE signaling in HSCs and its resulting antihepatic fibrosis activity. We found that |
|-----|---------------------------------------------------------------------------------------|
| 200 | monascin upregulated PPARgamma to attenuate alpha-smooth muscle actin                 |
| 201 | (alpha-SMA) and ROS generation in CML-treated HSCs in a RAGE                          |
| 202 | activation-independent pathway. Therefore, monascin may regulate PPARgamma to         |
| 203 | delay or inhibit the progression of liver fibrosis and may prove to be a major        |
| 204 | antifibrotic mechanism to prevent liver disease (Fig. 7). <sup>50</sup>               |
| 205 |                                                                                       |

### 206 4. Conclusions

207 These health-promoting functions of monascin may be used to augment the 208 anti-metabolic syndrome, antihypertensive and anti-atherogenic effects of current 209 pharmacotherapeutics. The bioactivity of monascin is responsible for the previously 210 described health benefits and for the prevention of numerous inflammation-related 211 diseases. Together, these findings suggest that monascin can act as an antidiabetic and 212 antioxidative stress agent, and thus, monascin may have therapeutic potential in the 213 treatment or prevention of diabetes and diabetes-associated oxidative stress 214 complications.

# 216 Acknowledgments

217 The authors wish to thank Editage Pvt. Ltd. for providing language help.

# 219 Conflict of interest

220 The authors declare that there are no conflicts of interest.

### References 221

| 222 | 1. | M. van Tieghem, Monascus genre nouvear de l'ondre des Ascomycetes. Bull de       |  |  |  |  |  |
|-----|----|----------------------------------------------------------------------------------|--|--|--|--|--|
| 223 |    | la Société Botanique de France, 1884, <b>31,</b> 226-231.                        |  |  |  |  |  |
| 224 | 2. | D. L. Hawksworth and J. I. Pit, A new taxonomy for Monascus species based on     |  |  |  |  |  |
| 225 |    | cultural and microscopical characters. Aus. J. Botany, 1983, 31, 51-61.          |  |  |  |  |  |
| 226 | 3. | T. Akihisa, H. Tokuda, M. Ukiya, A. Kiyota, K. Yasukawa, N. Sakamoto, Y.         |  |  |  |  |  |
| 227 |    | Kimura, T. Suzuki, J. Takayasu and H. Nishino, Anti-tumor initiating effects of  |  |  |  |  |  |
| 228 |    | monascin, an azaphilonoid pigment from the extract of Monascus pilosus           |  |  |  |  |  |
| 229 |    | fermented rice (red-mold rice). Chem. Biodiv., 2005, 2, 1305-1309.               |  |  |  |  |  |
| 230 | 4. | T. Akihisa, H. Tokuda, K. Yasukawa, M. Ukiya, A. Kiyota, N. Sakamoto, T.         |  |  |  |  |  |
| 231 |    | Suzuki, N. Tanabe and H. Nishino, Azaphilones, furanoisophthalides, and amino    |  |  |  |  |  |
| 232 |    | acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and   |  |  |  |  |  |
| 233 |    | their chemopreventive effects. J. Agric. Food Chem., 2005, 53, 562-565.          |  |  |  |  |  |
| 234 | 5. | Y. Kohama, S. Matsumoto, T. Mimura, N. Tanabe, A. Inada and T. Nakanishi,        |  |  |  |  |  |
| 235 |    | Isolation and identification of hypotensive principles in red mold rice. Chem.   |  |  |  |  |  |
| 236 |    | Pharmaceut. Bull., 1987, <b>35</b> , 2484-2489.                                  |  |  |  |  |  |
| 237 | 6. | L. Martinkova, P. Patakova-Juzlova, V. Kren, Z. Kucerova, V. Havlicek, P.        |  |  |  |  |  |
| 238 |    | Olsovsky, O. Hovorka, B. Rihova, D Vesely, D. Vesela, J. Ulrichova and V.        |  |  |  |  |  |
| 239 |    | Prikrylova, Biological activities of oligoketide pigments of Monascus purpureus. |  |  |  |  |  |

