This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Reactions of Ruthenium Hydrides with Ethyl-Vinyl Sulfides

Fatme Dahcheh and Douglas W. Stephan

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

INTRODUCTION

The indisputable value of olefin metathesis in natural product synthesis, polymer, and pharmaceutical chemistry,1 prompted the award of the 2005 Nobel prize to Grubbs, Schrock and Chauro.1d, 1e, 2 While the Schrock based systems are highly active,3 it is the stability, activity and broad applications of the “Grubbs’ catalysts” (C5H5)2ClRuCHPh4 and (C4H9)2(IMes)Cl2RuClPh4 that has led to a range of commercial applications. Nonetheless, efforts continue to develop new strategies to retain derivatives. The incorporation of pendant donors in the Grubbs-Hoveyda5 modification has been reported, while Fogg and coworkers6 have developed Ru-mono- or bidentate aryloxide derivatives and have recently reported the tridentate thiolate ligand derivative (O(CH2CH2)(S))2(IMes)RuClPh4. Interestingly, this latter species is not active in metathesis, but is activated by the addition of the Lewis acid BCl3.7 A variety of methods to synthesize Ru-alkylidenes8 have been reviewed comprehensively by Fogg. For example, reactions of Ru precursors with cyclopropenes,9 sulfur-ylides,10 dihalomethanes11 and diazomethanes12 afford routes to Ru-alkylidenes. Alternatively, Ru-allenylidene, indenylidene,13 vinylidene14 or cumulenylden15 provide alternative structures that also effect olefin metathesis. In seeking an alternative synthetic strategy to reactive Ru-alkylidenes, we have recently reported the reactions of aryl-vinyl-sulfides with Ru-hydrides.16 This reaction affords the installation of both an alkylidene and a thiolate ligand simultaneously (Scheme 1). In continuing the development of this strategy we have explored the reaction of Ru-hydrides with ethyl-vinyl-sulfide. These systems are shown to react in a different fashion ultimately effecting the C-H activation of the ligand substituents.

EXPERIMENTAL SECTION

General Considerations: All manipulations were carried out under an atmosphere of dry, O2-free N2 employing a Vacuum Atmospheres glovebox and a Schlenk vacuum line. Solvents were purified with a Grubbs-type column system manufactured by Innovative Technology, dispensed into thick-walled Schlenk glass flasks equipped with Teflon valve stopcocks (THF, toluene, pentane, hexanes, CH2Cl2) and stored over molecular sieves. Some solvents were dried over the appropriate agents, vacuum-transferred into storage flasks with Teflon stopcocks and degassed accordingly (C6H6, C7D7, CD2Cl2). 1H, 13C, and 31P NMR spectra were recorded at 25 °C on Bruker 400 MHz and Bruker 500 MHz spectrometers. Chemical shifts were given relative to SiMe4 and referenced to the residual solvent signal.
(1H, 13C) or relative to an external standard (31P: 85% H3PO4). In some instances, signal and/or coupling assignment was derived from two dimensional NMR experiments (HSQC). Chemical shifts are reported in ppm and coupling constants as scalar values in Hz. Combustion analyses were performed in house employing a Perkin-Elmer CHN analyzer. Ethyl vinyl sulfide was purchased from Sigma Aldrich and used as received. 1H,NMR, 13C were prepared according to literature procedures.

(Im(OMe)3)(Imes)(PPPh3)RuHCl 1,
(Im(OMe)3)(Imes)(PPPh3)RuHCl 2,
(Im(OMe)3)(Imes)(PPPh3)RuHCl 6, (Im(OMe)3)(Imes)(PPPh3)RuHCl 7 were prepared as previously reported.19

