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We report on a bottom up approach for the synthesis of a Pd-polypyrrole nanocomposite 

material. The composite material was characterized by means of different techniques, such as 

UV-vis, IR, and Raman spectroscopies, which offered information about the chemical 

structure of the polymer, whereas electron microscopy images provided information 

regarding the morphology of the composite material and the distribution of the metal particles 

in the polymer matrix. During the synthesis of the nanocomposite, the Pd nanoparticles act as 

a catalyst for a model proton-coupled electron transfer reaction. The Pd-polypyrrole 

nanocomposite material was also used as a catalyst for the electro-catalytic detection of 

tryptophan, a precursor for some neurotransmitters.  

 

1. Introduction  

 

Metal nanoparticles are of significant interest as they show exceptional electronic, optical, 

and catalytic properties due to their quantum size effects. Nanoparticles are currently under 

intensive study for applications in optical [1] and electronic devices [2], sensors [3], 

biomedical applications [4] and as catalysts in different types of chemical reactions [5]. The 

main challenge in the application of these materials is agglomeration and that can be 

overcome through particle stabilization. Polymer stabilized metal nanoparticles have attracted 

much attention recently as a new research direction in catalysis [6–8]. The polymer matrices 

serve both as the support as well as the stabilizer of the nanoparticles thus providing a 

mechanism to prevent particle agglomeration. Palladium based catalysts, in particular 

nanoscale palladium particles, have recently drawn enormous attention due to their versatile 

role in organic synthesis [9–11]. The use of palladium nanoparticles in catalysis is not only 

industrially important [12–14], but also is scientifically interesting since they provide details 

of the mechanism of the reactions.  
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In the present investigation, we synthesized polypyrrole encapsulated palladium nanoparticles 

using an in-situ polymerization and composite formation (IPCF) method. IPCF is a facile 

synthesis technique carried out under ambient temperature conditions during which the Pd-

acetate acts as an oxidizing agent that facilitates the oxidative polymerization of pyrrole 

while, on the other hand, the reduction of metal salt produces metal nanoparticles. During the 

polymerization process, the reduction of 4-nitrophenolate and methylene blue supports the 

catalytic effect of a proton-coupled electron transfers reaction. The Pd-polypyrrole 

nanocomposite material was used also as an electrocatalyst to investigate the electrochemical 

recognition of tryptophan by a cyclic voltammetry (CV) technique. 

 

2. Experimental section 

 

2.1. Materials  

Pyrrole, ammonium persulfate (APS), potassium tetrachloro-palladate (K2PdCl4), 4-

nitrophenol, methylene blue (MB), K4Fe(CN)6.3H2O and tryptophan were purchased from 

Sigma-Aldrich of analytical purity and used without further purification. Toluene was 

obtained from Merck, and ultra-pure water (specific resistivity > 17MΩcm) was used in this 

experiment wherever required.  

2.2. Procedure  

4-nitrophenolate (4NP) was made by adding sodium hydroxide to a water solution of 4-

nitrophenol to secure a final concentration of 10
−4

 mol dm
−3

. Similarly, methylene blue 

solution was made by adding ultra-pure water to obtain a final concentration of 10
−4

 mol 

dm
−3

. Water solutions of APS and K2PdCl4 were made by adding ultra-pure water to obtain a 

final concentration of 10
−2

 mol dm
−3

.   

2.3. Experimental details  

(a) In a typical experiment, 0.030 g of pyrrole was diluted in methanol (15 mL) in a conical 

flask, after which 10 mL of K2PdCl4 (10
−2

 mol dm
−3

) was added slowly to it. A colloidal 

solution appeared at the bottom of the flask. The solution was allowed then to stand at rest for 

half an hour. Subsequently, TEM and SEM specimens were prepared by pipetting 2µL of the 

deposited material onto lacey, carbon coated, copper grids and allowed to air dry. A small 

portion of the product was used for optical characterization, the remaining fraction being 

dried under vacuum for 30 mins for the XRD and XPS analyses. 

(b) In the first set of catalytic experiments, 1.5mL of 4NP (10
−4

 mol dm
−3

) was mixed with 60 

µL of pyrrole (10
−2

 mol dm
−3

) in two quartz cuvettes. To the above solutions, 60 µL APS 
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(10
−2

 mol dm
−3

) was added in one cuvette and 60 µL K2PdCl4 (10
−2

 mol dm
−3

) was added to 

the other cuvette.  

