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More and more evidence indicates that the 3D conformation of eukaryotic genome is a critical 

part of genome function. However, due to the lack of accurate and reliable 3D genome 

structural data, this information is largely ignored and most of these studies have to use 

information systems that view the DNA in a linear structure. Visualizing genomes in real time 

3D can give researchers more insight, but this is fraught with hardware limitations since each 

element contains vast amounts of information that cannot be processed on the fly. Using a 

game engine and sophisticated video game visualization techniques enables us to construct a 

multi-platform real-time 3D genome viewer.  The game engine based viewer achieves much 

better rendering speed and can handle much larger amount of data compared to our previous 

implementation using OpenGL. Combining this viewer with 3D genome models from 

experimental data could provide unprecedented opportunities to gain insight into the 

conformation-function relationships of a genome.  

 

Introduction 

A significant fraction of important questions in biology 

research today require analysis of genomic data sources. 

Regulatory functions of the cell operate in three dimensions 

such that currently available software, which displays genetic 

data as linear sequences, offers insufficient insight into some 

problems. New experimental techniques are revealing 

information that impacts the 3D structure of genetic molecules 

such as nucleosome position distribution [1], histone 

methylation [2], and transcription factory complexes [3].  As 

displayed by current software, the 3D context of these 

information sources is not shown, which potentially obscures 

important spatial relationships. To address this problem, we 

have developed a system to visualize genomes in a way that 

incorporates sources of 3D information while preserving 

responsive viewing and interaction.   

 

A primary benefit to software that can display genomic data in 

three dimensions is it facilitates advances in the creation of 3D 

models.  The chromosome conformation capture family of 

experiments generates data directly relevant to the 3D structure 

of chromatin.  This data can be used to create and display small 

models of a few hundred thousand base pairs arranged in 3D 

space such as for the interesting alpha-globin gene domain on 

human chromosome 16 [4], all the way up to possible full 

human genome models using information derived from Hi-C 

experiments [5].  Even though data generated from current 

techniques are sparse and not yet sufficient to create accurate 

high-resolution 3D models of eukaryotic genome, it is expected 

that more believable and detailed models may be derived in the 

future.  A software platform that can visualize such high-

resolution model would prepare us for the future needs of 

studying 3D genome model when available. 

 

A system that successfully displays genetic molecules in three 

dimensions must have the following abilities: it must display 

full size mammalian chromosomes on the order of billions of 

base pairs, display the details of important segments at the scale 

of individual atoms, and allow real time manipulation of the 

view at focus of detail. Our software behavior mimics that of 

the popular Google Earth service. When using Google Earth, a 

user can zoom out to view the entire planet as a whole but with 

little detail, or seamlessly zoom in to show a progressively 

smaller section of the surface but with greater detail. In our case 

the broadest view would display all chromosomes contained in 

a nucleus while zooming in would reveal the progression of 

more detailed features such as chromatin fiber arrangement, 

histone positions, base pair locations, and individual atoms. 

Creating such a system is not a trivial task. The volume of data 

needed to specify an arbitrary mammalian genome in 3D space 

well exceeds the limit of available memory necessitating 

careful loading and pruning. Google Earth only has one model 

to display and thus can take advantage of advanced indexing 

and caching optimizations, while in contrast, our software must 

display a wide variety of possible genomes and structures; this 

removes our ability to construct data structures in advance. 

 

Most modern video games must visualize vast amounts of 

information at once while being interactive in real time. Most 

video game developers save resources by using game engines, 

which are of the shelf systems that implement common display 

and interaction features.  These same engines have been shown 
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to be useful for other applications such as simulation research 

[6]. Biology is no stranger to using game concepts to assist in 

new discoveries. Games like Fold It have been developed to 

help solve difficult questions about protein folding [7]. Our 

software is the first attempt to use game engine technology for 

the purpose of displaying chromatin in three dimensions. We 

show that these techniques developed for the video game 

industry can be successfully used to make useful and 

responsive displays of genomes in 3D. 

 

Researchers use a variety of tools to place their experimental 

data in the context of reference genomes, but among these tools 

the ability to view spatial relationships in three dimensions is 

missing. Genome browsing tools have been developed by 

variety of institutions, such as UCSC, Ensemble, and NCBI. 

These genome browsers not only integrate vast amount of 

genome information from varied sources, but also allows users 

to develop custom tracks which easily integrate their own data 

with existing genome information [8]. Such feature-rich 

genome browsers have become very popular and played 

essential roles in several important, large-scale genome 

projects, including Encyclopedia of DNA Elements (ENCODE) 

[9] and 1000 Genome Project [10].  Existing viewers display 

genomes and annotations along a single dimension, the 

sequence coordinates, making them unsuitable for displaying 

some kinds of epigenetic and structural information generated 

by recent technologies such as chromosome conformation 

capture style experiments.  