| 240 |     | Food Addit. Contamin., 1999, 16, 15-24.                                          |
|-----|-----|----------------------------------------------------------------------------------|
| 241 | 7.  | B. H. Lee, W. H. Hsu, Y. W. Hsu and T. M. Pan, Dimerumic acid attenuates         |
| 242 |     | receptor for advanced glycation endproducts signal to inhibit inflammation and   |
| 243 |     | diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism       |
| 244 |     | into D-lactic acid. Free Radic. Biol. Med., 2013, 60, 7-16.                      |
| 245 | 8.  | W. H. Hsu, B. H, Lee, Y. Y. Chang, Y. W. Hsu and T. M. Pan, A novel natural      |
| 246 |     | Nrf2 activator with PPAR-gamma agonist (monascin) attenuates the toxicity of     |
| 247 |     | methylglyoxal and hyperglycemia. Toxicol. Appl. Pharmacol., 2013, 272,           |
| 248 |     | 842-851.                                                                         |
| 249 | 9.  | J. F. Day, S. R. Thorpe and J. W. Baynes, Nonenzymatically glucosylated          |
| 250 |     | albumin: in vitro preparation and isolation from normal human serum. J. Biol.    |
| 251 |     | Chem., 1979, <b>254,</b> 595-597.                                                |
| 252 | 10. | C. H. Wu, S. M. Huang, J. A. Lin and G. C. Yen, Inhibition of advanced glycation |
| 253 |     | endproduct formation by foodstuffs. Food Funct., 2011, 2, 224-234.               |
| 254 | 11. | A. A. Bulhak, C. Jung, C. C. Ostenson, J. O. Lundberg, P. O. Sjoquist and J.     |
| 255 |     | Pernow, PPAR $\gamma$ activation protects the type 2 diabetic myocardium against |
| 256 |     | ischemia-reperfusion injury: involvement of the PI3-kinas/Akt and NO pathway.    |
| 257 |     | Am. J. Physiol. Heart. Circ. Physiol., 2009, 296, H719-H727.                     |
| 258 | 12. | W. E. Ackerman, X. L. Zhang, B. H. Rovin and D. A. Kniss, Modulation of          |

Food & Function Accepted Manuscript

| 259 |     | cytokine-induced cyclooxygenase 2 expression by PPARG ligands through                 |
|-----|-----|---------------------------------------------------------------------------------------|
| 260 |     | NFkappaB signal disruption in human WISH and amnion cells. Biol. Reprod.,             |
| 261 |     | 2005, <b>73,</b> 527-535.                                                             |
| 262 | 13. | S. Hirai, N. Takahashi, T. Goto, S. Lin, T. Uemura, R. Yu and T. Kawada,              |
| 263 |     | Functional food targeting the regulation of obesity-induced inflammatory              |
| 264 |     | responses and pathologies. Mediators Inflam., 2010, Doi:10.1155/2010/367838.          |
| 265 | 14. | I. Choi, Y. Park, H. Choi and E. H. Lee, Anti-adipogenic activity of rutin in         |
| 266 |     | 3T3-L1 cells and mice fed with high-fat diet. <i>BioFactors</i> , 2006, 26, 273-281.  |
| 267 | 15. | C. C. Chuang, K. Martinez, G. Xie, A. Kennedy, A. Bumrungpert, A. Overman,            |
| 268 |     | W. Jia and M. K. McIntosh, Quercetin is equally or more effective than                |
| 269 |     | resveratrol in attenuating tumor necrosis factor- $\alpha$ -mediated inflammation and |
| 270 |     | insulin resistance in primary human adipocytes. J. Am. Clin. Nutr., 2010, 92,         |
| 271 |     | 1511-1521.                                                                            |
| 272 | 16. | J. H. Choi, A. S. Banks, J. L. Estall, S. Kajimura, P. Bostrom, D. Laznik, J. L.      |
| 273 |     | Ruas, M. J. Chalmers, T. M. Kamenecka, M. Bluher, P. R. Griffin and B. M.             |
| 274 |     | Spiegelman, Anti-diabetic drugs inhibit obesity-linked phosphorylation of             |
| 275 |     | PPARγ by Cdk5. <i>Nature</i> , 2010, <b>466</b> , 451-456.                            |

276 17. M. Dubois, F. Pattou, J. Kerr-Conte, V. Gmyr, B. Vandewalle, P. Desreumaux, J.