(c) In the second set of experiments, 1.5 mL MB was mixed with 0.5 mL of pyrrole (1.0 mol 

dm
−3

) in two quartz cuvettes. To the above solutions, 0.5 mL APS (10
−3

 mol dm
−3

) was added 

in one cuvette and 0.5 mL K2PdCl4 (10
−3

 mol dm
−3

) was added to the other cuvette. The 

progress of the reactions was monitored using a spectrophotometer.  

 

2.4. Characterization  

Transmission electron microscopy (TEM) was performed at an accelerating voltage of 197 

kV in a Philips CM200 transmission electron microscope equipped with a LaB6 source. An 

ultrathin window energy-dispersive X-ray system (EDX) and a Gatan Imaging Filter (GIF) 

attached to the TEM were used to determine the chemical composition of the samples. SEM 

studies were performed in a TESCAM VEGAS operating at 2–10 kV. To prevent possible 

charging, the samples were sputter coated with a thin uniform layer of carbon before viewing. 

The UV-vis spectra were measured using a Shimadzu UV-1800 UV-VIS spectrophotometer 

with a quartz cuvette. IR spectra were collected utilizing a Shimadzu IRAffinity-1 with a 

resolution of 0.5 cm
-1

. Raman spectra were acquired using the green (514.5 nm) line of an 

argon ion laser as the excitation source. Light dispersion was undertaken via the single 

spectrograph stage of a Jobin–Yvon T64000 Raman spectrometer. The X-ray diffraction 

(XRD) patterns were recorded on a Shimadzu XD-3A X-ray diffractometer operating at 20 

kV using Cu-Kα radiation (k = 0.1542 nm). The measurements were performed over a 

diffraction angle range of 2θ = 20
o
 to 70

o
. The XPS spectra were collected in an ultra-high-

vacuum chamber attached to a Physical Electronics PHI 560 ESCA/SAM system. 

Electrochemical measurements were carried out with a mini Autolab PGSTAT 910 

potentiostat connected to a computer. A three-electrode system was used in the experiment 

with a bare electrode and a modified Glossy Carbon Electrode (GCE) as the working 

electrode. Ag/AgCl electrode (saturated KCl) and a Pt wire electrode were used as the 

reference and counter electrodes respectively. The catalyst was deposited on the working 

electrode using a ‘drop and dry’ method. After each run, the electrode was washed and an 

identical amount of new catalyst was applied as a coating to the electrode for the next study. 

 

3. Results and discussion 

 

The SEM image (Fig. 1A) shows the chain-like morphology of the product consisting of 

spherical units. The average diameter of a unit was about 100 nm while the chains are a few 
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micrometres in length. The TEM image (Fig. 1B) shows the uneven surface on the spheres. 

The higher magnification TEM images (Fig. 1C and D) show a high density distribution of 

dark spots. Such images and the stereo images (not shown) clearly indicate that the 2−4 nm 

diameter nanoparticles are encapsulated and homogeneously distributed within and 

throughout the product matrix. The EDX analysis (Fig. 2A) obtained from the electron beam 

being focused onto a dark spot confirms that these spots are palladium. Focusing the beam 

between the dark spots yielded no X-ray peaks for palladium. To identify the chemical state 

of the palladium, X-ray photoelectron spectroscopy (XPS) measurements were carried out. 

The Pd 3d region of the XPS spectrum of the Pd-polypyrrole composite is illustrated in Fig. 

2B, which reveals the presence of Pd 3d5/2 and 3d3/2 peaks at binding energies of 335.35 and 

340.60 eV respectively. These binding energy values are in accordance with those reported 

for metallic palladium [15]. XPS analysis also confirmed that 1.93 wt% Pd was present on 

the surface of the polypyrrole matrix. The crystalline nature of the palladium nanoparticles 

was confirmed by electron diffraction on single nanoparticles (not shown) and from XRD 

measurements (Fig. 2C). The strong (111) Bragg reflection indicates that the Pd-particles 

possess a highly oriented, face-selective, crystalline character. 

