This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A Family of Enantiopure FeIII 4 Single Molecule Magnets: Fine Tune of Energy Barrier by Remote Substituent†

Yuan-Yuan Zhu,a,b Chang Cui,b Kang Qian,b Ji Yin,a Bing-Wu Wang,a,b Zhe-Ming Wang,b and Song Gaoa,b

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

A new family of enantiopure star-shaped FeIII 4 single-molecule magnets (SMMs) with the general formula $[\text{Fe}_4(\text{L})_4]^+ (\text{H}_L = (R \text{ or } S)-2-((2\text{-hydroxy}-1\text{-phenylethylimino methyl})\text{phenol})), K = \text{H} (1), \text{Cl} (2), \text{Br} (3), 1 (4), \text{and} t\text{-Bu} (5))$, were structurally and magnetically characterized. The complex 1 has been reported in our previous paper (Chem. Commun. 2011, 47, 8049–8051). Detailed magnetic measurements and systematic magneto-structural correlation study revealed that the SMM properties of this series of compounds can be finely tuned by the remote substituent of the ligands. Although the change in the coordination environment of the central FeIII ions is very small, the properties of SMM behavior are changed considerably. All five complexes display frequency dependence of the ac susceptibility.

Introduction

Since the first Single-molecule magnets (SMMs) Mn$_{12}$OAc, that an individual molecule showed superparamagnetic behavior below a certain blocking temperature, was discovered in 1990s,1 a lot of deep researches and continuous development have focused on exploring this new scientific field owing to their unique magnetic properties and potential applications in information storage and quantum computing.2,3 Many synthetic efforts were made to obtain new SMMs with a higher blocking temperature by the modulation of ground-spin states (S) and axial zero-field splitting parameter (D). Usually, the big S can be obtained by increasing the paramagnetic centers coupled by ferromagnetic or antiferromagnetic interactions in the cluster. However, the enhancement and control of D are relatively difficult. In a cluster-type molecule, the D value is dependent on the local anisotropy of the single ions and their vectorial addition, the unparallel arrangement of axial anisotropy of spin carriers may reduce even vanish the zero-field splitting (ZFS). Up to now, several SMMs families, such as Mn$_{12}$,1,3 Mn$_{16}$,5 and Fe$_4$,6 molecules were reported. In pursuit of understanding the origin and impact factor of magnetic anisotropy of these SMMs, consecutive effort has been paid to synthesize structure-tuned molecules with the same skeleton. Some groups proposed and applied site-specific modification strategy to obtain a family molecules aim to understand the magneto-structural correlation and enhance the energy barrier. This strategy was first applied in the chemistry of famous Mn$_{12}$ family. The systematic research works by Gatteschi, Sessoli, Hendrickson, Christou, and co-workers have constructed many Mn$_{12}$ derivatives with controlled ligand replacement, which demonstrated small perturbations on the magnetic anisotropy can change the relaxation barriers.1,4

Another successful example applying site-specific modification strategy is Fe$_4$ family SMMs.5 Fe$_4$ SMMs belong to the tetranuclear star-shaped clusters, which are comprised of a central ion and three peripheral ions. This series of molecules is a relatively simple system that shows SMMs behavior. Several clusters with similar skeleton such as CrIII,7 MnII,8 NiII,9 CrIIIMnII,10 CrIIIFeIII,11 and CoIICoII,12 with intriguing magnetic properties have been reported. After the archetype Fe$_4$ SMM was reported in 1999, several new Fe$_4$ SMMs were obtained by replacing the axial ligand or using new ligands.6,13 Systematic magneto-structure correlation revealed the energy barrier can be enhanced when the symmetry of the Fe$_4$ molecules was raised from C$_2$ to D$_3$. In recent years, some important progresses in spintronics make Fe$_4$ clusters being one of the most important SMMs again. Because of their ease in the modification of axial ligands and their stability in vacuum, FeIII$_4$ clusters can stick on silicon,14 gold surface,15 or carbon nanotubes16 through immobilization and provide fascinating examples for the single-molecule magnetic behavior on surface or magnetic property.
studies on monolayer molecule assembly. With the aid of X-ray magnetic circular dichroism (XMCD) technique, Sessoli and Cornia et al characterized the magnetic properties of a FeIII4 SMM on the gold surface and confirmed that the FeIII4 molecule reserved the SMM behavior on the surface.15 It is an exciting result for the potential applications of SMMs in molecular spintronics, ultrahigh-density information storage, or quantum computing.