Synthesis of (MeOCH2CH2)2C6H5NC6H5CH(OMe)(OMe)RuCl (PPh3)2 (3) Ethyl vinyl sulfide (24 µL, 0.236 mmol) was added to a solution of (1) (0.100 g, 0.118 mmol) in 5 mL C6H6 at room temperature. The solution was then stirred for 6 hours before the solvent was concentrated to 1 mL and 15 mL of pentane was added which caused a light orange precipitate to form. The solid was collected by filtration, washed with pentane and dried under high vacuum (0.080 g, 80%). X-ray quality crystals were grown from benzene/pentane at 25 °C. 1H NMR (400 MHz, CDCl3): δ 7.11 (br s, 10H, PPh3), 7.39 (m, 1 H, PPh3), 7.03 (br s, 19H, PPh3), 6.33 (d, JIm1 = 2 Hz, 1H, Im(OMe)), 6.29 (m, 1H, Ru-CHOMe), 5.83 (d, JIm1 = 2 Hz, 1H, Im(OMe)), 3.54 (br s, 4H, NCH2CH2OMe) + O(Im(OMe)), 3.45 (m, 1H, NCH2CH2OMe), 2.77 (s, 3H, O(Im(OMe))), 2.55 (dd, JIm1 = 12 Hz, JIm2 = 5 Hz, 1H, NCH2CH2OMe), 2.37 (dd, JIm1 = 10 Hz, JIm2 = 2 Hz, 1H, NCH2CH2OMe). 31P{1H} NMR (161 MHz, CDCl3): δ 41.9 (d, JPP = 319 Hz, PPh3), 37.5 (d, JPP = 319 Hz, PPh3). 13C{1H} NMR (101 MHz, CDCl3): δ 192.8 (t, JPC = 14 Hz, NCN), 138.0 (d, JPC = 12 Hz, PPh3), 134.7 (br s, PPh3), 134.1 (d, JPC = 20 Hz, PPh3), 129.0 (PPh3), 128.8 (d, JPC = 7 Hz, PPh3), 128.5 (PPh3), 120.4 (Im-CH), 116.7 (Im-CH), 82.5 (t, JPC = 6Hz, NCH2CH2OMe), 71.1 (NCH2CH2OMe), 58.8 (O(Im(OMe))), 58.1 (O(Im(OMe))3), 57.9 (NCH2CH2OMe), 49.2 (NCH2CH2OMe). Elemental Analysis for C18H16ClINiO3P: C, 62.46; H, 5.87; N, 3.29. Found: C, 62.14; H, 5.76; N, 3.28.

Synthesis of ((MeOCH2CH2)2C6H5NC6H5CH(OMe)(OMe)RuCl (PPh3)2 (5) A solution of (4) (0.060 g, 0.068 mmol) in 3 mL C6H6 was left stirring for 24 hours before the solvent was concentrated to 1 mL and pentane was added while stirring to precipitate a yellow solid which was collected on a filter and dried under high vacuum (0.045 g, 100%). 1H NMR (400 MHz, CDCl3): δ 7.67 (d, JIm1 = 5 Hz, 1H, Ru(OMe)2), 7.41 (br s, 12H, PPh3), 7.29 (br m, 6H, PPh3), 7.23 (br m, 12H, PPh3), 5.66 (dt, JIm1 = 5 Hz, JIm2 = 7 Hz, 1H, Ru(OMe)2), 3.63 (t, JIm1 = 6 Hz 2H, NCH2CH2OMe), 3.01 (t, JIm1 = 6 Hz, 2H, NCH2CH2OMe) 2.93 (s, 3H, O(Im(OMe))), 1.71 (s, 3H, Me2Im(OMe)-4,5-Ch3), 1.42 (s, 3H, Me2Im(OMe)-4,5-Ch3).