The optical behaviour of the product was studied by Raman and FT-IR spectra analysis. Fig. 

3A shows the Raman spectra of resultant material prepared by pyrrole and Pd-acetate using 

an in-situ approach. Two sharp peaks at 1540 and 1589cm
−1

 

are attributed to the C=C ring 

stretching and N−H in-plane bending vibrations. A small peak at 1487 cm
−1

 can be assigned 

to N−C stretch vibration. The vibrational peak at 1364 cm
−1 

is due to both C−C and C=C 

stretching. A shoulder-like appearance at 1390 cm
−1 

result from the
 
N−C ring stretching mode 

[16], while the characteristic vibration band at 1248 cm
−1

 is assigned to a ring deformation 

mode. The position of the inter-plane C-H bending and stretching modes is clearly evident at 

1155 and 1210 cm
–1

 respectively [16, 17]. 

Fig. 3B, spectra (a), shows a typical FT-IR spectrum of the product obtained during the 

reaction between pyrrole and Pd-acetate. The bands above 2500 cm
–1

 are responsible for the 

aromatic C−H and N−H stretching vibrations. The prominent band observed above 1700 cm
−1

 

corresponds to formation of a carbonyl group, which is due to the over-oxidized structure of 

the polypyrrole [18-20]. The band occurring at 1469 and 1415 cm
−1

 are for the C−N 

stretching vibration in the ring. The polypyrrole ring breathing vibration is located in the 

region 1250 to 1100 cm
−1

. The peak at 1111 cm
–1

 is attributed to the breathing vibration of 

the pyrrole ring [21]. The bands of C−H and N−H in-plane deformation vibration are located 
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at 1021 cm
–1

 while the band at 744 cm
−1

 corresponds to C–H out-of-plane bending vibration 

[22]. The bands above 2500 cm
–1

 (Fig. 3B) are responsible for the aromatic C−H and N−H 

stretching vibrations. The spectroscopic evidence confirms the formation of polypyrrole. For 

a comparison, we also synthesized polypyrrole using pyrrole and APS as a precursor and the 

oxidizing agent respectively. The product had a similar FTIR spectrum, Fig. 3B, spectra (b), 

that we recorded during the reaction between pyrrole and Pd-acetate. From reference to the 

optical properties and microscopic images, it can be confirmed that a Pd-polypyrrole 

nanocomposite was produced during the reaction between pyrrole and Pd-acetate.   

 

3.1. Recognition of biomolecules using Pd-polypyrrole as an electrocatalyst 

 

Development of rapid and sensitive methods for the detection of biomolecules is important 

for both clinical and numerous non-clinical applications. tryptophan, 2-amino-3-(1H-indol-3-

yl)-propionic acid, is an essential amino acid and a precursor for serotonin, melatonin and 

niacin [23]. It has been implicated as a possible cause of schizophrenia and early diagnosis is 

very important for the proper treatment of the patient. It has been reported that spectroscopy, 

chemiluminescence, electrophoresis, chromatography and electro-analysis methods have 

been used for tryptophan determination [24]. Among these methods, electrochemical 

techniques have received considerable attention for the detection of biomolecules due to their 

sensitivity, simplicity and low cost. However, the electrochemical detection of tryptophan at 

unmodified electrode surfaces is not ideal due to sluggish electron transfer processes and the 

high over-potential for the oxidation of tryptophan [25]. Much effort has been devoted to 

finding new materials to modify electrodes in order to reduce the over-potential of 

tryptophan. Various modified electrodes have been applied to the determination of the 

tryptophan concentration in pharmaceutical and clinical samples utilizing nafion [26], 

butyryl-choline [27], carbon nanotubes [28], 1-[4-ferrocenyl ethynyl) phenyl]-1-ethanone 

[29] and a carbon nanotube-cobalt salophen complex [30] with detection limits of 1.6 nM, 

6.0×10
−7 

M, 2.0×10
−8 

M, 1.8×10
−6 

M and 1.0×10
−7 

M of tryptophan respectively.  