277 Auwerx, K. Schoonjans and J. Lefebvre. Expression of peroxisome

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

### **Food & Function**

|     | proliferator-activated receptor gamma (PPAR-gamma) in normal human                     |
|-----|----------------------------------------------------------------------------------------|
|     | pancreatic islet cells. Diabetologia, 2000, 43, 1165-1169.                             |
| 18. | C. Y. Lin, T. Gurlo, L. O. Haataja, W. A. Hsueh and P. C. Butler, Activation of        |
|     | peroxisome proliferator-activated receptor-gamma by rosiglitazone protects             |
|     | human islet cells against human islet amyloid polypeptide toxicity by a                |
|     | phosphatidylinositol 3'-kinase-dependent pathway. J. Clin. Endocrinol. Metab.,         |
|     | <b>90,</b> 2005, 6678-6686.                                                            |
| 19. | J. A. Moibi, D. Gupta, T. L. Jetton, M. Peshavaria, R. Desai and J. L. Leahy,          |
|     | Peroxisome proliferator-activated receptor- $\gamma$ regulates expression of PDX-1 and |
|     | NKX6.1 in INS-1 cells. Diabetes, 2007, 56, 88-95.                                      |
| 20. | H. I. Kim, J. W. Kim, S. H. Kim, J. Y. Cha, K. S. Kim and Y. H. Ahn,                   |
|     | Identification and functional characterization of the peroxisomal proliferator         |
|     | response element in rat GLUT2 promoter. Diabetes, 2000, 49, 1517-1524.                 |
| 21. | N. Irwin, J. M. McKinney, C. J. Bailey, N. H. McClenaghan and P. R. Flatt,             |
|     | Acute and long-term effects of peroxisome proliferatoractivated receptor- $\gamma$     |
|     | activation on the function and insulin secretory responsiveness of clonal              |
|     | beta-cells. Horm. Metab. Res., 2011, 43, 244-249.                                      |
| 22. | M. T. Coughlan, F. Y. T. Yap, D. C. K. Yong, S. Andrikopoulos, A. Gasser, V.           |

296 Thallas-Bonke, D. E. Webster, J. I. Miyazaki, T. W. Kay, R. M. Slattery, D. M.

- 297 Kaye, B. G. Drew, B. A. Kingwell, S. Fourlanos, P. H. Groop, L. C. Harrison, M.
- 298 Knip and J. M. Forbes, Advanced glycation end products are direct modulators of
- beta-cell function. *Diabetes*, 2011, **60**, 2523-2532.
- 300 23. T. Shu, Y. Zhu, H. Wang, Y. Lin, Z. Ma and X. Han, AGEs decrease insulin
- 301 synthesis in pancreatic beta-cell by repressing PDX-1 protein expression at the
- 302 post-translational level. *PLoS One*, 2011, **6**, Article ID e18782.
- 303 24. A. Puddu, R. Sanguineti, A. Durante and G. L. Viviani, Pioglitazone attenuates
- the detrimental effects of advanced glycation end-products in the pancreatic beta
  cell line HIT-T15. *Regul. Pept.*, 2012, **177**, 79-84.
- 306 25. H. Kaneto, T. Miyatsuka and D. Kawamori, PDX-1 and MafA play a crucial role
- in pancreatic beta-cell differentiation and maintenance of mature beta-cell
  function. *Endocr. J.*, 2008, 55, 235-252.
- 309 26. W. H. Hsu, B. H. Lee, C. H. Li, Y. W. Hsu and T. M. Pan, Monascin and AITC
- 310 attenuate methylglyoxal-induced PPARgamma phosphorylation and degradation
- 311 through inhibition of the oxidative stress/PKC pathway depending on Nrf2
- activation. J. Agric. Food Chem., 2013, **61**, 5996-6006.
- 313 27. S. M. Huang, C. H. Wu and G. C. Yen, Effects of flavonoids on the expression of
- the pro-inflammatory response in human monocytes induced by ligation of the
  receptor for AGEs. *Mol. Nutr. Food Res.*, 2006, **50**, 1129-1139.

