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Interactions between lipids and membrane proteins play a key role in 
determining the nanoscale dynamic and structural properties of biological 
membranes. Molecular dynamics (MD) simulations provide a valuable tool for 
studying membrane models, complementing experimental approaches. It is now 
possible to simulate large membrane systems, such as simplified models of 15 

bacterial and viral envelope membranes. Consequently, there is a pressing need 
to develop tools to visualize and quantify the dynamics of these immense 
systems, which typically are comprised of millions of particles. To tackle this 
issue, we have developed visual and quantitative analyses of molecular positions 
and their velocity field using path line, vector field and streamline techniques. 20 

This allows us to highlight large, transient flow-like movements of lipids and to 
better understand crowding within the lipid bilayer. The current study focuses 
on visualization and analysis of lipid dynamics. However, the methods are 
flexible and can be readily applied to e.g. proteins and nanoparticles within 
large complex membranes. The protocols developed here are readily accessible 25 

both as a plugin for the molecular visualization program VMD and as a module 
for the MDAnalysis library. 

1 Introduction  

Our concept of biological membranes has evolved over the last 40 years, from the 
“fluid mosaic model”1 to a more nuanced view of a laterally heterogeneous patchwork of 30 

proteins and lipids2,3. Membrane protein-lipid interactions are an area of intense 
research4,5 with a number of membrane characteristics currently under scrutiny, including 
lateral diffusion of lipids, formation of nano-domains, and local membrane curvature6,7. 
The nature of lipid diffusion within membranes remains a topic of active discussion, with 
two major models being proposed: 35 

- The rattle in a cage diffusion model describes short-range lipid movement: a lipid 
jumps from one location to another when it is able to escape from its immediate 
neighbours; and 

- The flow-like diffusion model describes lipid movement at longer ranges: lipids can 
form loosely-packed clusters that move in concert, analogous to the movement of 40 

current.  
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While it remains difficult to experimentally assess the former theory, recent 
computational8,9 and experimental10 results tend to support the flow-like diffusion model. 
There has been a gap between the properties observable via computational approaches 
compared to those accessible via experiments11. However, this gap is now closing as 
increasing computational power provides access to simulations of biologically relevant 5 

times and length scales. To model large membrane systems, it is possible to use different 
levels of granularity in molecular dynamics (MD) simulations, ranging from all-atom12 
(AT) simulations to coarse-grained13 (CG) models in which small numbers of atoms are 
grouped into representative particles, to Dissipative Particle Dynamics (DPD) 
simulations in which lipids may be modelled by just three14 to eight particles15. As a 10 

result, the size and the complexity of computationally-accessible membrane systems are 
also increasing16.  The membrane simulation field has thus progressed from e.g. a single 
α-helix embedded in a small patch of membrane for a duration of 1-2 ns17 to the 
modelling of e.g. photosynthetic membrane vesicles18 and HIV virion membranes19,20. At 
this level, visual analysis becomes challenging21,22. Despite using the latest graphical 15 

hardware for efficient system display23-26, interpretation of very large membrane 
simulations by visual inspection is becoming unproductive due to their intrinsic 
complexity. There is therefore a substantial motivation to provide a simple and visually 
clear methodology to understand the complex dynamics of large-scale membrane 
systems. The challenge of computational visualization of very large systems has already 20 

been addressed in a number of areas of physics27,28. To some extent, visualization of very 
complex biomembrane systems, especially in the context of results from MD 
simulations, is less well developed. For example, the display of lipids is often limited to 
the representation of static states (i.e. simulation snapshots) and does not effectively 
render the complex dynamics of such systems. Progress has been made e.g. using arrows 25 

to depict discretised movements8 but approaches are needed to more fully capture 
complex dynamical processes. 

 
Fig. 1: Membrane simulation systems discussed in this study. (A) A planar membrane containing 
256 OmpA proteins (cyan) in a bilayer of 28,260 molecules of POPE (brown) plus 9,420 molecules 30 

of POPG (red). (B) A spherical lipid vesicle comprised on 45,349 lipids (see Table 1 for details) 
including sphingolipids (grey), zwitterionic (brown) and anionic (red) phospholipids and cholesterol 
(green). 
 

Here, we describe methods for informative visualization of lipid motion in 35 

large and complex systems using approaches derived from biomolecular simulations, 
physics, and computer visualization. We have developed visual and quantitative analysis 
methodologies for both molecular positions and their velocity field using vector field and 
streamline techniques. This allows us to highlight substantial and transient flow-like 
movements of lipids and to potentially assess the effects of crowding within models of 40 
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bacterial cell membranes29. We have evaluated and applied our methodology using two 
examples of large biomembrane systems recently simulated in our research group: First, 
a model of a crowded, planar bacterial membrane with lateral dimensions ~1200 Å and 
containing 256 copies of a simple bacterial outer membrane protein (OmpA); second, a 
300 Å radius vesicle the lipid composition of which matches the influenza virion 5 

membrane as determined in recent lipidomics studies30 (see Fig. 1). With membrane 
surfaces of more than 10,000 Å2 (~14,400 Å2 and ~11,300 Å2 for the planar membrane 
and the vesicle respectively), these systems are representative of the largest currently 
simulated by CG approaches31-33. Furthermore, these systems provide two distinct test 
cases, namely a planar membrane with a simple lipid composition but with crowded 10 

membrane proteins compared with a vesicle system containing a more complex lipid 
mixture with a high concentration of cholesterol (see Methodology for full details). This 
allows us to test the robustness of our approach with rather different biomembrane model 
systems.  