Functional nanomaterials with unique physical and chemical properties have provided 

significant advantages for biological detection. Metallic nanoparticles are interesting 

materials with respect to their unique electronic and electrocatalytic properties which depend 

on their size and morphology [31, 32]. The efficiency of the electronic and electrochemical 

redox properties makes these classes of nanostructured materials very promising for 

technological applications. Metal nanoparticles have also been used as a modifier of 
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electrodes for tryptophan analysis. Silver nanoparticles and a rutin complex film modified 

graphite electrode have been reported for tryptophan determination [33]. Gold nanoparticles 

have been much explored as components for biosensors development due to the capability to 

increase the electronic signal when a biological component is maintained in contact with the 

nanostructured surface. On the other hand, silver, platinum, palladium, copper, cobalt and 

other metals have been extensively explored in biosensor development [34–38]. Palladium is 

one of the preferred metals used as an electro-catalyst and different methodologies have been 

attempted to incorporate Pd particles into polymer matrices for fabrication of Pd modified 

electrodes [36, 39].  

In the present work, we have compared the affinity and sensitivity of polypyrrole and Pd-

polypyrrole for the electrochemical detection of tryptophan. Cyclic voltammetry (CV) of 

electroactive species of [Fe(CN)6]
3−/4−

 (FCN) has been used widely to test the barrier kinetics 

of the interface. The extent of kinetic hindrance to the electron transfer process increases with 

increasing film thickness and decreases with the defect density of the barrier. Fig. 4A shows 

the CV responses of 0.5 mM of FCN at bare GCE (a), the polypyrrole modified GCE (b), and 

a Pd-polypyrrole modified GCE (c) at pH 7.5, operating at a scan rate of 50 mVs
−1

. After 

modifying the electrode with polypyrrole, a decrease in the redox peak current was observed 

(curve b), indicating that the polypyrrole acts as an electron and mass transfer blocking layer 

and thus hinders the diffusion of ferricyanide toward the electrode surface. In contrast, for the 

Pd-polypyrrole modified electrode, the voltammetric response of ferricyanide (curve c) is 

restored close to that obtained at the bare GCE (curve a). This demonstrates that the Pd 

nanoparticles have been successfully assembled on the electrode surface and provide the 

necessary conduction pathways, while also acting as nanoscale electrodes in promoting the 

electron transfer between the analyte (ferricyanide) and the electrode surface. The decreasing 

peak height indicates the passivation of the electrode surface.  

Fig. 4B shows the cyclic voltammogram of bare GCE (a) in the absence, and (b) in the 

presence of the analyte (0.2mM tryptophan) in 0.01mM phosphate buffer at pH 7.5, utilizing 

a scan rate of 50 mVs
−1

. The figure reveals an enhanced peak current of about ~2.0µA in the 

presence of tryptophan when only the bare GCE was used as the working electrode. A 

noticeable current response change was observed when the electrode was modified with 

polypyrrole in the absence and in the presence of tryptophan. In Fig. 4B, curve (c) is the 

voltammogram of polypyrrole modified GCE in the absence of tryptophan. A broad area with 

an anodic peak position at about 1.15V results from the oxidative response of polypyrrole 
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whereas, in the presence of 0.2mM tryptophan, Fig. 4B, curve (d), the anodic peak position 

appears at a lower potential region resulting from the oxidation of tryptophan at 0.89V. 

Comparing the cyclic voltammogram of the polypyrrole modified electrode in the absence of 

tryptophan (Fig. 4B, curve (c)) with that of the Pd-polypyrrole modified electrode also in the 

absence of tryptophan (Fig. 5, curve (a)) reveals similar curves with the exception of ~3.0 µA 

enhancement of the anodic peak current for the latter electrode over the former. This implies 

that the presence of Pd nanoparticles has improved the charge transfer at the interface.  

The CV response of the Pd-polypyrrole modified electrode in the presence of tryptophan 

(0.20 mM) (Fig. 5, curve (b)) showed a well separated anodic peak at 0.75V with a current 

value of 28 µA. Increasing the concentration of tryptophan to 0.40 and 0.60 mM (Fig. 5, 

curves (c) and (d) respectively) resulted in an increasing current while maintaining the same 

anodic peak position. The results demonstrated the key role played by the Pd-nanoparticles 

on the electrocatalytic oxidation of tryptophan. 