| 316 | 28. | N. Shanmugam, M. A. Reddy, M. Guha and R. Natarajan, High glucose-induced        |
|-----|-----|----------------------------------------------------------------------------------|
| 317 |     | expression of proinflammatory cytokine and chemokinegenes in monocytic cells.    |
| 318 |     | Diabetes, 2003, <b>52</b> , 1256-1264.                                           |
| 319 | 29. | B. H. Lee, W. H. Hsu, T. Huang, Y. Y. Chang, Y. W. Hsu and T. M. Pan, Effects    |
| 320 |     | of monascin on anti-inflammation mediated by Nrf2 activation in advanced         |
| 321 |     | glycation end product-treated THP-1 monocytes and methylglyoxal-treated          |
| 322 |     | Wistar rats. J. Agric. Food Chem., 2013, 61, 1288-1298.                          |
| 323 | 30. | W. H. Hsu, B. H. Lee, T. H. Liao, Y. W. Hsu and T. M. Pan, Monascus-fermented    |
| 324 |     | metabolite monascin suppresses inflammation via PPAR $\gamma$ regulation and JNK |
| 325 |     | inactivation in THP-1 monocytes. Food Chem. Toxicol., 2012, 50, 1178-1186.       |
| 326 | 31. | C. P. Lin, Y. L. Lin, P. H. Huang, H. S. Tsai and Y. H. Chen, Inhibition of      |
| 327 |     | endothelial adhesion molecule expression by Monascus purpureus-fermented         |
| 328 |     | rice metabolites, monacolin K, ankaflavin, and monascin. J. Sci. Food Agric.,    |
| 329 |     | 2011, <b>91</b> , 1751-1758.                                                     |
| 330 | 32. | Y. C. Shi, H. C. Liao and T. M. Pan, Monascin from red mold dioscorea as a       |
| 331 |     | novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis     |
| 332 |     | elegans. Free Radic. Biol. Med., 2012, 52, 109-117.                              |
| 333 | 33. | D. V. Chartoumpekis, P. G. Ziros, A. I. Psyrogiannis, A. G. Papavassiliou, V. E. |

