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A large manganese-doped polyoxotitanate nanocluster 

Ti28MnO38(OEt)40H2, has been synthesized solvothermally.  

Its structure is arranged around the four-coordinate Mn2+ 

dopant atom in a Keggin-type structure. A significant 

reduction of the band gap relative to that of undoped 10 

polyoxotitanate clusters is observed.   

Polyoxotitanate nanoparticles play a crucial role as anodes in 
photovoltaic cells,1 and as photocatalysts in processes such as the 
oxidation of organic compounds in polluted air and wastewater.2  
However, pure TiO does not absorb in the visible light region.  15 

Anatase, for example, has an indirect band gap of 3.21eV.3  
Considerable experimental and theoretical attention has therefore 
been directed to reduction of the band gap by doping of TiO2.

4-9  
Asai et al. reported ab-initio calculations on a supercell of rutile 
doped with the 3d transition metals V, Cr, Mn, Fe, Co and Ni.10  20 

They found significant variations in the band gap due to insertion 
of dopant energy levels in the gap of the semiconductor, 
especially for Mn and Cr dopants.   
 However, little experimental information on the structure of 
doped nanoparticles has been available until recently, when we 25 

and others have synthesized and crystallized a series of 
polyoxotitanate nanoclusters and analysed their structure and 
those of chromophore-sensitized derivatives by crystallographic 
methods.11-16  We report here the structure and band gap of a 
large doped polyoxotitanate cluster in which the Mn dopant is 30 

located in a central position in the nanoparticle. 
 Solvothermal reaction of titanium(IV) ethoxide with 
manganese(III) acetate dihydrate in the presence of ammonium 
bromide in ethanol at 150 °C for 66 hours generated the pale-
yellow plate-shaped crystals of Ti28MnO38(OEt)40H2·EtOH.  35 

Without the addition of ammonium bromide to adjust the pH of 
the reaction mixture the title compound was not formed.  The 
valency of +2 of the manganese dopant was confirmed by X-ray 
absorption spectroscopy (Fig. S1, ESI†)‡.  Nevertheless, 
replacing manganese(III) acetate by manganese(II) acetate as 40 

starting material did not produce the title compound.  The EDS 
(energy-dispersive X-ray spectroscopy) spectrum of 
Ti28MnO38(OEt)40H2·EtOH showed anatomic ratio of Ti to Mn of 
27.11 : 1 (Fig. S2, ESI†)‡, which is close to the 28 : 1 value 
derived from the crystal structure. 45 

 

(a) 

 

(b) 

Fig. 1  (a) The molecular structure of Ti28MnO38(OEt)40H2.  Ti, purple; 50 

Mn, cyan; O, red; C, grey; H, light grey.  For clarity only the major 

components of the disordered ethyl groups and of the triply-disordered Ti 

are shown (see Fig. S3 for details).  (b) Perspective view of the TiO core 

of the cluster looking down along its longitudinal direction.  Ethyl groups 

of the ethoxy ligands have been omitted for clarity. 55 

 Crystallographic studies reveal the structure shown in Fig. 1.  
The asymmetric unit of the triclinic space group Pī (Table S1) 
contains one TiO cluster and one ethanol solvent molecule.  
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Charge neutrality requires the presence of two hydrogen atoms 
attached to peripheral core oxygen atoms, but these hydrogen 
atoms could not be located in the difference maps.  The same 
difficulty was encountered by Lv et al. in the structure 
determination of [Ti28O38(OEt)40H2LnCl].11 A similar protonation 5 

has been observed in [Ti18O28H(OtBu)].17 As shown in Fig. 1b, 
the TiO core of Ti28MnO38(OEt)40H2 exhibits an approximate C3ν 
symmetry when viewed along its long direction.  The EtOH 
molecule is located at the bottom of the cluster adjacent to the 
Ti6O6-crown.  Unlike previously described doped Ti28 clusters11 10 

in the current case the core is built around the centrally located 
four-coordinated Mn(II) atom in a Keggin-type arrangement.18  
The cluster contains three six-coordinated Ti atoms in its inner 
layer, and three five-coordinated Ti atoms, three seven-
coordinated Ti atoms and eighteen six-coordinated Ti atoms in its 15 

outer layer (Fig. 2).  The Ti1 atom is disordered over three 
positions with occupancies of 80 % (Ti1), 15 % (Ti1A) and 5 % 
(Ti1B), respectively (Fig. S3, ESI†).  The average Mn-O bond 
length is longer than the corresponding Ti-O bond lengths in 
Ti28Ln (Ln = La, Ce),11 Ti28.5AO38(OEt)39 (A = Li, Na),19 and 20 

Ti17O24(O
iPr)20,

20 but shorter than the Mn-O bond in 
Ti14MnO14(OEt)28H2

21 (Table S2).  