2 Methods 15 

2.1 CG MD simulations 

We have used two systems that differ in terms of shape and composition: a 
planar lipid bilayer with embedded OmpA proteins that mimics a crowded bacterial 
membrane, and a vesicle mimicking the cholesterol-rich lipid bilayer component of an 
influenza virion membrane but without any embedded proteins. Due to these intrinsic 20 

differences, the two systems are expected to exhibit distinct dynamic behaviour. Hence, 
they provide realistic test cases to evaluate our approach.    

 

2.1.1 Planar membrane 

This model mimics a large patch of a crowded bacterial membrane. The initial system 25 

size was 1180 x 1180 x 104 Å3 and contained 37,680 lipids (1:3 POPG to POPE) and 256 
OmpA proteins, giving a protein:lipid ratio of roughly 1:150 (see Table 1). The total 
number of particles is ~1,202,500 (~577,900 excluding solvent). The system was 
modelled using GROMACS 4.5.3 in combination with a modified in-house version of the 
MARTINI forcefield34,35 at a temperature of 313K. Bilayers of this size cannot be readily 30 

self-assembled directly due to system instability caused by pressure coupling and initial 
fluctuations. Instead we self-assembled and equilibrated a smaller patch containing 
approximately 150 lipids which was then replicated. POPE and POPG do not phase 
separate and are randomly distributed within the bilayer during this initial equilibration. 
The small lipid patch was then analyzed for leaflet asymmetry and corrected such that the 35 

numbers of lipids in the two leaflets were balanced. The patch was then tiled to form a 
4x4 patch containing ~2,500 lipids followed by a second equilibration and another round 
of tiling, resulting in a final patch containing ~38,000 lipids. The final equilibration was 
performed for 100 ns. During each round of equilibration after membrane tiling, the 
system was observed to shrink modestly in the x-y plane and expand slightly in the z 40 

plane. The final system was simulated for 1 µs, during which frames were saved every 
0.2 ns giving a 5000-frame trajectory for subsequent analysis. 
 

2.1.2 Vesicle 

In the course of constructing a full-scale computational model of a human 45 

influenza A virion, a vesicle with lipid composition matching the experimentally-
determined influenza A lipidome30 was produced. The details of this construction process 
will be described in more detail elsewhere (Reddy et al., ms. in preparation). In brief, the 
vesicle construction process starts off with random placement of lipids within two 
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leaflets of a spherical system with an outer diameter of ~740 Å. The random seeding of 
lipid positions within a set of spherical geometric constraints was handled by employing 
the Packmol program36 for addition of lipids interleaved with energy-minimization in 
GROMACS. The asymmetric lipid distribution in the vesicle was based on the data of 
Gerl et al.30. Thus the inner leaflet contains POPS, DOPX (ether-linked DOPE) and 5 

DOPE with an approximate 3:2:1 ratio, while the outer leaflet contains sphingomyelin 
(SM) molecules (with saturated C16 chains). Cholesterol (CHOL) molecules were 
distributed between the two leaflets and comprise >50% of all lipid molecules in the 
vesicle. Some mixing (i.e., flip-flop) of leaflet components occurred during the 
equilibration process. An inner core of restrained CG particles was employed to mimic 10 

the interior of the virion which was not modelled explicitly. The system contained 
~3,006,000 CG particles in total (~500,000 without solvent). Lipids were initially 
somewhat sparsely packed, forming a well-packed lipid vesicle (~600 Å outer diameter) 
after a 300 ns equilibration in water at 323 K using GROMACS 4.5.537 and the 
MARTINI 2.1 forcefield38,39. The resultant lipid vesicle model was simulated for 5 µs at 15 

295K, with the final microsecond being analysed in the current study.       
 

2.2 System pre-processing 

It is necessary to perform a series of pre-processing operations on the MD 
simulation data prior to employing our analysis methodologies. First, for each system, 20 

the motion of the centre of mass was removed to avoid possible artefacts. Subsequently, 
we performed low-pass filtering to remove high frequency noise using the GROMACS 

g_filter function. The filter shape is cos ���
� � + 1 between -N and +N, where N is the 

number of frames, as detailed in Affentranger et al.40. In order to study the effect of such 
filtering on visual results, we have filtered the two systems over a series of time scales: 25 

10 frames, 20 frames and 40 frames corresponding respectively to 2 ns, 4 ns and 8 ns. 
The largest window used corresponds to 0.8% of the simulation. To study the behaviour 
of each lipid membrane leaflet independently they were separated using in-house python 
code with the MDAnalysis library41. 