Recently, the development of enantiopure chiral molecule-based magnets has been a topic of growing interest for synthetic chemists.16,18 Chiral Magnet has opened up a new field of research on molecular materials possessing both magnetic and optical properties. Such materials appear to be good candidates to present a cross effect between circular dichroism (CD) and optical properties. Such materials appear to be good candidates to present a cross effect between circular dichroism (CD) and magnetic properties of a FeIII4 crystal.19 Some reports demonstrated enantiopure magnets can be obtained by spontaneous resolution method during crystal growth in the absence of a chiral source.20 However, from a synthetic point of view, such process was not suitable to be considered as a preparative method because it is difficult to control the absolute configuration and obtain enantiopure chiral crystals. A practical approach to obtain enantiopure molecular magnets is to synthesize the chiral ligands enantioselectively, and then transfer the chiral information to the paramagnetic assemblies through coordination bonds. Up to now, most reported chiral magnets were multidimensional magnetic ordering materials, the examples of chiral SMMs were rare.12,13,20

Though the sum of reported FeII SMMs in literature has already exceeded twenty,6 the chiral example is still rare.6,13 The chiral FeII SMMs will not only expand the FeII family but also afford new interesting example of multifunctional SMMs, and provide possible candidate for molecular spintronics devices. Very recently, our group has found that several chiral FeII4 type SMMs can show optical activity simultaneously. In 2011, we reported a pair of novel chiral star-shaped FeII4 compounds showed SMM behavior.13 As a continuation of preliminary work, we tune finely the coordination environment of central FeIII+ ion by remote substituting the ligand to understand the magneto-structure correlation of this series of FeII3 SMMs and improve the anisotropy energy. The Schiff base ligand used in our previous work can be easily modified by introducing substitutes in the p-position of salicylaldehyde ring, which facilitates us to obtain a series of FeII4 clusters with the same star shaped skeleton. In this article, we report the preparation, magnetism, magneto-structural correlation analysis, and chirality of five new star-shaped FeII4 compounds with different substituent Schiff base ligands.

Experimental Section

Reagents and General Procedures

All starting materials were commercially available at analytical grade and used without further purification. All reactions were carried out under aerobic condition.

Synthesis of ([FeCl6]3+)·4DMF (2R) and ([FeCl6]3+)·4DMF (2S)

A mixture of H2L2CI (414 mg, 1.5 mmol) and Et3N (4.3 mL, 3 mmol) in methanol (20 mL) was stirred at room temperature. A brown precipitate was generated as soon as the solution of FeCl2 (198 mg, 1 mmol) in methanol (10 mL) was added dropwise (the Fe ions were oxidated from +2 valence to +3 valence in the air immediately). Then the mixture was stirred further at room temperature for 12 h. The resulting solution was filtered and the solvent was removed under vacuum. The brown precipitate was dried under vacuum then redissolved in hot DMF (40 mL). Dark brown chucks were obtained within two weeks in 70–80% yield by slow evaporation of the resulting solution. The crystals are stable at room temperature and no loss of solvent is observed. Anal. Calcd for C10H10Cl2Fe2[N3-O]·4DMF: C, 56.77; H, 4.67; N, 6.49. Found: C, 56.73; H, 4.68; N, 6.54. IR (pure sample): ν = 3651(w), 3060(w), 3029(w), 2915(w), 2860(w), 2700(w), 2653(w), 1956(w), 1888(w), 1817(w), 1751(w), 1674(m), 1628(s), 1530(m), 1459(s), 1417(w), 1377(w), 1362(m), 1328(w), 1309(m), 1264(w), 1246(w), 1175(m), 1132(w), 1088(m), 1068(m), 1042(m), 1030(m), 1002(w), 984(w), 943(w), 918(w), 874(w), 826(m), 809(m), 762(w), 733(w), 702(m), 660(m), 640(w). HRMS (ESI): Calcd. For C49H17Cl2Fe2N4O4·4DMF: 1863.0811. Found: 1863.0832.