31P{1H} NMR (161 MHz, CDCl3): δ 30.6 (s, PPh3). 13C{1H} NMR (101 MHz, CDCl3): δ 135.6 (t, JPC = 19 Hz, Ru(OMe)2), 134.6 (t, JPC = 6 Hz, PPh3), 134.2 (d, JPC = 18 Hz, PPh3), 129.2 (PPh3), 127.6 (t, JPC = 4 Hz, PPh3), 125.2 (Im-4,5- C), 124.6 (br s, Ru(OMe)2), 122.6 (Im-4,5-C), 71.8 (NCH2CH2OMe), 58.7 (O(Im(OMe))), 46.4 (NCH2CH2OMe), 9.2 (Me2Im-4,5-Ch3), 8.9 (Me2Im-4,5-Ch3), NCN peak not observed. Elemental Analysis for C18H16ClINiO3P: C, 62.46; H, 5.87; N, 3.20. Found: C, 66.49; H, 6.18; N, 2.98.
C₆H₆ at room temperature. The solution was then stirred for 48 hours before the solvent was concentrated to 1 mL. Pentane (15 mL) was layered and left overnight at room temperature yielding red crystals. The pentane was decanted and the crystals were dried under high vacuum (0.076 g, 79%). X-ray quality crystals were grown from benzene/hexane at 25 °C. H NMR (400 MHz, CD₂Cl₂): δ 7.75 (dd, J₂H₁ = 5 Hz, J₂H = 1 Hz, 1H, RuCHCHN), 7.32 (dd, J₁H₂ = 10 Hz, J₁H = 8 Hz, 2H, 6H, C₆H₅), 7.06-6.92 (m, 11H, (9H) PPh₃ + (2H) Mes-CH), 6.86 (br s, 2H, Mes-CH), 6.69 (dd, J₂H₁ = 2 Hz, 1H, Im-CH), 6.45 (dd, J₁H₂ = 2 Hz, 1H, Im-CH), 6.12 (br s, 2H, Im-CH), 6.09 (dd, J₂H₁ = 5 Hz, J₁H₂ = 2 Hz, 1H, RuCHCHN), 4.97 (m, 1H, NCH₃CH₂OMe), 2.97 (m, 1H, NCH₃CH₂OMe), 2.91 (m, 1H, NCH₃CH₂OMe), 2.84 (s, 3H, O(CH₃)), 2.47 (app dt, J₁H = 10 Hz, J₂H = 2 Hz, 2H, 1H, NCH₃CH₂OMe), 2.79-2.05 (br s, 18H, Mes-CH₃). 31P{¹H} NMR (161 MHz, CD₂Cl₂): δ 38.4 (s, PPh₃). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 185.9 (d, J₂PC = 16 Hz, NCN), 160.2 (d, J₂PC = 12 Hz, RuCHCHN), 137.8 (C₆), 137.5 (C₆), 134.6 (d, J₂PC = 11 Hz, PPh₃), 134.2 (d, J₁PC = 20 Hz, PPh₃), 129.3 (Mes-CH₃), 128.6 (Mes-CH₂). ¹³C{¹H} NMR (161 MHz, CD₂Cl₂): δ 38.4 (s, PPh₃). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 184.8 (d, J₂PC = 16 Hz, NCN), 159.2 (d, J₂PC = 12 Hz, RuCHCHN), 137.2 (C₆), 136.9 (C₆), 134.4 (d, J₂PC = 11 Hz, PPh₃), 128.9 (Mes-CH), 128.8 (Mes-CH₂), 127.5 (d, J₂PC = 9 Hz, PPh₃), 124.4 (d, J₁PC = 2 Hz, RuCHCHN), 118.8 (Im-CH), 114.5 (Im-CH), 72.6 (NCH₃CH₂OMe), 57.9 (O(CH₃)), 48.5 (NCH₃CH₂OMe), 21.1 (br s, Mes-CH₂). Elemental Analysis for C₁₄H₁₅Cl₄O₇P₇RuN₆: C, 67.21; H, 5.98; N, 6.27. Found: C, 66.90; H, 6.28; N, 6.22.