 30 

2.3 Diffusion analysis and clustering 

The mean square deviation (MSD) was calculated using the g_msd module in 
the GROMACS 4.5.4 package37,42. This module was previously employed to calculate 
lipid diffusion coefficient43,44  using the Einstein relation.  “Restart” parameters of 2 ns 
and 5 ns were compared to measure their influence on the MSD curve and diffusion 35 

coefficient. Protein clustering was quantified using an in-house tcl script. To do so, the 
distance between the centre of mass of each protein was calculated and if this distance 
was smaller than the radius of the protein plus 5 Å we assumed that the two proteins 
were in contact. Each protein neighbour at time t was stored and the clusters were 
identified by a connectivity test. The calculations were performed every 10 ns on the 1 µs 40 

trajectories. 
 

2.4 Algorithm implementation and availability 

The algorithms presented here are primarily implemented in both Tcl and 
Python. The Tcl code will be incorporated as a plugin for the molecular visualization 45 

program VMD45 while the Python code is designed to be a module for the MDAnalysis 
library41. Scripts as well as documentation are available at the address: 
http://sbcb.bioch.ox.ac.uk/flows/ 
 

 50 
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2.4.1 Path line visualization  

The path line visualization is currently only implemented in VMD. We have 
used VMD 1.9 to display and calculate the performance of such rendering. In the case of 
the planar membrane we used a tail of 5 frames (1 ns) and a mean displacement value of 
1.2 Å. To obtain an equivalent rendering for the vesicle system, we chose a window size 5 

of 20 frames (4 ns) and a mean displacement value of 0.5 Å.  
 

2.4.2 Vector field visualization  

The vector field visualization is executable from within either VMD or a 
Python module depending on MDAnalysis. For VMD, it is based on Tcl code launchable 10 

from the VMD plugin. For this representation, two pieces of code are available: a 2D 
version and a 3D version. The 2D version flattens all the z values on one layer while the 
3D version use the complete 3D coordinates. Plotting in the MDAnalysis module 
(written in Python) leverages the matplotlib library in 2D46 and the MayaVi47 package in 
3D.  15 

 

2.4.3 Streamline visualization  

Streamline visualization is executable from within either VMD or a Python 
module depending on MDAnalysis. Our in-house Python code used the matplotlib46 
streamploti function to produce 2D streamlines and, for the 3D streamlines visualization, 20 

we used the MayaVi package47.  

3 Results and Discussion 

In parts 3.2 to 3.4 we focus on the movement of lipid phosphate headgroup 
particles for one leaflet to demonstrate our method on a simple case. However, the 
method can be applied to other cases like water molecules diffusion. 25 

 

3.1 Global analysis of dynamic behaviour of lipids and proteins 

Prior to applying our flow analysis tools, we will briefly describe the dynamic 
and clustering behaviour of lipids and proteins in our simulation systems. 

 30 

3.1.1 Clustering of proteins 

The planar membrane model (1:150 protein-lipid ratio or ca. 15% of the 
surface occupied by proteins) provides an example of a relatively crowded membrane 
system (see Fig. 2). Our final snapshot at 1 µs depicts a crowded membrane environment 
with numerous clusters of OmpA proteins, qualitatively consistent with recent results 35 

from high-speed AFM48 studies of protein clustering in bacterial outer membranes. 
Visual inspection reveals approximately linear clusters within the bilayer plane. 
Comparable chains of interacting proteins were recently highlighted by computational 
work for smaller systems29. At the end of the simulation, the system consists of 24 single 
proteins, 27 dimers, 25 trimers and 9 tetramers (see Fig. 2-C). There are also 11 clusters 40 

formed by more than four proteins. The largest cluster (of 9 proteins) is highlighted in 
Fig. 2-A.  

                                                 
ihttp://matplotlib.org/examples/images_contours_and_fields/streamplot_demo_features.html 
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Fig. 2: Protein clustering analysis for the planar bacterial membrane model. (A) VMD snapshot of 
the planar membrane at the end of the 1 µs, with the proteins shown in orange. (B) Aggregation of 
proteins as a function of time. Each line represents a unique protein and the colours illustrate each 
protein’s association to a cluster of a certain size. A cluster of size one corresponds to a single, 5 

unclustered protein. (C) The frequency of occurrence of clusters of different sizes as a function of 
time. 
 

