New Perspectives in Hydrogen Storage Based on RCH2NH2/RCN Couples

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Dalton Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>DT-FRO-12-2013-053583.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Frontier</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>03-Feb-2014</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Grellier, Mary; CNRS, LCC
| | Sabo-Etienne, Sylviane; CNRS, Laboratoire de Chimie de Coordinati |
New Perspectives in Hydrogen Storage Based on RCH₂NH₂/RCN Couples.

M. Grellier* and S. Sabo-Etienne*

A recent breakthrough on primary amine dehydrogenation by an oxidant-free process, and without any hydrogen acceptor, opens the possibility for RCH₂NH₂/RCN couples to be considered as potential hydrogen energy carriers. Both hydrogenation and dehydrogenation processes can be catalysed by ruthenium complexes in rather mild conditions. This emerging exciting approach could be the starting point for the development of valuable economical systems.
forms, even if the gravimetric percentage will be reduced. For example, butylamine and proponitirile or 1,5-dianipentanitriile and 1,3-pentanedinitriile are liquids in a large range of temperature and display suitable hydrogen contents. Further research will be needed to find the ideal liquid couple to fulfill the different requirements (see Conclusions).

Nitrile hydrogenation has been intensively investigated, hydrogenation of adiponitrile being one of the most important industrial process involved in the production of Nylon-6,6. It is important to note that systems operating in mild conditions remain extremely limited. Some recent advances were reported by the groups of Morris and Beller, and in 2010 we disclosed that the dihydridedibis(dihydrogen)bis(tricyclopentylphosphine) ruthenium complex ([RuH2(H2)2(PCyp3)2] (1) acted as a catalyst precursor in very mild conditions. High activity and selectivity were achieved, at room temperature under 3 bar of dihydrogen, for the hydrogenation of the model substrate benzonitrile into benzylamine. The catalysis could even be performed without any solvent (Figure 1).

Reversible catalytic dehydrogenation is even more challenging. Until the very recent work from the Szymczak’s group, amine dehydrogenation required hydrogen acceptors or additives such as oxidant or base in stoichiometric or excess amounts. It is noteworthy that the presence of any additive would prohibit applications using primary amines as hydrogen carriers. Szymczak’s communication represents a significant breakthrough in the domain. By using the pincer-type ruthenium complex [HRu(bmp)2(PPh3)3] (2) they were able to dehydrogenate primary amines into the corresponding nitriles under relatively smooth conditions: preforming the reaction in refluxing toluene opened to a N2 atmosphere avoided the use of a hydrogen acceptor (Figure 1). Their demonstration that dehydrogenation was inhibited by an increasing pressure of H2 when operating in a closed vessel, opens the possibility to build a system on demand. Dehydrogenation is very selective and can be conducted with various aliphatic and benzylic primary amines. Furthermore, tolerance to a few functional groups has been exemplified. Such an easy dehydrogenation reaction represents an important step to fulfill the key-requirements for an efficient hydrogen storage system.

Based on these recent findings, one can envision some future research guidelines in order to build an efficient device. For example, accumulation of nitrile could inhibit the catalytic process by competition with primary amine coordination to the catalyst. This problem should stimulate research to design other catalysts able to prevent competitive coordination of nitrile, but keeping the advantages found with the ruthenium catalyst. Preliminary observations made by the authors suggest that the mechanism follows a pathway similar to that previously described for alcohol dehydrogenation. Deeper investigations are needed in order to optimize the reaction conditions and the catalyst nature for primary amine/nitrile systems as liquid organic hydrogen carrier applications. The development of such a hydrogen carrier system is exciting due to the possibility to use a technology compatible with fossil fuel infrastructures and existing modes of transport for liquids. The vehicle technology has been developed over more than one century and is well mastered by all the on board vehicle industry. Liquid transfer could be easily managed under ambient temperature without pressure safety conditions. Moreover, heat management during transport and reaction of liquids should be easy. One main difference with the fossil fuel economy concerns the refilling step. An exchange will be needed instead of a simple refilling at the “fuel station” (or more appropriate named LOHC Station) in order to replace the dehydrogenated liquid by a fresh hydrogenated one. Dehydrogenated compounds could then be regenerated by a catalysed hydrogenation step under smooth conditions, e.g room temperature and low H2 pressure, a process which has also to be optimized. Recyclable hydrogenation could be done either on small local plants at the fuel station which will modify the economy fuel distribution or, for larger scales, at industrial plants.

Alternatively, liquid couples could be suitable systems for portable power equipments and for materials handling equipments.

Conclusions

Recent advances have demonstrated the high potential of ruthenium complexes both for the hydrogenation of nitriles and the dehydrogenation of amines in mild conditions. It thus appears highly desirable to open a new research field based on the RCH2NH2/RCN couple as a hydrogen carrier. Key issues should be addressed in the
future, and the following points summarize some of them together with some required specifications.

a) Choose the right RCH$_2$NH$_2$/RCN liquid couple with a high gravimetric hydrogen carrier potential.

b) Find an efficient catalyst precursor (transition metal complex or organic) ideally cheap, stable and operating at low loading. It might be advantageous to look for some supported catalysts in order in particular to improve the stability and/or the recovery of the catalyst precursors. The choice on homogeneous or heterogeneous catalysts will depend on the technical system targets (efficiency, stability, selectivity, diffusion problems...).

c) Perform the two reactions, hydrogenation/dehydrogenation, without any additives.

d) Keep the operating conditions close to room temperature both for dehydrogenation and hydrogenation while operating at low pressure of H$_2$ for hydrogenation.

e) Solvent-free reactions both for dehydrogenation and hydrogenation. Since a solvent-free reaction is needed to improve the gravimetric balance of the system, an alternative route might involve initial mixing of high gravimetric solids (RCH$_2$NH$_2$) with some required specifications.

S.-I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen, Chem. Rev., 2007, 107, 4111-4132.

A. Staibitz, A. P. M. Robertson and I. Manners, Chem. Rev., 2010, 110, 4079-4124.

This journal is © The Royal Society of Chemistry 2012
A possible LOHC facility from an amine/nitrile couple