Synthesis of [(MeOCH₂CH₂)₂CH₂NC(CH)₃]RuCl(PPh₃)(SIMes) (10) Ethyl vinyl sulfide (13.0 µL, 0.128 mmol) was added to a solution of (8) (0.100 g, 0.104 mmol) in 5 mL C₆H₆ at room temperature. The solution was then stirred for 48 hours before the solvent was concentrated to 1 mL. Pentane (15 mL) was layered and left overnight at room temperature yielding red crystals. The pentane was decanted and the crystals were dried under high vacuum (0.079 g, 82%). X-ray quality crystals were grown from benzene/hexane at 25 °C. H NMR (400 MHz, CD₂Cl₂): δ 7.66 (dd, J₂H₁ = 5 Hz, J₂H = 1 Hz, 1H, RuCHCHN), 7.27 (m, 6H, C₆H₅), 6.99 (m, 3H, C₆H₅), 6.94 (m, 6H, C₆H₅), 6.83 (br s, 2H, Mes-CH), 6.75 (br s, 2H, Mes-CH), 6.63 (dd, J₁H₂ = 2 Hz, 1H, Im-CH), 6.40 (d, J₂H₁ = 2 Hz, 1H, Im-CH), 6.04 (dd, J₁H₂ = 5 Hz, J₂H = 2 Hz, 1H, RuCHCHN), 4.89 (dd, J₂H₁ = 10 Hz, J₂H = 4 Hz, J₁H₂ = 3 Hz, 1H, NCH₃CH₂OMe), 2.99 (m, 1H, NCH₃CH₂OMe), 2.86 (dd, J₁H₂ = 14 Hz, J₂H = 4 Hz, J₁H₂ = 2 Hz, 1H, NCH₃CH₂OMe), 2.82 (s, 3H, O(CH₃)), 2.44 (app dt, J₁H₂ = 10 Hz, J₂H = 3 Hz, 1H, NCH₃CH₂OMe), 2.16 (br s, 9H, Mes-CH₃), 2.11 (br s, 9H, Mes-CH₃). 31P{¹H} NMR (161 MHz, CD₂Cl₂): δ 38.4 (s, PPh₃). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 184.8 (d, J₂PC = 16 Hz, NCN), 159.2 (d, J₂PC = 12 Hz, RuCHCHN), 137.2 (C₆), 136.9 (C₆), 134.4 (d, J₂PC = 11 Hz, PPh₃), 128.9 (Mes-CH), 128.8 (Mes-CH₂), 127.5 (d, J₂PC = 9 Hz, PPh₃), 124.4 (d, J₁PC = 2 Hz, RuCHCHN), 118.8 (Im-CH), 114.5 (Im-CH), 72.6 (NCH₃CH₂OMe), 57.9 (O(CH₃)), 48.5 (NCH₃CH₂OMe), 21.1 (Mes-CH₂), 17.8 (Mes-CH₁). Elemental Analysis for C₁₄H₁₅Cl₄O₇P₇RuN₆: C, 67.21; H, 5.98; N, 6.27. Found: C, 66.84; H, 5.74; N, 6.08.

X-ray Data Collection, Reduction, Solution, and Refinement. Single crystals were soaked in Paratone-N oil in the glove-box, mounted on a MiTegen Micromount and placed under an N₂ stream. The data were collected on a Bruker Apex II diffractometer. The data were collected at 150(±2) K for all crystals. Data reduction was performed using the SAINT software package, and an absorption correction was applied using SADABS. The structures were solved by direct methods using XS and refined by full-matrix least squares on F² using XL as implemented in the SHELXTL suite of programs. All non-hydrogen atoms were refined anisotropically. Carbon-bound hydrogen atoms were placed in calculated positions using an appropriate riding model and coupled isotropic temperature factors.

DISCUSSION

The Ru-hydride precursors (ImOMe)₂(PPh₃)₂RuHCl (1) and (Me₂ImOMe)₂(PPh₃)₂RuHCl (2), were prepared using previously published methodologies. [Wang, 2013 #3779;Lund, 2012 #970] and subsequently reacted with ethyl-vinyl-sulfide. In the case of (1), the mixture of ethyl vinyl sulfide with a benzene solution of (1) was allowed to react for 6 hours resulting in an orange solution. After workup, compound (3) was isolated as a light orange solid in 80% yield (Scheme 2). The presence of diethyl sulfide as a by-product was confirmed by GC analysis of the reaction mixture. The 31P{¹H} NMR spectrum revealed two doublets at 41.9 and 35.7 ppm with a coupling constant of 319 Hz indicative of two phosphines in a trans disposition. A multiplet at 6.29 ppm in the ¹H NMR spectrum, which integrates to one proton, was assigned to the Ru-CHOMe proton. The ¹³C{¹H}
The corresponding reaction of (2) with ethyl vinyl sulfide in CH$_2$Cl$_2$ at room temperature results in the isolation of a red solid (4) in 69% yield (Scheme 2). Similar to (3), the 31P(1H) NMR spectrum revealed doublets at 40.8 and 33.0 ppm, while the 1H NMR spectrum showed a doublet of doublet of doublet at 6.35 ppm and the corresponding carbon shift afforded a triplet at 80.6 ppm. An X-ray structure determination (Fig. 2) confirmed (4) to be ((MeOCH$_2$CH$_2$)C$_2$H$_4$N$_2$(CH$_2$CH(OOMe))RuCl(PPh$_3$)$_2$, the analogue of (3). The geometry about the ruthenium center in (4) is directly analogous to (3) with a Ru-C$_{alkyl}$ bond length of 1.986(3) Å and the Ru-C$_{alkyl}$ bond length of 2.066(4) Å and the C-Ru-C angle of 79.2(2)°.