We also calculated the clustering of these proteins as a function of time (see 
Fig. 2 B, C). Analysis reveals that the number of monomeric OmpA proteins decreased 10 

rapidly (also see Sup. Movie 1), with conversion of monomers to dimers reaching a 
maximum after ~250 ns. Dimers recruit additional monomeric proteins to form trimers, 
and may also aggregate to form larger clusters. After 200 ns, we observed the formation 
of tetramers followed by the formation of higher order clusters at ~300 ns. The clusters 
continued to evolve reaching a nearly steady state by the end of the simulation. 15 

 

3.1.2 Diffusion of lipids and proteins 

We have estimated the diffusion coefficients for proteins and for lipids in the 
two systems (see Table 1). As anticipated, the OmpA proteins diffuse more slowly than 
lipids in the planar membrane, with the two lipid species, POPE and POPG, showing 20 

similar diffusion characteristics. We have also calculated the diffusion coefficient of 
these lipids in each leaflet separately and the results were equivalent to the ones in Table 
1. The diffusion coefficient for OmpA proteins is in agreement with the value of ~1.5 x 
10-7 cm2.s-1 obtained recently for a matching system composition of smaller membrane 
size29.   25 

The vesicular lipid diffusion coefficients are clearly lower by a factor of 20 
compared to the planar membrane. Although this may be explained in part by the lower 
temperature (295K for vesicle; 313K for planar membrane) it is mainly due to the high 
content (> 50% molecular species) of cholesterol49. These diffusion coefficients are not 
far the value of 0.7 x 10-7 cm2.s-1 obtained using magic angle spinning NMR spectra 30 

experiments on an influenza lipid vesicle at 290 K50. If we compare between lipids, the 
differences in diffusion coefficients relate to the asymmetry in the vesicle. The inner 
leaflet is mainly composed of POPS, DOPE and DOPX lipids while the outer leaflet is 
largely comprised of SM, with CHOL present in both leaflets but at a higher level in the 
outer (62%) relative to the inner (38%) leaflet. So, the diffusion coefficients reveal an 35 

inner leaflet which is ca. 2-3 times more diffusionally mobile than the outer leaflet.  
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Table 1: Lateral diffusion coefficients for the membrane constituents of both systems. 
The values of Dxy were derived from the MSD curves shown in Supporting Information 
Fig. S1, by fitting these curves between 100 and 900 ns for each system. The error 
estimates are included in brackets.  5 

Components Number of molecules Dxy (10
-7 cm2.s-1) 

Planar membrane 

OmpA 256 2.04 (±	0.26) 
POPE 28260 5.16 (± 0.14) 
POPG 9420 5.14 (±	0.14) 

Vesicle 

POPS 6802 0.23 (±	0.01) 
DOPX 4081 0.24 (±	0.01) 
DOPE 2268 0.24 (±	0.01) 
CHOL 23804 0.17 (±	0.01) 
SM 8389 0.08 (±	0.01) 

 

 Whilst the calculation of average diffusion coefficients can provide insights 
into the overall lateral fluidity of a membrane it does not reveal more complex spatial and 
temporal variations in behaviour for a given species in different regions of the membrane 
(e.g., proximal versus distal to proteins). Furthermore, analysis of e.g. lipid clustering is 10 

complex due to their loose, dynamic packing8,9,51. For these reasons, we have applied 
specialized visualization methodologies to our MD simulation systems to provide a more 
detailed insight into the dynamic properties of lipids in membranes. Thus the dynamic 
dissimilarities of the two membrane systems we have simulated provide test cases to 
assess the robustness of our approach. 15 

 

3.2 Following each lipid by path line visualization 

Current published methodologies to visualise the displacement of lipids fall in 
two categories:  

1) Using arrows to represent individual lipid displacement between a time t and a 20 

time t+dt 8,9,52,53. 
2) Using lines to connect the different positions of individual lipids over 

time8,54,55. 
The latter is generally used to present an overview of the global region explored by a 
lipid while the former is used to depict lateral displacements of lipids in a dedicated area 25 

between time t and t+dt. 
We have combined these two representations to a single depiction that can 

evolve as a function of time to enhance visual interpretation of molecular mobility in a 
membrane. In practice, lines (or cylinders) depict the path of lipids over time like a tail. 
For a defined time window, positions of a lipid at different times (ti through tn) are linked 30 

to the current time, t (see Fig. 3 A). At time t+dt the earliest element is removed while a 
new line is added at the front of the tail segment (see Fig. 3 B). We have coloured 
segments and set the thickness of the tail based on the displacement between two time 
steps (see Fig. 3 C). This highlights changes to lipid motion over time and removes the 
noise of quasi-static lipids. 35 
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Fig. 3: Path lines and vector field construction. (A) Construction of path lines. (B) Evolution of a 
path line in function of the time. (C) Lipid path lines around proteins. For (B) and (C), colour and 
thickness of the tail are function of lipid displacement between 2 time steps. (D) Simple 2D 
schematic of the creation of the vector field. After defining a grid, the centre of mass of each lipid 5 

selection (in each grid square) is calculated at time t. Then, the centre of mass of the same selection 
is calculated at time t+dt, and the two centres are used to define the vector. 
 