 

Genome3D was the first model-view framework developed to 

work with current genome browsers to address these 

challenges, and to facilitate multi-scale integration and 

visualization of large genomic and epigenomic datasets in three 

dimensions [11]. This model-view framework enabled 

researchers to infer new knowledge about structure/function of 

genomes that would have been difficult to accomplish by 

primary sequence-based browsers. For example, phosphate 

groups of different base pairs in DNA strand can be either 

exposed to the outside or confined between the histone proteins 

and DNA backbone. This information has important functional 

implications, as exposed phosphate groups can be easily 

accessible by DNA binding proteins [12]. While new 

sequencing technologies allow researchers to map individual 

nucleosomes across the whole genome [13], it is a significant 

challenge for current genome browsers to display this 

epigenetic information in an intuitive manner. Visualizing such 

information using a 3D genome model can facilitate new 

inferences about potential regulatory behavior such as 

functional versus non-functional SNP’s in non-coding regions.  

 

Unfortunately, in the years since its release a number of 

limitations with the Genome3D software package were 

revealed, warranting the development of a new version. 

Genome3D had no internal throttle to manage the loading or 

view of very large data sets. A careless user could easily load 

more chromosomes than are able be displayed in real time 

which would slow responsiveness to unusable levels. The 

former software was developed in C++ using libraries that have 

since become obsolete.  These dependencies severely restricted 

the portability and maintainability of the code base.  

 

Using game engine technologies and some sophisticated 

visualization techniques we intend to solve the two critical 

flaws of Genome3D. Game engines are designed to aid in the 

development of games by providing interaction and complex 

rendering techniques as standard features. This frees attention 

for the development of logic and content. Also, because game 

development is are a large consumer industry whose products 

need to be highly marketable, most modern engines have multi- 

platform support built in, which allows the programs developed 

with one to easily be ported to a number of other devices. 

Furthermore, game engines have previously been used for large 

simulation research where they are proven to work well in 

several different disciplines [14]. For these reasons, we found it 

most appropriate to use a game engine to display genomes in 

three dimensions.  

 

The System 

The greatest dilemma facing this system was how to both 

manage the large amount of information while still maintaining 

real time responsiveness. Since modern games engines provide 

open world management as a standard feature, this was chosen 

as a good starting point. We have used the Unity game engine, 

which has become highly popular and widely used by 

independent game developers and researchers. While the 

interaction features are standard to most game engines, our 

need to visualize data on the order of billions of base pairs is 

unique enough to still be challenging. The largest portion of our 

attention has been directed towards efficiently rendering the 

scene. One of aspect of our approach is the level of detail 

(LOD) system, which is traditionally used to cut down the 

amount of processing power needed to generate the elements in 

the scene. Different parts of the scene are presented at different 

LODs based on criteria such as the distance between the camera 

and that object. An object in the far distance can be rendered 

with a lower LOD in a way that conserves computational 

resources but is indistinguishable to the viewer. An object very 

close to the observer will be displayed with a higher LOD and 

use more resources, but geometry limits the number of objects 

which can occupy this space and any further objects that have 

been occluded need not be drawn at all. To best solve the 

problem of determining placement and distances of the genome 

we used a data structure commonly used in games, and then 

further processed multiple data sources in different LODs. 

 

The system runs on multiple platforms with consistent interface 

as shown in Figure 1: 

 

 
 

Fig. 1. System interface with a chromosome loaded at the 

histone level. 
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The Octree 

Many modern games have vast open worlds, which need to be 

carefully processed in order to keep the action fluid. To reduce 

the amount of data processed at a given time, most of these 

applications use a data structure called an octree. This structure 

subdivides 3D space into eight sections that are represented by 

nodes in the tree as seen in Figure 2. These subsections can be 

recursively subdivided making more nodes in the tree with a 

finer level of detail. When a node is very far away from the 

camera it is displayed directly with a lower LOD and any 

children it has are ignored. When the camera is moved closer to 

a node, then it is examined more carefully such that each of and 

each of its children are fully processed and displayed. 

 
Fig. 2. Octree example. This shows how it will calculate the 

ranges from each cube to the camera. 

 

Most commercial implementations use static octrees with a set 

number of subdivisions that is optimized for a single given 

model. However, our system is distinct because our 3D models 

must be generated on the fly, and can only be partially built at 

any one time given the large amounts of data that needs to be 

processed and stored. This has led us to choose a dynamic 

octree implementation [15]. The dynamic variation of the data 

structure automatically subdivides into eight parts when the 

data contained in a node exceeds a given tolerance. In this way, 

we avoided having an unnecessarily big tree(s) in memory. 