 

3.2. Mechanism of formation of the Pd-polypyrrole composite  

 

Among conducting polymers, polypyrrole and its derivatives are of particular interest owing 

to their high conductivity, stability in the oxidized state and interesting redox properties. The 

simplicity of the synthetic procedures and availability of the initial monomers are also 

attractive features of polypyrrole. A wide variety of methods have been applied to the 

preparation of polypyrrole by the oxidative polymerization of their monomer [40]. Chemical 

synthesis of polypyrrole has a long history. Polypyrrole has been prepared by the oxidation of 

the monomer (pyrrole) using ammonium persulfate (APS) [41], aqueous or anhydrous FeCl3 

[42, 43] as well as other salts of iron (III) and copper (II) [44, 45] as chemical oxidants. In the 

present work, Pd-acetate was used as the oxidant for the synthesis of polypyrrole.  Oxidative 

polymerisation of pyrrole to polypyrrole proceeds via the oxidation of pyrrole to a radical 

cation, which subsequently couples with another radical cation to form bipyrrole. This 

process is then repeated to form longer chains. Each step of the polymerization is associated 

with the release of an electron (e
−
) and a proton (H

+
) (Scheme 1). The released electron is 

then used to reduce the Pd ion to form a Pd atom [46]. Subsequently, coalescence of the 

atoms results in the formation of clusters which stabilize within the polymer.  
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3.3. Pd nanoparticles as a catalyst for a proton coupled electron transfer reaction 

 

The electron-transfer step is important in many homogeneous and heterogeneous reactions 

[47, 48]. Electron transfer in association with proton transfer is a well-known mechanism in 

chemistry, biology as well as in catalysis. The interest for proton-coupled electron transfer 

(PCET) reactions results from the fact that they play a key role in all the processes leading to 

energy storage into chemical bonds and thus for all expected renewable energy systems based 

on solar fuels [49]. Heterogeneous excited-state PCET is potentially important for systems 

involving solar energy conversion [50]. TiO2 and other high-band gap semiconductor-based 

dye-sensitized photo-electro-synthesis cells are driven by photo-excitation and electron 

injection by bound chromophores or by a direct-band-gap excitation process [50]. A 

combined electrochemical and theoretical study has suggested that hydrogen production from 

weak acids catalyzed by NiFe hydrogenases involves a proton-coupled electron transfer step 

[51]. A mononuclear ruthenium complex has shown a multiple proton-coupled electron 

transfer [52] towards multi-electron transfer reactions which are known to be active catalysts 

for water oxidation. The cobalt-porphyrin system has been utilized as a catalyst for a  

hydrogen evolution reaction followed by an electron transfer (ET) and proton transfer (PT) 

pathway mechanism from carboxylic acid [53]. Oxidation of phenols is an extremely 

important reaction in many areas of natural and artificial chemistry in which electron transfer 

is inevitably associated with proton transfers. A mechanistic analysis has confirmed that the 

catalytic oxidation of phenols follows a concerted PCET pathway [54]. Oxidation reactions 

of alcohols with the Ru(IV)-oxo complexes proceed via a concerted proton-coupled electron 

transfer mechanism [55].  In the electron transfer step, there may be a redox potential 

difference between the donor and the acceptor, which may restrict or slow down the passage 

of an electron. An effective catalyst with an intermediate redox potential value between the 

donor-acceptor partners helps the electron transfer and acts as an electron relay system. Metal 

nanoparticles are well-known examples of this type of redox catalyst. 

Fig. 6A shows the UV-vis spectra of 4NP in the presence of pyrrole and APS at different time 

intervals. From the figure, it can be seen that an incomplete quenching of the absorbance 

spectra of 4NP at 400 nm, peak (a), took some 204 min. As mentioned earlier, polymerization 

of pyrrole is an oxidation process and in the presence of an oxidizing agent (APS), it forms a 

radical cation with the release of an electron (e
−
) and a proton (H

+
). The gradual quenching of 

the 4NP spectra indicates the reduction of the nitro group. The emergence of the peak at 

about 320 nm, peak (b), is due to the formation of the polymer. The reduction mechanism of 
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4NP involves a single electron transfer (SET) mechanism with the formation of a radical 

cation followed by protonation (Scheme 2). The electrons and protons which are generated 

during the polymerization reaction participate in the reduction process of 4NP, an example of 

the proton coupled electron transfer reaction. Fig. 6B, curve (a), is the UV-vis spectra of 4NP, 

and in the presence of pyrrole and K2PdCl4, a complete quenching of the absorbance peak of 