This first approach allows visualizing large and transient correlated lipid 
movements for the planar system (see Fig. 4 A and Sup. Movie 1). These transient 10 

movements can be linear as well as rotational - i.e. vortices. This behaviour has been 
reported in previous computational56,57 and experimental58 studies. Furthermore, Sup. 
Movie 1 highlights transient correlation between the lipid movements and the 
displacements of proteins. The translational and rotational motions of the lipids appear to 
be correlated with comparable motions of the proteins. A more detailed analysis of such 15 

phenomena will be presented elsewhere (Goose, Chavent & Sansom, in preparation). In 
contrast, the vesicle system presents only small changes and did not exhibit large well-
defined coherent lipid motions (Fig. 4 B and Sup. Movie 2). Instead, this system 
appeared to present large patches of motionally stable lipids.  

In some respects, analysing the membranes in these systems may be likened to 20 

analysing macroscopic systems such as oceans or atmosphere in which transient flows 
appearii. To study such flow formation, it is common to use evenly-spaced probes 
depicting the underlying vector field.   

 

                                                 
ii For a comparison see http://www.nasa.gov/topics/earth/features/perpetual-ocean.html or 
http://hint.fm/wind/ 
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Fig. 4: Path line visualization of a filtered (8 ns time window) dataset. (A) Path line rendering of the 
upper leaflet of the large planar membranes containing 256 OmpA proteins. (B) Path line rendering 
of the outer leaflet of the large vesicle membrane. Movies of (A) and (B) are available in the 
Supplementary Material. Snapshots were captured with the tcl plugin in VMD. 5 

 

3.3 Approaches for following a group of lipids 

3.3.1 Vector field visualization  

In material physics, vector field visualization has been used to detect phase 
transitions in large ferroelectric materials27.  In computational biology, vector fields can 10 

be used to depict evolution of regulatory networks59 or  to study the role of water 
molecules in protein folding processes 60,61. Here, we use a vector field approach to 
follow a group of lipids and thereby simplify the representation of their dynamics. 

 
Fig. 5: Vector field visualization using a 20 Å grid resolution. (A) 2D results on the planar 15 

membrane. (B) 3D results on the vesicle system, for which a transparent sphere was added to clarify 
the visualization. Snapshots were captured with the tcl plugin in VMD.  
 

Fig. 3 D presents the simple steps used to create a vector field: 
1) The systems were divided into grids. For each cell i (square in 2D or cube in 3D), we 20 

calculate the centre of mass, 
������, of the constituent lipids at a time t. 

2) Then, we calculate 
���������,	the centre of mass of the same selection at time t+dt,  
3) These two centres of mass are used to define the vector at time t following the 
equation:  

������� � 
��������� �	
������       (1) 25 
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The vector origin is the centre of mass of the lipids at time t. In this paper, we have 
chosen a dt = 0.2 ns (i.e. 1 frame).  This value is quite small as we wish to avoid 
potentially large spread of the lipid selection at t+dt. For the examples presented below 
we have used a grid with a resolution of 20 Å.  5 

This visualization has some advantages over the path line visualization. 
Reducing the number of graphical objects (i.e. vectors representing a group of lipids here 
instead of lines corresponding to each lipid in the previous representation) evidently 
clarify the representation (Fig. 5 and Sup. Fig. 2). It is especially valuable for the 
creation of a static picture. Furthermore, this representation provides more insights 10 

because it is possible to track the direction of the lipid movements using arrows. This 
vector field can be then used as input to perform more advanced rendering. 

 

3.3.2 Streamlines visualization 

Mathematically, streamlines are curves instantaneously tangent to the motion 15 

vectors. Streamline curves have been used for several decades to represent flow 
patterns62. A streamline is a curve that describes the trajectory of a particle in a stationary 
vector field at a given time. More formally, given a 2D time-dependent vector field v(x,t) 
= (vx,vy), a streamline S is a parametric curve S(�) defined at time t and initiated from a 
seed point p. S(�) is given by the equation:  20 

 
��
�� � 	vvvv�����,  � with ��0� � " 

 
Any sample point of the streamline � is given by:  
 25 

��#� � ��0� +	$ vvvv�����,  �%�&
'   

 
with the curvilinear coordinate 	#	 ∈ [�	#*, #+] and #*, #+ 	≥ 0. A standard Runge-Kutta 
integration schemeiii is used to sample a streamline backward (#	 ∈ [�	#*, 0]) and forward 
(# ∈ [0, #+]) from its seed point. We can notice that in function of the algorithm used the 30 

streamlines can be integrated in one direction or in both directions. Then, the placement 
of the streamlines constitutes a key step and has been studied for a long time63.   

An analogous approach, display of field lines, is used in computational biology 
to depict electrostatic fields calculated with algorithms such as the Adaptive Poisson-
Boltzman Solver (APBS)64. Streamlines were also recently used to describe water flows 35 

revealed by MD simulations of photosystem II65.  
It is possible to display streamlines in 2D or 3D. This streamline representation 

can combine the advantages of the two previous representations. Like the vector field, it 
follows a group of lipids but not all the lipids while, like the path lines, the streamlines 
help to better delineate the “flow” pattern of the lipids creating continuous lines between 40 

discretised vectors (Fig. 6).  
 