The enantiomer complexes of 2S ([FeCl6]3CI)·4DMF was synthesized by using H2L2CI as ligand in the same way. Yield: 70%. Anal. Calcd for C10H10Cl2Fe2[N3-O]·4DMF: C, 56.77; H, 4.67; N, 6.49. Found: C, 56.70; H, 4.67; N, 6.53. IR (pure sample): ν = 3651(w), 3061(w), 3029(w), 2915(w), 2861(w), 2701(w), 2635(w), 1955(w), 1889(w), 1752(w), 1675(m), 1629(s), 1530(m), 1493(w), 1460(s), 1417(m), 1376(m), 1363(m), 1310(m), 1265(m), 1244(w), 1196(w), 1175(m), 1132(w), 1088(w), 1068(m), 1042(m), 1030(m), 1002(w), 983(w), 943(w), 919(w), 874(w), 826(m), 809(m), 762(w), 733(w), 702(m), 661(m), 641(w).

Synthesis of ([FeCl6]3CI)·5.5DMF·0.5MeOH (3R)

Compound 3R was synthesized by using H2L2CI as the ligand in the same way. Yield: 75%. Anal. Calcd for C10H112Br6Fe6N115O46·5.5DMF·0.5MeOH: C, 50.39; H, 4.45; N, 6.32. Found: C, 50.05; H, 4.60; N, 6.50. IR (pure sample): ν = 3650(w), 3052(w), 3029(w), 2917(w), 2861(w), 2698(w), 2634(w), 1956(w), 1890(w), 1817(w), 1748(w), 1675(m), 1626(s), 1591(w), 1527(m), 1493(w), 1461(s), 1414(w), 1376(m), 1328(m), 1307(w), 1256(w), 1195(w), 1175(m), 1134(w), 1089(w), 1068(m), 1042(m), 1002(w), 986(w), 942(w), 913(w), 875(w), 825(m), 807(m), 763(w), 704(m), 699(m), 649(m). HRMS (ESI): Calcd. For C90H72Br6Fe6N4O26·5.5DMF·0.5MeOH: 2132.7754. Found: 2132.7749.

Synthesis of ([FeCl6]3CI)·5.5DMF·0.5MeOH (4R)

Compound 4R was synthesized by using H2L2CI as the ligand in the same way. Yield: 71%. Anal. Calcd for C10H112Br6Fe6N115O46·5.5DMF·0.5MeOH: C, 45.47; H, 4.03; N, 5.89. Found: C, 45.80; H, 3.95; N, 5.65. IR (pure sample): ν = 3663(w), 3052(w), 3030(w), 2918(w), 2862(w), 2699(w), 2634(w), 2270(w), 1957(w), 1891(w), 1818(w), 1675(s), 1625(s), 1591(w), 1527(m), 1493(m), 1461(s), 1413(m), 1376(m), 1362(m), 1328(m), 1306(s), 1256(w), 1195(w), 1175(m), 1134(w), 1090(m), 1068(m), 1042(m), 1002(w), 989(w), 941(w), 912(w), 875(w), 825(m), 806(m), 763(m), 705(m), 689(m), 649(m).

Synthesis of ([FeCl6]3Cl)·6DMF (5R)

Compound 5R was synthesized by using H2L2CI as the ligand in the same way, and was recrystallized in DMA. Yield: 65%. Anal. Calcd for C30H180Cl2Fe6N15O6·6DMF: C, 65.82; H, 7.20; N, 6.67. Found:
Dalton Transactions Accepted Manuscript

Manuscript - Accepted

III

M

Option effects were collected using the multi

114

Dalton

Page 3 of 11

30

25

20

5

exp

Pascal constants and of the sample holder by measurement. The

MPMS XL

Magnetic measurements were performed on a Quantum Design

program

Magnetic measurements were collected using CrystalClear (Rigaku Inc., 2008) technique and absorption effects

diffractometer with Confocal

were collected using CrystalClear (Rigaku Inc., 2008) technique and absorption effects

Intensities were collected using CrystalClear (Rigaku Inc., 2008) monochromator Mo

were carried on a Saturn724+ CCD diffractometer with graphite-

monochromator Mo-Kα radiation (λ = 0.71073 Å) at 173 K.

Intensities were collected using CrystalClear (Rigaku Inc., 2008) technique and absorption effects

were collected using the multi-scan technique. Single-crystal X-ray diffraction measurement of 5R was collected on an Agilent Technologies SuperNova Atlas Dural system with a (Mo)

microfocus source and focusing multilayer mirror optics.