Interestingly, dissolution of (4) in C$_6$D$_6$ prompts formation of a new product (5) which gives rise to a singlet in the 31P(1H) NMR spectrum at 36.7 ppm. Isolation of (5) after standing in benzene at room temperature for 24 hours gave a yellow solid in 77% yield. Loss of methanol from (4) was inferred by the 1H NMR spectrum. Moreover, the 1H NMR data showed a doublet at 7.67 ppm with a coupling constant of 5 Hz and a doublet of triplet at 5.66 with 3J$_{PC}$ of 5 Hz and 5J$_{PH}$ of 3 Hz. As each of these signals integrated to one proton, they were assigned to Ru-vinyl protons (RuCHCHN). The corresponding carbon signals were observed as a triplet at 135.6 ppm (3J$_{PC}$ of 19 Hz) and a broad singlet at 124.6 ppm. These data were consistent with the formulation of (5) as ((MeOCH$_2$CH$_2$)C$_2$H$_4$N$_2$(CH$_2$CH(OOMe))RuCl(PPh$_3$)$_2$ (Scheme 2).

Exploring this reactivity further, the bis-carbene Ru-hydride precursors (Im(OMe)$_2$)(IMes)(PPh$_3$)RuHCl (6), (Im(OMe)$_2$)(SIMes)(PPh$_3$)RuHCl (7) and (Im(OMe)$_2$)(IMes-Cl)$_2$(PPh$_3$)RuHCl (8) were prepared using previously published methodologies. [Dahcheh, 2014 #5794; Lund, 2012 #9770; Wang, 2013 #3779; Dahcheh, 2014 #5794; Lund, 2012 #9770; Wang, 2013 #3779] While (6) and (7) are known species, compound (8) is a new derivative and was prepared in 65% yield. The 1H NMR spectrum of (8) revealed a doublet at -28.11 ppm with 3J$_{PH}$ of 25 Hz indicative of a hydride coupled to a single phosphine ligand.

![Figure 1](image1.png)

Figure 1 POV-ray depiction of the molecular structure of (3) Ru: dark green, O: red; Cl: green; N: aquamarine, P: orange, C: black. H-atoms omitted for clarity.

![Figure 2](image2.png)

Figure 2 POV-ray depiction of the molecular structure of (4) Ru: dark green, O: red; Cl: green; N: aquamarine, P: orange, C: black. H-atoms omitted for clarity.

NMR spectrum displays a triplet at 82.5 with a 3J$_{PC}$ of 6 Hz which corresponds to the Ru-alkyl carbon. In addition to these NMR spectra, single crystals of (3) afforded the molecular structure determination (Fig. 1) which affirmed (3) as ((MeOCH$_2$CH$_2$)C$_2$H$_4$N$_2$(CH$_2$CH(OOMe))RuCl(PPh$_3$)$_2$. The distorted square pyramidal geometry about the ruthenium center consists of a square plane of two phosphine donors, the chloride and the carbon of the NHC with an alkyl carbon fragment occupying the pseudo-axial position. The corresponding Ru-Cl bond length was determined to be 2.4468(8) Å and the Ru-P bond lengths were found to be 2.3407(8) and 2.3515(8) Å. A Ru-C single bond was inferred to the alkyl fragment (2.061(7) Å) is slightly shorter than typical Ru-C single bonds. Chelation of the two carbons to the Ru center leads to the formation of a five-membered metallo-ring consisting of a square plane of two phosphine donors, the chloride and the carbon of the NHC with an alkyl carbon fragment occupying the pseudo-axial position. The corresponding Ru-Cl bond length was determined to be 2.4468(8) Å and the Ru-P bond lengths were found to be 2.3407(8) and 2.3515(8) Å. A Ru-C single bond was inferred to the alkyl fragment (2.061(7) Å) is slightly shorter than typical Ru-C single bonds. It is interesting to note that subjecting a solution of (3) in C$_6$D$_6$ to 4 atm of H$_2$ at room temperature leads to the quantitative reformation of (1).
The $^{31}\text{P}^{1}\text{H}$ NMR revealed a singlet at 43.2 ppm, while a single-crystal X-ray analysis of (8) revealed a five-coordinate square-pyramidal ruthenium where the base of the pyramid is formed by the two NHCs, chloride, and phosphine ligands and the hydride occupies the apex; thus, the formulation as (IMes-Cl)(Im(OMe)$_2$)(PPh$_3$)RuHCl (Fig. 3). The Ru-C distances for IMes-Cl and Im(OMe)$_2$ were found to be 2.058(5) and 1.976(5) Å, respectively. The Ru-P and Ru-Cl distances of 2.314(1) and 2.452(1) Å, respectively, were observed. The Ru-H distance was determined to be 1.51(4) Å and the cis disposition of the carbene ligands in (8) results in a C-Ru-C angle of 97.3(2)°.