                                                 
iii http://en.wikipedia.org/wiki/Runge-Kutta_method 
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Fig. 6: Streamline visualizations for the planar membrane and the vesicle system. (A) and (C) 2D 
visualization of the upper leaflet of the planar membrane system. (B) and (D) 3D visualization of the 
vesicle outer leaflet. (A) and (B) are rendered using in-house Python code employing the 
MDAnalysis module and matplotlib/MayaVi while (C) and (D) are displayed using VMD program.  5 

For (A) and (D) associated movies are available in Supplementary Material.  
 

For the planar membrane, this visualization enables display of both linear and 
circular nanometer-scale movements of lipids (Fig. 7 A and B) as well as small protein-
proximal vortices (see Fig. 7 C). Sup. Movie 3 shows that the correlated lipid patterns 10 

are transient (nanosecond scale lifetime) and constantly changing. Furthermore, visual 
inspection of the results tends to show that these flow patterns are correlated with areas 
of substantial lipid displacement. The streamlines rendering also highlight how the lipid 
flows can bridge several proteins far away from each other in large correlated motions 
(see Fig. 6 A and C and Sup. Movie 3) extending the model of protein and lipids 15 

dynamic complexes66 to transient networks of protein and lipids.  
The streamline visualization did not depict very large nanometer-scale flow for 

the vesicle system. It was only possible to display little vortices (see Fig. 7 D and Sup. 
Movie 4). This result is in agreement with the path line visualization and the calculation 
of the diffusion coefficient. It is also possible to use streamlines to compare correlated 20 

lipid motions between the two leaflets of a membrane (see Fig. 7 D). 
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Fig. 7: Lipid motions patterns highlighted by the streamline visualization. (A) Large linear 
correlated motions crossing the entire system (for y~300 Å and y~900 Å). (B) Large circular 
correlated motions (from 0 to 800 Å in x and 400 to ~1100 Å in y). Same snapshot than Fig. 4 A and 
Fig. 5 A. (C) Vortex around a protein. (D) Comparison of upper and lower leaflets highlighting 5 

correlated areas across the bilayer. On left, upper leaflet; on right, lower leaflet; in the middle 
superimposition of the lower and the upper leaflet. Snapshots made with the MDAnalysis Python 
plugin.  
 

3.5 Analysis tool to complement the visualizations: leaflet correlations  10 

Streamline visualization revealed interesting flow lipid patterns. However, the 
representations may contain considerable information and it is therefore important to be 
able to isolate selected regions for comparisons. There have been several proposals to 
filter streamline data to aid such analysis (for examples see refs67,68). We applied 
comparable methodology to our systems to simplify the streamline representation using 15 

calculations based on the vector fields. As noted above, streamline visualizations can 
highlight correlated lipid motions between two leaflets. Here, we filter the data to 
highlight only the areas where the lipid motions are correlated above a certain threshold. 
 

One can define 
&���, the leaflet correlation function at time t:  20 

 


&��� � 	 *� ∑ /���0�1�	∙	3��0�1�	
4/���0�1�443��0�1�4

�
�5* 		   (2) 

 
where ∙ denotes the scalar product of vectors ������� and 6����� as defined by equation (1). 
������� and 6����� are lower and upper leaflet vectors, respectively. N is the number of non-25 

empty cells in the grid. This type of correlation was recently used to identify correlated 
intermolecular dynamics of short polymer chains69. Note that �1	 7 
&��� 	7 +1, where -
1 represents movements in opposite directions and +1 represents movements in the same 
direction. A 
&��� value near 0 depicts no correlation between the leaflets.  

For the planar membrane we used the previously-defined Cartesian grid. Due 30 

to the shape of the vesicle, we used spherical coordinates (see Supplementary Material). 
To select the same areas of interest, we chose the same θ and φ between the two leaflets 
while changing the radial distance r to correspond to the average radius of phosphate 
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headgroup particles in each leaflet. After obtaining these coordinates, we created cubes 
of dimensions 20 Å to select the lipids for vector calculations (as described in section 
3.3).  

 
Fig. 8: Inter-leaflet lipid flow correlation assessment for the planar bilayer (blue) and the vesicle 5 

(red) systems. The bold lines depict the averaged values on 10 steps.  
 

Fig. 8 presents the inter-leaflet lipid flow correlation results for each system 
using data filtered over an 8 ns time window. There is a high correlation between the two 
leaflets in the case of the planar membrane (with 
&��� 8 0.6) while, for the vesicle, the 10 

correlation values are lower, with 
&���	~	0.4. These inter-leaflet correlations are rather 
more pronounced than those seen in simulations of a simple DOPC bilayer system70. The 
difference in the magnitude of the correlations between these two systems may be linked 
to the differences in their compositions. As noted above, the planar membrane has a 
symmetric, relatively simple lipid composition. In contrast the lipid composition for the 15 

vesicle system is highly asymmetric (see above), with a more slowly diffusing outer 
leaflet which is nearly twice as rich in cholesterol as the inner leaflet. We also note that 
the planar membrane correlation may be slightly overestimated due to the flattened 3D 
coordinates in the x-y plane. 