Also since we are dealing with a large object it makes sense 

to stay away from loose octrees [16]. 
 

Given the difference between the input, formatted as a spline 

representing the chromosome fiber, and the internal storage as 

an octree, faithfully preserving the structure of the data was a 

key priority. In traditional implementations the mesh for the 

objects in the scene are provided, and each polygon in the mesh 

is placed in a node in the tree corresponding to its spatial 

location. However, in our case, the mesh is generated given a 

series of files that contain an ordered set of control points on 

the curve. Instead of dividing the problem by polygons we do 

so using the spline control points. Wherever the curve intersects 

an octree node boundary, a new control point is placed at the 

point of intersection and inserted into both octree nodes. While 

this increases memory usage slightly, it preserves information 

content perfectly. 

Further Levels of Detail 

In addition to the octree, a level of detail system has been 

implemented to manage display complexity given the context 

of the camera and model.  Information is grouped into three 

different levels: fiber, nucleosome, and atomic. The fiber level 

represents the lowest level of detail where each chromosome’s 

30nm fiber is displayed as seen in Figure 3 and Figure 4. At this 

level the data is formatted as a series of files, each in XML 

format specifying an individual chromosome and the control 

points of the spline which positions it. The system scans the 

directory provided by the user, and then loads and displays each 

chromosome. Files are first loaded into memory and then 

placed into an octree. As the data proceeds, additional octrees 

are constructed for each chromosome to guarantee they remain 

segregated from one another. 

 

 
 

Fig. 3. Fiber Level Far with 22 Chromosomes Loaded 

 

 
 

Fig. 4. Fiber level with close up view of chromosome 1. 

 

Proceeding deeper, the next level of detail is the nucleosome 

stage. At this level, nucleosome base-pair positions plus the 

DNA that wraps around and links to them are displayed as seen 

in Figure 5. Instead of loading all the chromosomes like the 

previous level, this view only displays one at a time. The files 

for this level of detail are significantly different from the 

previous section as they are much more detailed. Once again, 

XML file formats are used to hold the structure information for 

each chromosome. These files not only include the base pair 

number and positional information but also the orientation of 

each histone. Linker DNA can either be automatically 

generated for display or specified in the corresponding data 

files. An additional feature of this view, because most 

researchers are not interested in specific interesting regions and 

not an entire chromosome, we implemented an option to reduce 

the viewing size to a user specified range as seen in Figure 6.  

 

Finally, the highest level of detail is at the atomic scale. Similar 

to the nucleosome stage, the user chooses a range from a start 

base pair to an ending base pair, and the system displays that 

atomic structure as seen in Figure 7. This level faces an 

additional challenge, as two sets of information must be merged 

into one display. Information provided at the nucleosome level 

determines positional information, which is then combined with 

a fasta file containing the DNA sequence. The user specified 

position is matched to both the fasta file and the nucleosome 

positions, which are read in tandem and used to place the 

appropriate base pair atoms at their correct positions. 
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Fig. 5. Histone level of chromosome 1 in mid range. This 

shows 100,000 histones rendered in real time with procedurally 

generated linker data which is highlighted in pink. 

 

 
 

Fig 6. Histone level of chromosome 1 at a reduced scale close 

up (linkers are not highlighted). 

Other Benefits 

In addition to the robust interactivity and the superior display 

management provided by a game engine, there are other 

benefits to using it for this application. A game with a larger 

marketplace is more likely to succeed, making portability to 

multiple platforms a desirable quality. The system we created 

has been deployed to Windows, Mac, and some mobile devices, 

including tablets as seen in Figure 8. Each version required 

some minor changes but overall the system still works the same 

with minimal added development time. For example, in order to 

function on mobile devices we must limit the rendering 

capabilities and read the files from an external server instead of 

from the device itself. The simplicity of multi-platform support 

will greatly increasing our potential audience. 

 

 
Fig. 7.    Atomic level of chromosome 1 from base pair 10400 

to 10900 

 

 

 

 
 

Fig. 8. iPad Example. This is an example demonstrating the 

octree based LOD working on an iPad. 

Results 

In order to test the performance and functionality of this 

application, we compared it to the previous version of 

Genome3D, which is the only other implementation of this 

concept [11]. Each test ran on a standard desktop with 4 GB of 

RAM, an Intel c Xeon c CPU at 3.07 GHz, and running 64-bit 

Windows 7 Professional. Our tests and results follow. 