334 Kyriazopoulou, G. P. Sykiotis and I. G. Habeos, Nrf2 represses FGF21 during

| 335 |     | long-term high-fat diet-induced obesity in mice. Diabetes, 2011, 60, 2465-2473.      |
|-----|-----|--------------------------------------------------------------------------------------|
| 336 | 34. | S. K. Singh, P. K. Rai, D. Jaiswal and G. Watal, Evidence-based critical             |
| 337 |     | evaluation of glycemic potential of Cynodon dactylon. Evidence-Based Compl.          |
| 338 |     | Alter. Med., 2008, <b>5</b> , 415-420.                                               |
| 339 | 35. | A. C. Thirone, C. Huang and A. Klip, Tissue-specific roles of IRS proteins in        |
| 340 |     | insulin signaling and glucose transport. Trends Endocrinol. Metab., 2006, 17,        |
| 341 |     | 72-78.                                                                               |
| 342 | 36. | K. F. Petersen and G. L. Shulman, Etiology of insulin resistance. Am. J. Med.,       |
| 343 |     | 2006, <b>119,</b> S10-S16.                                                           |
| 344 | 37. | S. L. Abbate and J. D. Brunzell, Pathophysiology of hyperlipidemia in diabetes       |
| 345 |     | mellitus. J. Cardiovasc. Pharmacol., 1990, 16, S1-S7.                                |
| 346 | 38. | K. Ravi, B. Ramachandran and S. Subramanian, Protective effect of Eugenia            |
| 347 |     | jambolana seed kernel on tissue antioxidants in streptozotocin induced diabetic      |
| 348 |     | rats. Biol. Pharmaceut. Bull., 2004, 27, 1212-1217.                                  |
| 349 | 39. | A. T. Cheung, J. Wang, D. Ree, J. K. Koll and M. Bryer-Ash, Tumor necrosis           |
| 350 |     | factor- $\alpha$ induces hepatic insulin resistance in obese zucker (fa/fa) rats via |
| 351 |     | interaction of leukocyte antigen-related tyrosine phosphatase with focal adhesion    |
| 352 |     | kinase. Diabetes, 2000, 49, 810-819.                                                 |
| 353 | 40. | B. H. Lee, W. H. Hsu, T. H. Liao and T. M. Pan, The Monascus metabolite              |

| 354 |     | monascin against TNF- $\alpha$ -induced insulin resistance via suppressing PPAR $\gamma$ |  |  |  |  |  |  |  |  |
|-----|-----|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 355 |     | phosphorylation in C2C12 myotubes. Food Chem. Toxicol., 2012, 49,                        |  |  |  |  |  |  |  |  |
| 356 |     | 2609-2617.                                                                               |  |  |  |  |  |  |  |  |
| 357 | 41. | X. Jia, D. J. Olson, A. R. Ross and L. Wu, Structural and functional changes in          |  |  |  |  |  |  |  |  |
| 358 |     | human insulin induced by methylglyoxal. FASEB J., 2006, 20, 1555-1557.                   |  |  |  |  |  |  |  |  |
| 359 | 42. | A. Riboulet-Chavey, A. Pierron, I. Durand, J. Murdaca, J. Giudicelli and E. Van          |  |  |  |  |  |  |  |  |
| 360 |     | Obberghen, Methylglyoxal impairs the insulin signaling pathways independently            |  |  |  |  |  |  |  |  |
| 361 |     | of the formation of intracellular reactive oxygen species. Diabetes, 2006, 55,           |  |  |  |  |  |  |  |  |
| 362 |     | 1289-1299.                                                                               |  |  |  |  |  |  |  |  |
| 363 | 43. | F. Fiory, A. Lombardi, C. Miele, J. Giudicelli, F. Beguinot and E. Van Obberghen,        |  |  |  |  |  |  |  |  |
| 364 |     | Methylglyoxal impairs insulin signalling and insulin action on glucose-induced           |  |  |  |  |  |  |  |  |
| 365 |     | insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia, 2011, 54,       |  |  |  |  |  |  |  |  |
| 366 |     | 2941-2952.                                                                               |  |  |  |  |  |  |  |  |
| 367 | 44. | A. Dhar, K. M. Desai and L. Wu, Alagebrium attenuates acute                              |  |  |  |  |  |  |  |  |
| 368 |     | methylglyoxal-induced glucose intolerance in Sprague-Dawley rats. Bri. J.                |  |  |  |  |  |  |  |  |
| 369 |     | Pharmacol., 2010, <b>159,</b> 166-175.                                                   |  |  |  |  |  |  |  |  |

45. A. Dhar, I. Dhar, B. Jiang, K. M. Desai and L. Wu, Chronic methylglyoxal
infusion by minipump causes pancreatic β-cell dysfunction and induces type 2
diabetes in Sprague-Dawley rats. *Diabetes*, 2011, 60, 899-908.