4NP occurred in about 2 min. In this reaction, the palladium (II) salt acts as an oxidizing 

agent, like other metal salts [45], that polymerizes pyrrole to form polypyrrole. The released 

electrons during the process of polymerization play a dual role in: (i) the formation of a 

radical-cation on the nitrogen of the nitro group (first step of the nitro-group reduction 

mechanism, Scheme 2) and (ii) reduce the K2PdCl4 to form catalytically active palladium 

nanoparticles [56]. The in-situ generated Pd particles then catalyze the reduction of 4NP. 

Decreasing the concentration of 4NP, as indicated by the UV-vis spectrum at 400 nm, Fig. 

6A, a new absorption peak developed at 320 nm, which results from the π*−π transition and 

is due to the formation of polypyrrole [57]. The intensity of the absorption peak increases, as 

marked by an upward direction arrow, indicating the increase of polypyrrole concentration 

with time. When K2PdCl4 was used as the oxidant, the absorption peak of 4NP (Fig. 6B) 

completely quenched and a new absorption band appeared at 320 nm again resulting from the 

formation of polypyrrole [57]. A shoulder-like feature at around 420 nm corresponds to the 

bipolaron transition, which is a feature of the oxidized state of polypyrrole. A similar kind of 

phenomenon also happens in the reduction process of MB, which involves the receiving of 

two electrons associated with two protons (Scheme 3). Fig. 7A, curve (a), and 7B, curve (a), 

show the UV-vis spectrum of MB with an absorption intensity peak at 665 nm. After the 

addition of pyrrole and APS, the absorbance value decreased due to a dilution effect as shown 

in Fig. 7A, curve (b). Initially, a rapid quenching of the dye was observed, but the rate of 

reaction was drastically retarded within a short period of time, there being no significant 

reduction after an hour. Similarly, Fig. 7B, curve (b), is the UV-vis spectrum of MB 

immediately after the addition of pyrrole and K2PdCl4. Within 2 mins of the addition, there 

was no characteristic peak for MB. The spectrum, Fig. 7B, curve (c), is due to the formation 

of Pd-polypyrrole composite. For a comparison, the UV-vis spectrophotometric property of 

the blank samples of polypyrrole (a) and Pd-polypyrrole (b) in absence of 4NP and MB 

respectively (Fig. 8) were studied and the spectral features corroborated with the above 

statements. In both spectra, the absorption band in the range of 300 to 350 nm corresponded 

to the formation of polypyrrole. Both the shoulder-like appearance observed from 415 to 500 
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nm (indicated by an arrow, Fig. 8, spectrum a) and a broad absorption band starting from 450 

nm to around 750 nm seen in Fig. 8, spectrum (b), can be assigned to the bipolaron transition 

of the polymer. The position of this absorption band depends on various factors such as 

counter ions, solvent, chemical structure and the morphology of the polymer [58]. 

PCET reactions are those in which an electron and a proton are transferred together [59]. The 

particularity of such reactions is that the electron and the proton are transferred to different 

centres [60, 61]. Sequential transfer of electron and proton pathways is lower in energy than 

concerted pathways [59]. The multiple site electron-proton transfer reaction is another class 

of the PCET reaction in which (a) an ‘electron-proton donor’ transfers ‘electrons and protons’ 

to spatially separated acceptors or (b), an ‘electron-proton acceptor’ accepts ‘electrons and 

protons’ from spatially separated donors [59]. In the present work, we have coupled two 

reaction systems in which the pyrrole polymerization process releases both an electron plus a 

proton, and the reduction of the 4NP (or MB) occurs through it receiving an electron and a 

proton, an example of a ‘proton coupled electron transfer’ reaction. Without metallic 

nanoparticles, the reaction rate was found to be slow whereas the transportation of the 

charged species was accelerated in presence of the palladium nanoparticles.    