The structure of all compounds was solved using SHELXS-97 program21 and refined by a full matrix least squares technique based on F3 using SHELXL 97 program.22

Magnetic measurement and other physical Techniques

Magnetic measurements were performed on a Quantum Design

PMPS XL-5 SQUID magnetometer on polycrystalline samples. Data were corrected for the diamagnetism of the samples using Pascal constants and of the sample holder by measurement. The experiments below 1.8 K were measured on the iHelium

Table 1 Crystal data, data collection, solution, and refinement information of compounds 2–5

<table>
<thead>
<tr>
<th>2 (R)</th>
<th>3 (S)</th>
<th>4 (R)</th>
<th>5 (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{16}H_{23}Cl_iFe_{2}N_{4}O_{16}</td>
<td>C_{16}H_{23}Cl_iFe_{2}N_{4}O_{16}s</td>
<td>C_{16}H_{23}Fe_{2}Cl_iN_{4}O_{16}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>2158.02</td>
<td>2158.02</td>
<td>2550.45</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
<td>Orthorhombic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_12_1</td>
<td>P2_12_1</td>
<td>P2_1</td>
</tr>
<tr>
<td>a, Å</td>
<td>20.880(6)</td>
<td>20.925(4)</td>
<td>12.475(2)</td>
</tr>
<tr>
<td>c, Å</td>
<td>22.215(5)</td>
<td>22.222(4)</td>
<td>24.438(5)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V, Å^3</td>
<td>10094(5)</td>
<td>10132(3)</td>
<td>5713.1(18)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T, K</td>
<td>173(2)</td>
<td>173(2)</td>
<td>173(2)</td>
</tr>
<tr>
<td>F(000)</td>
<td>4464</td>
<td>4464</td>
<td>2586</td>
</tr>
<tr>
<td>D_c, g cm^-3</td>
<td>1.420</td>
<td>1.415</td>
<td>1.483</td>
</tr>
<tr>
<td>μ, mm^-1</td>
<td>0.792</td>
<td>0.789</td>
<td>2.663</td>
</tr>
<tr>
<td>χ, Å^-1</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal size, mm^3</td>
<td>0.44 + 0.36 + 0.20</td>
<td>0.72 + 0.70 + 0.65</td>
<td>0.36 + 0.26 + 0.17</td>
</tr>
<tr>
<td>μ, mm^-1</td>
<td>1.3099, 25.3366</td>
<td>0.9731, 26.0179</td>
<td>1.3592, 27.4691</td>
</tr>
<tr>
<td>no. total reflns.</td>
<td>65865</td>
<td>58679</td>
<td>46812</td>
</tr>
<tr>
<td>no. uniq. reflns, Rint</td>
<td>18428, 0.0668</td>
<td>19848, 0.0796</td>
<td>24523, 0.0702</td>
</tr>
<tr>
<td>no. obs. [iZ≥σ(i)]</td>
<td>17653</td>
<td>18332</td>
<td>19710</td>
</tr>
<tr>
<td>no. params</td>
<td>1251</td>
<td>1251</td>
<td>1310</td>
</tr>
<tr>
<td>R1 [I≥2σ(I)]</td>
<td>0.0599</td>
<td>0.0770</td>
<td>0.0981</td>
</tr>
<tr>
<td>wR2 (all data)</td>
<td>0.1659</td>
<td>0.2019</td>
<td>0.1949</td>
</tr>
<tr>
<td>S</td>
<td>1.245</td>
<td>1.238</td>
<td>1.137</td>
</tr>
<tr>
<td>Δρ, e Å^-3</td>
<td>0.644, -0.969</td>
<td>0.661, -0.925</td>
<td>0.837, -0.742</td>
</tr>
<tr>
<td>max and mean Δσb</td>
<td>0.001, 0.000</td>
<td>0.000, 0.000</td>
<td>0.000, 0.000</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.054(15)</td>
<td>0.043(18)</td>
<td>0.062(11)</td>
</tr>
</tbody>
</table>

Measurement Console in coordination with MPMS XL-5 SQUID magnetometer.

The axis and transverse zero-field splitting parameters D and E were calculated with the DFT method at the B3LYP/TZVP level of theory for the central Fe^{3+} ion and six coordinated oxygen atom of this series compounds. Hydrogen atoms were added theoretically to balance the charge. All the computations were performed in the ORCA package. The computational details are provided in ESI.

CD spectral measurements in solution and solid state were performed on a JASCO J-815 CD spectropolarimeter.