| 373 | 46. | B. H. Lee, W. H. Hsu, T. Huang, Y. Y. Chang, Y. W. Hsu and T. M. Pan,             |  |  |  |  |  |  |  |  |
|-----|-----|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 374 |     | Monascin improves diabetes and dyslipidemia by regulating PPARgamma and           |  |  |  |  |  |  |  |  |
| 375 |     | inhibiting lipogenesis in fructose-rich diet-induced C57BL/6 mice. Food Funct.,   |  |  |  |  |  |  |  |  |
| 376 |     | 2013, 4, 950-959.                                                                 |  |  |  |  |  |  |  |  |
| 377 | 47. | H. Fehrenbach, R. Weiskirchen, M. Kasper and A. M. Gressner, Up-regulated         |  |  |  |  |  |  |  |  |
| 378 |     | expression of the receptor for advanced glycation end products in cultured rat    |  |  |  |  |  |  |  |  |
| 379 |     | hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatology, |  |  |  |  |  |  |  |  |
| 380 |     | 2001, <b>34,</b> 943-952.                                                         |  |  |  |  |  |  |  |  |
| 381 | 48. | E. L. M. Guimaraes, C. Empsen, A. Geerts and L. A. van Grunsven, Advanced         |  |  |  |  |  |  |  |  |
| 382 |     | glycation end products induce production of reactive oxygen species via the       |  |  |  |  |  |  |  |  |
| 383 |     | activation of NADPH oxidase in murine hepatic stellate cells. J. Hepatol., 2010,  |  |  |  |  |  |  |  |  |
| 384 |     | <b>52,</b> 389-397.                                                               |  |  |  |  |  |  |  |  |
| 385 | 49. | T. M. Buetler, E. Leclerc, A. Baumeyer, H. Latado, J. Newell, O. Adolfsson, V.    |  |  |  |  |  |  |  |  |
| 386 |     | Parisod, J. Richoz, S. Maurer, F. Foata, D. Piguet, S. Junod, C. W. Heizmann and  |  |  |  |  |  |  |  |  |
| 387 |     | T. Delatour, N-Carboxymethyllysinemedified proteins are unable to bind to         |  |  |  |  |  |  |  |  |
| 388 |     | RAGE and activate an inflammatory response. Mol. Nutr. Food Chem., 2008, 52,      |  |  |  |  |  |  |  |  |
| 389 |     | 370-378.                                                                          |  |  |  |  |  |  |  |  |
| 390 | 50. | W. H. Hsu, B. H. Lee, Y. W. Hsu and T. M. Pan, Peroxisome                         |  |  |  |  |  |  |  |  |
| 391 |     | proliferator-activated receptor-gamma activators monascin and rosigliatazone      |  |  |  |  |  |  |  |  |

| 392 | attenuate carboxymethyllysine-induced fibrosis in hepatic stellate cells through |
|-----|----------------------------------------------------------------------------------|
| 393 | regulating the oxidative stress pathway but independent of the receptor for      |
| 394 | advanced glycation endproducts signaling. J. Agric. Food Chem., 2013, 61,        |
| 395 | 6873-6879.                                                                       |
| 396 |                                                                                  |

397 Figure legends

| 398 | Figure 1. (a) Chemical tructure of monascin. (b) Monascin is a PPARgamma                 |
|-----|------------------------------------------------------------------------------------------|
| 399 | agonist. <sup>8</sup> The PPARgamma agonist activity of monascin was carried out by      |
| 400 | LanthaScreen <sup>™</sup> TR-FRET PPARγ coactivator assay kit (Invitrogen, Carlsbad, CA, |
| 401 | USA). PPARgamma: peroxisome proliferator-activated receptor-gamma.                       |
| 402 |                                                                                          |
| 403 | Figure 2. The proposed mechanism of monascin on inflammation in THP-1 cell.              |
| 404 | Ovalbumin-induced inflammation was alleviated by monascin via inhibition of JNK          |
| 405 | phosphorylation and regulation of PPARgamma. <sup>30</sup> MS: monascin. JNK: c-Jun      |
| 406 | N-terminal kinases. ERK: extracellular signal-regulated kinase.                          |
| 407 |                                                                                          |
|     |                                                                                          |