From thermodynamics considerations, the above implies that the redox potential of the Pd-

nanoparticles should be intermediate between the redox potential of the donor system, 

pyrrole-polypyrrole (D/D
+
) E

0
[D/D

+
], the lower threshold, and the redox potential of the 

acceptor system, 4NP and MB (A/A
−
) E

0
[A/A

−
], the upper threshold [62] (Scheme 3). The 

reaction between these systems, which is slow in the absence of the palladium, becomes 

efficient as a result of the electron transfer through the metal cluster relay. The Pd 

nanoparticles further lower the kinetic barrier, which facilitates a faster rate of reduction. If 

E
0
[Pd

2+
/Pd(nano)] is higher than E

0
[A/A

−
], as in a bulk metallic system, the electron is still 

transformed from D to Pd(bulk), but thermodynamics do not allow a relay effect to occur 

between Pd(bulk) to A and, as a consequence, no catalytic effect has been observed [63]. 

Conversely, if the clusters are very small, the transfer of electrons is also not feasible due to 

the large potential difference. Thus, an effective transfer of electrons is only possible when 

the potential of the cluster is more positive than that of the electron donor system, i.e., 

E
0
[Pd

2+
/Pd(nano)] > E

0
[D

+
/D]. An effective relay of electrons is possible between an acceptor 

and a donor when ideal conditions are established, that is, E
0
[A/A

−
] < E

0
[Pd

2+
/Pd(nano)] > 

E
0
[D

+
/D]. 

The generally accepted mechanism of electron transport is due to successive hopping from 

molecule to molecule to overcome the trap caused by intra-molecular vibrations. In the 

Page 11 of 28 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



11 

 

hopping mechanism, to evaluate the electron mobility, there are two rate processes at 

different spatial scales that have to be considered. The processes are the electron transfer 

within molecular dimers and the electron diffusion in organic solids or polymers. The first 

process can be characterized by an inter-molecular electron transfer at the atomistic level, 

while the latter can be simulated at the molecular level by the random walk technique [64]. In 

our first experiment in which APS was used as the oxidant, the electron transfer mechanism 

was through a strongly disordered system (polymer matrix) and is thus considered to be a 

short range electron transfer [65]. This is in contrast to the second experiment where the 

presence of palladium nanoparticles would enable the relay of electrons to follow a long-

range hopping mechanism.
 

The electron rich acceptor system accelerates the ‘proton 

hopping’ process through a Grotthuss mechanism and pulls the proton to the acceptor.  

 

Conclusions 
 

In the present work, a metal-polymer composite material was designed using an in-situ 

polymerization and composite formation approach. Pyrrole and Pd-acetate were used as the 

precursor for the synthesis of a Pd-polypyrrole nanocomposite in which Pd-nanoparticles 

within the size range of 2-3 nm were highly dispersed and stabilized in the polypyrrole 

matrix. The Pd-polypyrrole composite material was used as an electrocatalyst for the 

electrochemical determination of tryptophan, a biomolecule and the precursor of different 

neurotransmitters. During the synthesis, Pd nanoparticles acted as a catalyst for the reduction 

of 4-nitro phenol, a model reaction being an example of a proton coupled electron transfer 

mechanism. 
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Figure captions 

Figure 1 

SEM image (A) shows the chain-like morphology of the product (Pd−polypyrrole) with 

spherical units. The TEM image (B) shows the uneven surface on the spheres. Higher 

magnification TEM images (C and D) show the high density distribution of nanoparticles, 

within the range of 2−4 nm diameter, throughout the matrix. 

Figure 2 

(A) EDX spectrum from the area shown in Fig. 1B. The palladium peaks are derived from the 

dark spots, whereas the copper peak comes from the TEM copper mesh support grid. (B) is 

the palladium 3d XPS spectrum, the peaks at binding energies at 335.35 eV for 3d5/2 and 

340.60 eV for 3d3/2 are indicative of metallic palladium. XRD spectra (C), indicates the 

highly oriented, face-selective, crystalline character of the Pd-particles. 

 

Figure 3 

In the Raman spectrum (A), the two sharp peaks at 1540 and 1589cm
−1

 

are attributed to both 

the C=C ring stretching and the N−H in plane bending vibration of the Pd−polypyrrole 

composite material whereas in the FT-IR spectra, (B), the bands of the C−H and the N−H in-

plane deformation vibration are located at 1021 cm
–1

. Spectrum (a) and (b) in (B) represent 

the FT-IR spectra of the Pd-polypyrrole and polypyrrole respectively.  