Results and Discussion

Synthesis of the Fe^{III} complexes.

In this work, besides H_{2}L, four new Schiff base type ligands with different substituent in the p-position of salicylaldehyde ring were used to construct the Fe^{III} clusters. The structures of the five ligands are listed in Chart 1. Series Schiff base ligands can be synthesized by the condensation of (R or S)-2-amino-2-phenylethanol with corresponding salicylaldehyde derivatives in ethanol. The pure needlelike crystalline products were obtained by recrystallization in the mixed solvent of ethyl acetate and petroleum ether with high yield.

Series of complexes 1–5 were obtained by the reaction of FeCl_{3}·4H_{2}O, H_{2}L, and Et_{3}N in methanol (see experimental
section). The pure products were recrystallized as block crystals in DMF or DMA solution. The color of 1(R and S), 2(R and S), 3(R), 4(R), and 5(R) are dark brown. The structures of six complexes 1R–5R were characterized by single crystal X-ray analysis, and also the enantiomer structures of 1S and 2S.

![Chart 1](image1.png)

Chart 1 The structure of Schiff base ligands with different substituent in the para position.

Solid-state Structure

Although the five complexes have similar star-shaped Fe\(^{III}\)\(_4\) skeleton, they crystallized in different space group. Compound 1, 3, 4, and 5 belong to \(P2_1\) space group and compound 2 belong to \(P2_1\) space group, respectively. In all \(Fe^{III}\) complexes, four \(Fe^{III}\) ions (one central \(Fe^{III}\) ion and three peripheral \(Fe^{III}\) ions) are located in the same plane.

The structural details of Compounds 1R and 1S have been describing in our previous report.\(^{13}\) These clusters both possess pseudo \(C_3\) molecule symmetry.

Comounds 2R and 2S crystallize in the orthorhombic space group \(P2_1\). The unit cell comprises four clusters and sixteen DMF molecules. The distances between the central \(Fe^{III}\) ion and three peripheral \(Fe^{III}\) ions are slightly different. For 2R as example, the \(Fe^{III}--Fe^{III}\) distances are 3.232(1) Å for \(Fe^{III}--Fe^{III}\), 3.234(1) Å for \(Fe^{III}--Fe^{III}\), and 3.240(1) Å for \(Fe^{III}--Fe^{III}\). Three edges of the iron triangle are not exactly the same, with 5.466(1) Å for \(Fe^{III}--Fe^{III}\), 5.553(1) Å for \(Fe^{III}--Fe^{III}\), and 5.778(1) Å for \(Fe^{III}--Fe^{III}\). The coordination environment of the central \(Fe^{III}\) ion is composed of six oxygen atoms with \(Fe^{III}--O\) distances ranging from 2.003(4) Å to 2.048(4) Å. It is in pseudo \(C_3\) symmetry and forms a slightly distorted triangular prism, which is similar to that in 1. The selected bond distances and angles for 2R and 2S are listed in Table S1 and S2.

Compound 3R crystallizes in the monoclinic space group \(P2_1\), the same space group as the archetype compound 1. The unit cell comprises two clusters, eleven DMF molecules, and one methanol molecule. Similar to 2, the distances between the central \(Fe^{III}\) ion and three peripheral \(Fe^{III}\) ions are also slightly different. The \(Fe^{III}--Fe^{III}\) distances are 3.218(2) Å for \(Fe^{III}--Fe^{III}\), 3.223(2) Å for \(Fe^{III}--Fe^{III}\), and 3.236(2) Å for \(Fe^{III}--Fe^{III}\). Three edges of the iron triangle are not exactly the same, with 5.543(2) Å for \(Fe^{III}--Fe^{III}\), 5.634(2) Å for \(Fe^{III}--Fe^{III}\), and 5.580(2) Å for \(Fe^{III}--Fe^{III}\). The coordination environment of the central \(Fe^{III}\) ion in 3R has pseudo \(C_3\) symmetry with \(Fe^{III}--O\) distances ranging from 2.007(6) Å to 2.049(6) Å, and forms a slightly distorted triangular prism. The selected bond distances and angles for 3R are listed in Table S3.