 

Fig. 2  Polyhedral representation of the manganese and titanium atoms in 

the metal oxide core, shaded according to coordination number: four-25 

coordinate (cyan, Mn), five- (green, Ti), six- (purple, Ti), seven- (blue, 

Ti). 

 It is noteworthy that the upper part of Ti28MnO38(OEt)40H2 has 
the same connectivity as Ti17O24(O

iPr)20 (Fig. S4, ESI†),20 while 
the bottom part forms a TiO-nanocage, as illustrated in Fig. 3.  30 

Unlike Ti28LnO36(OH)2(OEt)40Cl (Ln = La, Ce),11 and 
Ti28.5AO38(OEt)39 (A= Li, Na),19 in which dopant is located at the 
bottom of the nanocages, the cage in Ti28MnO38(OEt)40H2 is 
open, with a cross section of 5.439Å (average of three O···O 
distances, see Fig. S5(ESI†).  This is larger than corresponding 35 

values in Ti28LnO36(OH)2(OEt)40Cl,11 and Ti28.5AO38(OEt)39 
(Table 1),19 indicating that the opening of the nanocage is flexible 
and its size is sensitive to the nature and location of the metal 
dopants. A related non-doped Nb27 cluster with a similar 
architecture has been reported.22 40 

 

Fig. 3  Perspective view of the Ti/O-based nanocage in the 

Ti28MnO38(OEt)40H2 cluster as well as the ethanol guest molecule 

located at the outside of the hexagon. 

Table 1  Opening sizes of the nanocages in different metal-doped 45 

polyoxotitanate clusters. 

Polyoxotitanate nanocluster Three O···O 

distances of 

nanocage (Å) 

Average of three O···O 

distances of nanocage 

(Å) 

 

Ti28MnO38(OEt)40H2 

5.417(6) 

5.441(6) 

5.460(6) 

 

5.439(6) 

 

Ti28.5LiO38(OEt)39
19 

5.248(5) 

5.248(6) 

5.652(6) 

 

5.383(6) 

 

Ti28.5NaO38(OEt)39
19 

5.130(6) 

5.352(6) 

5.530(6) 

 

5.338(6) 

 

Ti28LaO36(OH)2(OEt)40Cl11 

5.077 

5.083 

5.124 

 

5.095 

 

Ti28CeO36(OH)2(OEt)40Cl11 

5.043 

5.054 

5.106 

 

5.068 

 The diffuse-reflectance spectrum of the crystalline solid was 
measured at room temperature and processed with the Kubelka–
Munkfunction23 to give a band gap of 2.74 eV (Fig. 4).  The band 
gap is thus significantly red-shifted compared with those of an 50 

undoped Ti28 cluster (indirect band gap 3.43 eV),24 or the one 
measured with reflectance spectroscopy for commercial anatase 
(3.19 eV).21 The value is comparable to that of 
Ti14MnO16(OEt)28H2 (2.64 eV).21  The difference between the 
two results for the two Mn-doped clusters is small and may not be 55 

significant.25 To eliminate the possibility of sample 
decomposition, its powder pattern was recorded after the 
measurement of the reflectance spectrum. It was found to 
correspond to the pattern constructed from the known structure 
and cell dimensions of the title compound and to be very different 60 

from that of anatase or Mn-doped anatase (see Figs. S7 and S8). 
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Fig. 4 Solid state optical diffuse-reflectance spectrum of 

Ti28MnO38(OEt)40H2·EtOH derived from diffuse reflectance data at room 

temperature. 

 In summary, the manganese dopant in Ti28MnO38(OEt)40H2 5 

adopts a tetrahedral coordination geometry at a central location in 
the cluster, similar to that in the smaller cluster 
Ti14MnO16(OEt)28H2, but unlike the dopant position in previously 
described Ti28 clusters.  The band gap is red-shifted compared 
with undoped polyoxotitanate nanoclusters and anatase, leading 10 

to desired absorption in the visible region.  In addition, the 
nanocage at the lower part of the cluster is not terminated by a 
dopant atom although an ethanol molecule is located just below 
the cage with its OHˉ group pointing toward the center of Ti6O6-
crown. 15 
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