Figure 3. The potential mechanism of monascin attenuated inflammation caused by
RAGE activation. Monascin promotes Nrf2 activation to elevate antioxidant status,
thereby attenuating oxidative stress and inflammation caused by RAGE signal.<sup>29</sup> MS:
monascin. AGEs: advanced glycation endproducts. RAGE: receptor for AGEs. TNF-α:
tumor necrosis factor-alpha. IL-1β: interleukin-1beta. PKC: protein kinase C. Nrf2:
nuclear factor-erythroid 2-related factor 2. HO-1: heme oxygenase-1. GCL:
glutathione-cysteine ligase.

| 416 | Figure 4. The inhibition of insulin resistance in C2C12 myotubes treated by                  |
|-----|----------------------------------------------------------------------------------------------|
| 417 | monascin. <sup>40</sup> IR: insulin receptor. IRS: insulin receptor substrate. GLUT: glucose |
| 418 | transporter. TNF-α: tumor necrosis factor-alpha. PPARgamma: peroxisome                       |
| 419 | proliferator-activated receptor-gamma.                                                       |
| 420 |                                                                                              |
| 421 |                                                                                              |
| 422 | Figure 5. Effects of monascin, rosiglitazone, AITC, or NAC treatment on pancreatic           |
| 423 | insulin level of methylglyoxal-injected Balb/C mice stained by immunohistochemical           |
| 424 | stain. <sup>26</sup> Monascin promoted insulin expression and may protect impairment of      |
| 425 | pancreatic funtion in methylglyoxal-treated animals. MG: methylglyoxal. MS:                  |

426 monascin. Rosi: rosiglitazone. AITC: allyl isothiocyanate. NAC: N-acetylcysteine.

427

428 Figure 6. The potential anti-diabetic mechanism of monascin in mice fed high fructose diet.<sup>46</sup> Monascin improved fructose-rich diet-induced glucose intolerance, 429 hyperlipidemia, hyperinsulinemia, and hepatic fatty acid accumulation, presumably by 430 431 inhibiting lipogenesis and ameliorating insulin resistance and inflammation in the 432 liver through PPARgamma activation. PPARgamma: peroxisome 433 proliferator-activated receptor-gamma. ChREBP: carbohydrate responsive element 434 binding protein. SREBP-1c: sterol regulatory element-binding protein-1c. ACC:

| 435 | acetyl-coA     | carboxylase.     | FAS:      | fatty                | acid     | synthase.     | PGC:       | peroxisome    |
|-----|----------------|------------------|-----------|----------------------|----------|---------------|------------|---------------|
| 436 | proliferator-a | activated recept | or-gamn   | na coact             | vator.   |               |            |               |
| 437 |                |                  |           |                      |          |               |            |               |
| 438 | Figure 7. Po   | otential mechan  | ism of 1  | monasci              | n on an  | tifibrosis in | HSCs. N    | Monascin and  |
| 439 | rosiglitazone  | upregulated PI   | PARgam    | ima to a             | ttenuate | fibrotic bio  | marker ex  | xpression and |
| 440 | ROS generat    | tion in CML-tro  | eated HS  | SCs. <sup>50</sup> C | ML: ca   | rboxymethy    | llysine. F | ROS: reactive |
| 441 | oxygen spec    | cies. RAGE: 1    | receptor  | for ad               | vanced   | glycation     | endprodu   | ects. α-SMA:  |
| 442 | α-smooth mu    | uscle actin. TIN | 1P: tissu | e inhibit            | tor of m | etalloproteir | nase. MN   | 1P-13: matrix |
| 443 | metalloprote   | inase-13.        |           |                      |          |               |            |               |



Food & Function Accepted Manuscript

445

446 Fig. 1









**Fig. 4** 



MG + MS



MG + AITC



459 Fig. 5







MG + NAC









Graphical abstract