The structure of Compound 4R is similar with 3R. It also crystallizes in the monoclinic space group \(P2_1\). The unit cell comprises two clusters and twelve DMF molecules. The distances between central \(Fe^{III}\) ion and three peripheral \(Fe^{III}\) ions are also slightly different. The \(Fe^{III}--Fe^{III}\) distances are 3.218(2) Å for \(Fe^{III}--Fe^{III}\), 3.226(2) Å for \(Fe^{III}--Fe^{III}\), and 3.214(2) Å for \(Fe^{III}--Fe^{III}\). Three edges of the iron triangle are not exactly the same, with 5.603(2) Å for \(Fe^{III}--Fe^{III}\), 5.584(2) Å for \(Fe^{III}--Fe^{III}\), and 5.537(2) Å for \(Fe^{III}--Fe^{III}\). The coordination environment of the central \(Fe^{III}\) ion has pseudo \(C_3\) symmetry with \(Fe^{III}--O\) distances ranging from 2.008(5) Å to 2.046(5) Å, and forms a slightly distorted triangular prism. The selected bond distances and angles data for 4R is listed in Table S4.

Compound 5R crystallizes in the monoclinic space group \(P2_1\), the unit cell comprises two clusters, twelve DMA molecules. The distances between the central \(Fe^{III}\) ion and three peripheral \(Fe^{III}\) ions are also slightly different. The \(Fe^{III}--Fe^{III}\) distances are 3.232(1) Å for \(Fe^{III}--Fe^{III}\), 3.232(1) Å for \(Fe^{III}--Fe^{III}\), and 3.210(1) Å for \(Fe^{III}--Fe^{III}\). Three edges of the iron triangle are not exactly the same, with 5.372(1) Å for \(Fe^{III}--Fe^{III}\), 5.692(1) Å for \(Fe^{III}--Fe^{III}\), and 5.672(1) Å for \(Fe^{III}--Fe^{III}\). The coordination environment of the central \(Fe^{III}\) ion has pseudo \(C_3\) symmetry with \(Fe^{III}--O\) distances ranging from 1.997(3) Å to 2.057(3) Å, and forms a slightly distorted triangular prism. The selected bond distances and angles for 5R are listed in Table S5.

Though the four \(Fe^{III}\) ions are in same valence, the coordination environment between the central \(Fe^{III}\) ion and the peripheral \(Fe^{III}\) ion are different significantly. Firstly, the central \(Fe^{III}\) ion is 6O coordinated and the peripheral \(Fe^{III}\) ion is 4O2N coordinated. Secondly, the central \(Fe^{III}\) ion is located in slightly distorted triangular prism coordination environment and the peripheral \(Fe^{III}\) ion is located in slightly distorted octahedral coordination environment. The difference of coordination environment between two types of \(Fe^{III}\) ions will be discussed in detail in the magneto-structural correlation study section. In the crystalline state, the \(Fe^{III}\) atoms between neighboring clusters are well separated from each other by Schiff base ligands and solvent molecules.
Static Magnetic Properties

The temperature dependence of magnetic susceptibility under 1000 Oe dc field was measured for all the six compounds in this paper. For the R and S enantiomers exhibit identical magnetic responses to dc and ac magnetic field, all the magnetic discussions were concerned only R enantiomers in the following.

The temperature dependences of the magnetic susceptibility for six compounds all show characteristic of antiferromagnetic clusters with incomplete spin cancellation. For compound 4 as an example, the $\chi_M T$ vs. T plot is shown in Figure 2. The $\chi_M T$ value is 12.40 cm3 K mol$^{-1}$ at 300 K and decreases on lowering the temperature, going through a minimum of 11.26 cm3 K mol$^{-1}$ at $T \approx 170$ K, and then increases to the value of 15.24 cm3 K mol$^{-1}$ at 16 K. Below this temperature, a sharp decrease is observed. Dc magnetic data for compound 1 has already been presented in ref 13. The $\chi_M T$ vs. T data of compounds 2, 3, and 5 can be seen in the supporting information (see Figure S10-S12). These results all indicate the occurrence of an antiferromagnetic coupling between the central high spin Fe$^{3+}$ ion and the three peripheral high spin Fe$^{3+}$ ions, which leads to a ground state with $S = 5$. It means that three peripheral spins aligned parallel to each other but antiparallel to the central one (see Figure 3). For compound 4 as an example, the observed $\chi_M T$ value at the maximum (15.25 cm3 K mol$^{-1}$) is in good agreement with the value of 15.00 cm3 K mol$^{-1}$ expected for $S = 5$ with $g = 2.0$.