 

The main criteria we chose to judge success was the rendering 

capacity, since that is the best approximation of its functional 

performance from the perspective of a user. To accomplish this, 

we loaded a set amount of data, and then progressively add 

large amounts of data for each individual test, while also 

keeping track of the running frames per second (FPS). Each of 

these smaller tests was also run for an isolated LOD: fiber, 

nucleosome, and atomic levels. The first set of tests was at the 

fiber level with results shown in Table 1. There is a hardware 

refresh limit that is 120 Hz in our system. Also game engines 

typically set an upper limit on FPS to avoid any side effects; 

this limit is 60 in Unity. In Unity we can set a targeted frame 

rate, which is the FPS that Unity will try to reach if the system 

is heavy loaded. As our genome viewer is not fast-paced, we 

choose 30 FPS as the target. The original genome viewer 

outperforms the new one with only one chromosome file 

loaded, but it cannot load additional chromosomes without 

crashing. Our new system has maximum FPS until 15 

chromosomes are loaded; the FPS is still acceptable when all 23 

chromosomes of human genomes are loaded.  

 

TABLE 1. Improved performance of game engine based viewer 

at the chromatin fiber level (the original viewer cannot handle 

data with more than one chromosome) 

 

Program 
1  

Chromosome 
10 

Chromosomes 
15 

Chromosome 
23 

Chromosomes 

Original Genome 

Viewer FPS 
120 0 0 0 

Game Engine Genome 
Viewer’s FPS Range 

60 60 60 30 

 

Next, a similar test was conducted at the nucleosome level. In 

order to gain accurate insight of performance, the test varied the 

number of histones loaded and rendered while measuring the 

sustained frames per second. Results appear in Table II. When 

only a few nucleosomes are loaded the original genome viewer 

performs faster, but once more data is added the older system 
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becomes unresponsive. In contrast, the performance of the new 

system did not begin to lose performance noticeably until the 

number of histones loaded exceeded 10,000. 

 

TABLE II. Improved performance of game engine based 

viewer at the nucleosome level (the original viewer cannot 

handle more than 10 nucleosomes) 

 

Program 
1 

nucleosome 
1,000 

nucleosomes 
5,000 

nucleosomes 
10,000 

nucleosomes 

Original Genome 

Viewer FPS Range 
60-120 0 0 0 

Game Engine Genome 
Viewer’s FPS Range 

60 60 30 30 

 

Finally, the last set of tests was run in a similar vein as the 

others. Much like the nucleosome scale, the purpose was to test 

and evaluate each program’s performance as an increasing 

amount of atoms were loaded and rendered, measuring the 

frames per second. The results, as seen in Table III, show a 

more comparable trend. Both systems simply rendered the 

given data without any further LOD data analysis, and it first 

appears that the original genome viewer out performs the game 

engine version. However, the original system only seems to 

allow twenty-five atoms to be rendered at once, so it cannot 

make a comparison after the initial twenty five. On the 

contrary, our new system can easily handle 1,000 atoms at 

once, without noticeable drop of performance, achieves a 40-

times increase of information loaded. 

 

TABLE III. Improved performance of game engine based 

viewer at the atomic level (the original viewer cannot handle 

more than 25 atoms) 

 

Program 
25 

Atoms 
500 

Atoms 
1000 
Atoms 

1500 
Atoms 

Original Genome Viewer 

FPS Range 
60-120 0 0 0 

Game Engine Genome 
Viewer’s FPS Range 

60       60 60 30 

 

From these tests, it is obvious to see that using a game engine 

with sophisticated rendering techniques commonly used in 

games greatly expands the capacities of the former Genome3D 

viewer. The key to the performance enhancement was breaking 

apart and grouping the large amount of data in a more 

sophisticated way, which was facilitated by using an octree for 

spatial information. Also, modern game engines typically 

offload most rendering tasks to GPUs, which are becoming 

computationally more powerful and can process multiple 

rendering requests at once. In this way, more data could be 

loaded, managed, and displayed at any given time yielding 

significantly improved utility.  

Conclusions 

In this paper we addressed the problem of visualizing genomes 

in three-dimensional space, and the potential benefits to such an 

approach. We solve this problem by applying techniques and 

tools that are commonly used in video games, which include 

using a commodity game engine, partitioning data with an 

octree, and grouping the files to perform multi-tier level of 

detail analysis (LOD). The game engine has fast rendering 

systems and also allows for simple and fast multi-platform 

support. Organizing the data with an octree reduced resource 

consumption allowing larger data sets to be viewed with visual 

fidelity and responsive performance. Finally, recognizing the 

data was given in three different formats provided another level 

of detail such that the system was able to segregate displayed 

content based on context. Finally, we showed that using this 

application compared to the older non-game application out 

performs in situations where the amount of data being viewed is 

non-trivial, and is able to load much more data before losing 

responsiveness. With our application we have provided 

researchers with a tool that could be used for valuable genomic 

work.  
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