The analysis of correlations may be used to filter the streamlines by using a 20 

cut-off threshold for these inter-leaflet lipid correlation values. For example, for the E. 

coli bilayer system, we can display the streamlines with a 
&��� value superior to 0.8 (see 
Fig. 9). This represents around 50% of vectors used to define the streamlines. This 
highlights large inter-leaflets patterns visually correlated with the areas of high velocity. 
We postulate that the slower diffusion of the proteins can be, in part, explained by the 25 

fact that sometime the flows between leaflets are not correlated which can have an 
influence on trans-membrane proteins. So, using this filtering can help to select only high 
correlated parts of the membrane for further analysis. 
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Fig. 9: Examples of correlated dynamics for the planar membrane visualized using VMD. Coloured 
streamlines depict the correlated parts between the two leaflets (with 
&��� 8 0.8) while the 
remaining streamlines are coloured in gray.   
 5 

3.7 Low pass filtering 

In this article we have used the filtered data with the largest sampling window 
(8 ns) for clarity, but it is important to note that the filtering granularity can influence the 
results. Correlated lipid motions have previously been highlighted for different time 
scales: over picoseconds10,69, nanoseconds8,9, and hundreds of nanoseconds9.  We have 10 

therefore tried different filters to see if this can highlight a particular flow pattern on a 
specific time scale. Here, we examine the effect of the filter window size on the 
representation of the data. 

We have used low pass filtering with the GROMACS g_filter function to filter 
the two systems over a series of time scales: 10 frames, 20 frames and 40 frames 15 

corresponding respectively to 2 ns, 4 ns and 8 ns. This approach can remove high 
frequency motions of lipids and potentially influence the results of this study. This type 
of method has previously been employed to lipid membrane-based MD simulation 
systems71 and for polypeptide folding40. Recently, Gypsa and colleagues have also used a 
low pass filter to highlight different characteristics of membrane curvature72.  20 

Filtering has no effect on the diffusion coefficients calculated for our 
simulations, with any discrepancies between filtered and unfiltered values falling within 
the bounds of the estimated error (data not shown). We calculated the leaflet lipid motion 
correlation values for different filter window sizes (see Sup. Fig. 3). The results for the 
planar membrane indicate that the leaflet correlation is affected by the filtering. The raw 25 

data presents a leaflet correlation value greater than 0 (
&��� ~ 0.3), consistent with some 
correlated lipid movement between leaflets in the absence of a filter. This value 
drastically increases with the addition of even a short time window filter (
&��� ~ 0.55 for 
2 ns filter). Increasing the time window size of the filter further does not lead to a 
substantial increase in calculated leaflet correlation, consistent with potential 30 

convergence to a consensus correlation value (
&��� ~ 0.6 for 4 ns filter and 
&��� ~ 0.63 
for 8 ns filter). 

We reused equation (2) to compare the data obtained with different filter time 
window sizes within a single leaflet. To do this, instead of comparing vectors from 2 
different leaflets, we compare vectors for the same leaflet but with different filter 35 

windows. We called this function filter correlation: 
>���. The raw data has a small 
correlation with 8 ns filtering (
>��� ~ 0.1) but this value drastically increases even for a 
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small filter over 2 ns (
>��� ~ 0.5) and is even higher for data filtered on a 4 ns timescale 
(
>��� ~ 0.75)  (see Sup. Fig. 4). Indeed, visual inspection of the streamline plots 
indicates conserved patterns for all the filtered data (see Sup. Fig. 5). The effect of this 
filtering is to remove high frequency noise, which can potentially be related to jiggling 
motions of lipids around their positions. Thus, the filtering can allow focusing of the data 5 

representation over longer time scale motions rather than residual noise from local 
fluctuations.  

 

3.8 Algorithm comparison and efficiency 

We have tested our implementations on an Intel 6 cores (12 threads) i7-3930K 10 

with a Geforce GTX 680. The tcl code was used on 1 thread while the Python code, 
implemented to handle multithreads calculation, was tested on 1 and 12 threads (see Sup. 
Table 1).  The calculation of vectors are clearly faster for the Python code than for the tcl 
code, this can be in part explained by the use of Numpy73 to efficiently deal with large 
arrays in the Python code. So, we believe that there is room for improvement for the tcl 15 

code in translating some parts of the calculation in C/C++ or CUDA language. At the 
inverse the visualization of streamlines is clearly faster using VMD: this is due to an 
implementation in C in the core of the program which is well optimized in comparison to 
the Matplotlib/MayaVi code. We can also notice that for our systems the use of 
multithread calculation with Python only improves the results by a small amount. The 20 

VMD visualization takes a little bit longer when high quality pictures (as presented in 
this article) are rendered using the VMD ray-tracing engine called Tachyon74.  
 