The framework of four Fe$^{3+}$ ions in all five compounds is in the same star shaped topology. Actually, in each compound, the distances between the central Fe$^{3+}$ ion and the peripheral Fe$^{3+}$ ions have slight differences. Magnetic measurements show that these small differences have minor effect to the magnetic coupling interactions of this series Fe$^{III}_4$ clusters. For clarity, we assume there are two kinds of magnetic interactions within the core of this series compounds, named J_1 and J_2, representing the exchange coupling between the central Fe$^{3+}$ ion and the peripheral Fe$^{3+}$ ion, and between the adjacent peripheral Fe$^{3+}$ ions, respectively. The HDVV spin Hamiltonian can be expressed as follows:

$$H = -2J_1(S_1 \cdot S_2 + S_1 \cdot S_3 + S_1 \cdot S_4) - 2J_2(S_1 \cdot S_2 + S_1 \cdot S_3 + S_1 \cdot S_2) + g\mu_B S \cdot H$$

(1)

The $\chi_M T$ vs. T magnetic data for the five Fe$^{III}_4$ compounds were fitted by a least-squares fitting procedure with

Levenberg–Marquardt algorithm using the program MAGPACK. The best fitted parameters in the temperature range 10–300 K of all compounds are listed in Table 2. The values of J_1 are in the range of -11.4 cm$^{-1}$ for 2 to -13.2 cm$^{-1}$ for 5, which indicate the antiferromagnetic interactions of central and peripheral Fe$^{3+}$ ions. Small values of J_2 from 0.25 cm$^{-1}$ for 5 to 0.41 cm$^{-1}$ for 4 suggest weak ferromagnetic coupling interactions between adjacent peripheral Fe$^{3+}$ ions. These results demonstrate that the magnetic interactions within the five Fe$^{III}_4$ compounds are in the same type and within the similar strength.
Dalton Transactions Accepted Manuscript

Fig. 3 The star shaped topology of four Fe³⁺ ions, the arrows show the spin configuration in the ground $S = 5$ state of the molecule. $J₁$ represents the exchange coupling between the central Fe³⁺ ion and the peripheral Fe³⁺ ion, $J₂$ represents the exchange coupling between the peripheral Fe³⁺ ions.

Isothermal magnetization data were collected in field up to 50 kOe at different low temperature (1.8, 2.0, 3.0, and 5.0 K). The M vs. H/T curves of these compounds all display significant bifurcation, which indicates the presence of an appreciable magnetic anisotropy in the ground state (see inset of Figure 2). Considering the spin ground state anisotropy by using the phenomenological spin Hamiltonian $H = D(S⁺² + S⁻²) + gμₕB · S$, the magnetic data was fit using the program ANISOFIT 2.0. The produced axial and transverse zero-field splitting parameters D and E are listed in Table 3, which show the sequence of zero-field splitting parameter D value is $1 > 3 > 2$ (Br) > 5 (t-Bu). Small transverse zero-field splitting contributions exist in all five compounds, which is the origin of zero-field quantum tunneling of magnetization.

Table 2 Summary of magnetic coupling data of compound 1–5 fitted by MAGPACK

<table>
<thead>
<tr>
<th></th>
<th>1 (H)</th>
<th>2 (Cl)</th>
<th>3 (Br)</th>
<th>4 (I)</th>
<th>5 (t-Bu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J₁$</td>
<td>-11.7</td>
<td>-11.4</td>
<td>-12.4</td>
<td>-11.6</td>
<td>-13.2</td>
</tr>
<tr>
<td>$J₂$</td>
<td>0.29</td>
<td>0.34</td>
<td>0.32</td>
<td>0.41</td>
<td>0.25</td>
</tr>
<tr>
<td>g</td>
<td>1.99</td>
<td>2.02</td>
<td>2.01</td>
<td>2.02</td>
<td>2.02</td>
</tr>
</tbody>
</table>

Magnetization hysteresis is one of the most important static magnetic characteristic of the magnetic bistability of SMMs. The hysteresis measurements of five compounds were performed at low temperature (0.5–0.6 K) with the help of a ³He system. Figure 4 illustrates butterfly-shaped hysteresis loops emerge in compound 1, 3, and 4. The coincidences of hysteresis loop around $H = 0$ point is mainly due to the presence of fast quantum tunneling of magnetization (QTM). The QTM mechanism promotes magnetization reversal of spin carrier when the magnetic field near zero. Surprisingly, although the structure and magnetic coupling properties are similar to other three compounds, the hysteresis loop was not observed for compounds 2 and 5 at the same temperature range. These results confirm SMM behavior of this series of Fe³⁺₄ clusters at very low temperature.