Subsequent reaction of these bis-carbene Ru-hydride species with ethyl vinyl sulfide was investigated. In the case of (9) and (8) afforded (10) and (11) as purple and red solids in 76 and 82% yields, respectively (Scheme 3). In these cases, the generation of diethyl sulfide and methanol as by-products were confirmed by GC analysis and 3H NMR spectroscopy, respectively. Compounds (10) and (11) gave rise to $^{31}\text{P}^{1}\text{H}$, 1H and $^{13}\text{C}^{1}\text{H}$ signals similar to 9 inferring the formulation of (10) and (11) as ((MeOCH$_2$H)$_2$C$_2$H$_2$N$_2$(CHCH)RuCl(PPh$_3$)(HNC) (NHC = (SIMes (10), IMes-Cl (11)). Crystallography data confirmed this formulation in the case of (10) (Fig. 5) as analogous to (8) and (9). The Ru-C$_{SIMes}$ and Ru-C$_{IMes}$ bond lengths of 1.940(2) Å and 2.113(2) Å, Ru-13C$_{vinyl}$ of 2.031(3) Å and chelate C-Ru-C angle of 75.7(1)° are similar to those seen in (9).

In a similar fashion, reaction of ethyl vinyl sulfide with (7) and (8) afforded (10) and (11) as red crystals in 79% yield.
Scheme 3 Synthesis of compounds (9)-(11).

The formation of compounds (3)-(11) are thought to be initiated through the initial insertion of the vinyl-fragment into Ru-H (Scheme 2). Donation from the thioether sulfur enhances electron density at Ru and prompts C-H activation of the pendant ether arm affording loss of diethyl sulfide. In this fashion compounds (3) and (4) are generated. Loss of methanol from (4) gives the bis-phosphine Ru-vinyl species (5). Compounds (9)-(11) are thought to form in a similar fashion, although the increased electron density on Ru derived from the additional carbene ligand facilitates loss of both Et$_2$S and MeOH.

Conclusion

This manuscript has described the reactions of a series of Ru-hydrides with ethyl-vinyl-sulfide. In contrast to the previously reported reactions with aryl-vinyl-sulfides which yield Ru-alkylidenes, these reactions proceed with initial loss of diethyl sulfide generating a Ru-alkyl species. In some cases, these reactions proceed further with loss of methanol to give Ru-vinyl derivatives. This unique reactivity pathway is attributed to the stronger donor character of the ethyl-sulfide derivative. The ability of the reactions of Ru-hydrides with vinyl-sulfides to provide access to Ru-alkylidenes, alkyl and vinyl derivatives continues to be a subject of further development. Specifically we are targeting use of this reactivity in the synthesis of related compounds suitable for catalysis.

Notes and references

Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, Canada, M5S3H6 E-mail: dstephan@chem.utoronto.ca

Crystallographic data have been deposited in the Cambridge Database CCDC 973557-973561.

15. (a) F. Dahcheh and D. W. Stephan, *Organometallics*, 2013, 32, 5253-5255; (b) USP 61827152, 2013.
Ru-hydride precursors containing the OCO-carbene ligand react with ethyl-vinyl-sulfide to give Ru alkyl and vinyl derivatives via an initial insertion of the vinyl-fragment into the Ru-H, subsequent C-H activation and loss of diethyl sulfide.