 

Figure 4 

(A) is the cyclic voltammogram of (a) the bare GCE, (b) the polypyrrole modified GCE and 

(c) the Pd-polypyrrole modified GCE in 5.0 mM [Fe(CN)6]
3−/4−

 (FCN) buffer solution at pH 

7.5 maintaining a scan rate of 50 mV s
–1

. Cyclic voltammogram (B) is of (a) bare GCE and 

(c) polypyrrole modified GCE without analyte, while (b) is of the bare GCE and (d) is of the 

polypyrrole modified GCE in 0.2mM tryptophan containing PBS (Phosphate Buffered 

Saline), (0.01mM) buffer at a pH 7.5 and using a scan rate of 50 mV s
–1

. 

Figure 5 

Cyclic voltammogram of Pd-polypyrrole modified GCE (a) in absence of tryptophan and 

with the increasing concentration of tryptophan (b) 0.20 mM, (c) 0.40 mM and (d) 0.60mM 

in 0.01mM PBS buffer solution at pH 7.5 at a scan rate of 50 mVs
–1

. 

Figure 6 

(A) UV-vis spectra of the 4NP (10
−4

 mol dm
−3

) in the presence of pyrrole (10
−2

 mol dm
−3

) 

and APS (10
−2

 mol dm
−3

) at different time intervals. Incomplete quenching of the absorbance 

peak (a) at 400 nm in the 4NP spectra took 204 min. The emergence of the peak at about 320 

nm, peak (b), is due to the formation of the polymer. (B) (a) UV-vis spectrum of the 4NP and 

(b) the UV-vis spectrum of the 4NP in the presence of pyrrole (10
−2

 mol dm
−3

) and K2PdCl4 
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(10
−2

 mol dm
−3

) after 2 min. The absorption band at 325 nm results from the π*−π transition 

due to the formation of polypyrrole. A shoulder-like feature in the region of 375−450 nm 

corresponds to the bipolaron transition. 

 

Figure 7 

(A) (a) UV-vis spectra of the MB (10
−4

 mol dm
−3

) and (b) UV-vis spectra of the MB (10
−4

 

mol dm
−3

) in the presence of pyrrole (10
−2

 mol dm
−3

) and APS (10
−2

 mol dm
−3

). Incomplete 

quenching of the absorbance peak at 665 nm of the MB spectra took 60 min. (B) (a) is a UV-

vis spectra of the MB (10
−4

 mol dm
−3

) and (b) the UV-vis spectra of the MB (10
−4

 mol dm
−3

) 

in the presence of pyrrole (10
−2

 mol dm
−3

) and K2PdCl4 (10
−2

 mol dm
−3

). From (B), curve (c), 

the MB spectra can be seen to have disappeared after 5 mins due the addition of pyrrole and 

K2PdCl4.  

 

Figure 8 

UV-vis spectra of (a) polypyrrole and (b) the Pd-polypyrrole composite. In both the spectra, 

the absorption band in the range of 300 to 350nm corresponds to the π*−π transition resulting 

from the formation of polypyrrole. A shoulder-like appearance observed from 415 to 500 nm 

(indicated by an arrow, in spectrum (a)) corresponds to a bipolaron transition, a characteristic 

feature for the oxidized state of polypyrrole. A broad absorption band starting from 450 nm to 

around 750 nm in spectrum b, can be assigned to a bipolaron transition, which is a feature of 

the oxidized state of polypyrrole.  
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Scheme captions 

Scheme: 1 

Oxidative polymerisation of pyrrole.  

 

Scheme: 2 

Proton coupled electron transfer mechanism for the reduction of 4NP and MB. 

 

Scheme: 3 

The mechanism of the catalytic electron transfer process. The metal cluster relays the electron 

from the donor molecule to the acceptor molecule. The schematic shows the thermodynamic 

conditions to be fulfilled when the cluster redox potential is higher than the donor (D) 

potential and lower than the acceptor (A) potential. A = dye in the oxidised form; A
−
 = dye in 

the reduced form. D
+
 = donor in the oxidised form; D = donor in the reduced form. E

0
 is the 

redox potential. 
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