3.9 Grid size and time scale parameters 

We tried different grid sizes for the presented CG models (data not shown). A 25 

resolution of 20 Å seems appropriate. This value is coherent with the work of Roark et 

al. defining correlated lipid motions with a length of 25 Å70. Furthermore, this resolution 
value can be linked to the average number of lipid headgroups in each grid cell. This 
value is 5.7 for the planar membrane. The use of a higher grid resolution of 10 Å resulted 
in very few lipid headgroups in a given cell, which can defeat the purpose of analysing 30 

lipids in unison. Conversely, a lower grid resolution of 40 Å produced reasonable results, 
albeit less accurate than at 20 Å resolution. So, a minimum 2D system size for use of the 
streamline visualization with lipids is approximately 200 Å2 - giving a maximum grid of 
100 cells. As we have seen with the planar membrane example system, far greater 
dimensions are well suited for such a visualization. For the vesicle system, the number of 35 

lipid headgroups per cell is 21,5 on average (18 for the outer leaflet and 25 for the inner 
leaflet). So, we could have diminished the cube size to increase the resolution but we 
preferred to keep the same grid (20 Å side) to compare the two systems with the same 
conditions. Furthermore, at this resolution, the MayaVi program has difficulty rendering 
the scene. 40 

In terms of the time scale over which visualizations are produced, in this paper 
we have observed that two consecutive frames (0.2 ns) produce an acceptable result. We 
have not tested our analyses over much longer time scales but we will investigate this in 
a future study.  
 45 

3.10 Combining the streamline visualization with other analyses: example with 

membrane undulations 

Correlating diffusional streamlines with visualization of other membrane 
parameters can be used to highlight subtle dynamic behaviours. In Fig. 10, we have 
colour-mapped the vertical displacement (z coordinate values along bilayer normal) of 50 

the membrane in the presence of streamlines. By inspection, the diffusional streamlines 
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seem to evolve in a manner which correlates with the membrane undulations (See Sup. 
Movie 5) and can circulate around vertical undulations of the membrane (see Fig. 10). 
The influence of the surface shape on lipid dynamics has been highlighted by 
experimental results75,76. This could be related to membrane tension and pressure with 
the less curved parts of the membrane presenting fewer constraints and allowing the 5 

lipids to circulate more easily. It will therefore be of interest to examine complex 
membranes by combining visualization of streamlines with analyses such as the 
calculation of pressure fields and tension lines77, area per lipid visualization78 or lipid 
phase analysis79.  

 10 

Fig. 10: Streamline visualization coupled with height map for the planar membrane. The colours 
represent the vertical z values of the membrane. This representation highlights the undulations of the 
membrane in the z direction. High displacement parts of the streamlines are coloured in white. An 
associated movie is available in Supplementary Material. 15 

 

3.11 Future Directions 

We have focused this study on the collective behaviour of lipids in bilayer 
membranes, and are extending this work to analyse the effects of such lipid flows on the 
diffusion and the clustering of membrane proteins (Goose et al., in preparation). We 20 

suggest that these nano-flows can be a more general phenomenon. As the visualisation 
and analysis method we have described is flexible, it should be possible to apply this 
approach to other large-scale ensembles of molecules. For example, one might analyse 
data from simulations of water or solutes (e.g. ions) in the vicinity of transbilayer pores 
to explore possible nano-flows. In particular, as larger scale membrane simulations 25 

become more practicable (and common) it will be important to model such a systems 
using all-atomistic simulations in order to evaluate the robustness of our approach to 
different levels of granularity. We also plan to develop a new GPU-accelerated 
streamline integration and rendering engine for VMD using CUDA, in order to improve 
the interactive calculation and rendering performances. 30 
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4 Conclusion 

We have presented a new visualization approach to aid our understanding of 
the complex dynamic properties of biological membranes. We have illustrated our 
analysis via two different systems with contrasting lipid compositions, shapes and 
dynamics. Our methodology has been successfully applied to render lipid motions for 5 

these two systems, and allows us to highlight large concerted lipid motions within the 
plane and between the two leaflets of a membrane. The lipid motions were seen to be 
linear as well as circular (i.e. vortices) in nature and may be linked to membrane 
deformations perpendicular to the bilayer plane. Finally, we have shown that the leaflet 
asymmetry in lipid composition can be related to an asymmetry in term of dynamics.  10 

Our set of tools is not intended to solve by itself the complex question of 
transient lipid flows, but it can be used to focus attention on particular aspects of the 
dynamic behaviour of membrane prior to more detailed statistical analysis. As larger and 
more complex lipid bilayer simulations become the norm, we anticipate that these 
visualization techniques will help us to better define the complexities of lipid 15 

movements. This, in turn, will enable improved parameterization of more coarse grained 
(e.g. DPD) and/or mesoscopic models of biological membranes. If they can accurately 
capture the key elements of complex membrane dynamics, such higher level models will 
then allow us to relate molecular properties of complex biological membranes to e.g. 
super-resolution microscopy imaging of the dynamics of membrane in cells80.  20 

 
Scripts are available at the address: http://sbcb.bioch.ox.ac.uk/flows/  
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Lipid motions patterns highlighted by the streamline visualization.  
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