Fig. 4 Plot of magnetization (M) vs dc magnetic field (H) within ±5 kOe for compound 1–6 at 0.5–0.6 K.

40 Dynamic Magnetic properties

Frequency dependence of $χ''$ is another important characteristic of the magnetic bistability of SMMs in addition to the hysteresis loop. For all five compounds, the alternating-current (ac) susceptibility at various frequencies (from 1 to 1000 Hz) in the absence of a dc field has been investigated (see Figure 5). Both in-phase ($χ'$) and out-of-phase ($χ''$) susceptibilities of compound 1–5 show frequency dependence at low temperature, which indicate they all show SMMs behavior. However, no peak of $χ''$ appears for 2 and only one peak appears in the $χ''$ curve of $ν = 1000$ Hz for 5, so the relaxation barrier of these two compounds cannot be obtained in the current stage. For the other three compounds, the maximal temperature of frequency peak is found to be highest for 4 and decrease in the order of 4 (I) > 3 (Br) > 1 (H). This result implies that 4 possess the highest anisotropy.
barrier. The peak temperature of χ'' of three compounds can be fitted by Arrhenius law (see Figure 6), the parameters U_{eff} and τ_0 evaluated by a linear fit are listed in Table 3. As expected, the fitting results of 4 (I) give $\tau_0 = 2.5 \times 10^{-8}$ and $U_{\text{eff}} = 11.0$ K, which possess the highest relaxation barrier in this series compounds. The barrier is a little smaller than that calculated value $|D|S^2 = 13.0$ K, S is the ground state spin; D is the axial zero-field splitting parameter fitted from M vs. H/T plots. The anisotropy barrier is in the order of 4 (I) > 3 (Br) > 1 (H). The τ_0 value indicates the superparamagnetic behavior of this series compounds.

![Fig. 5](image)

Fig. 5 Temperature dependence of ac susceptibility at frequencies from 1 to 1000 Hz for 1 to 5.

![Fig. 6](image)

Fig. 6 Arrhenius plots for compounds 1 (H), 3 (Br), and 4 (I) obtained from ac susceptibility measurements in the absence of a dc field.

The frequency dependence of the ac susceptibility for compound 4 with high anisotropy barrier was also investigated in the absence of an applied field at the low temperature range. Similar to the temperature dependence data, the curves of χ' and χ'' signals all display significant frequency dependence, and one peak in each curve indicates only one thermal relaxation process exist (see Figure 7). The relaxation energy barrier fitted by Arrhenius law is 10.6 K for 4 (see Figure S13). It is consistent with the values from χ'' vs. T measurements.

![Fig. 7](image)

Fig. 7 Frequency dependence of ac susceptibility at frequencies from 1 to 1000 Hz for 4.

To inspect the distribution of the relaxation time, the χ'' vs. χ' data of 4 at different temperatures (0.5-1.1 K) in the absence of a dc field were fitted by the modified Debye Model (see Figure 8). The resulting α values varies in the range of 0.15-0.29 (the α value indicates deviation from the pure Debye model), which is within the range of superparamagnetism (see Table S6). It suggests the presence of an almost uniformly distributed relaxation process in the range of the measured temperature.
the central Fe\(^{3+}\) ion.

Theoretical calculation was carried out to study the magnetic anisotropy of central Fe\(^{3+}\) ion. DFT calculations at B3LYP/TZVP level were used to obtain the axial zero-field splitting parameter \(D\) and \(D/E\) (\(E\): transverse zero-field splitting parameter) of the central Fe\(^{3+}\) ions. The calculated \(D\) values are well consistent with the fitting results by ANISOFIT which considers the whole molecule (see Table 3). This result supports our assumption that the magnetic anisotropy mainly comes from the central Fe\(^{3+}\) ion.

Also, the differences between fitting and DFT results demonstrate the contribution of three peripheral Fe\(^{3+}\) ions cannot be neglected.

Fig. 8 Cole-Cole plot of 4 in the absence of a dc field at low temperature; the solid lines are the best fit obtained with a modified Debye model.

Table 3 Summary of axial and transverse zero-field splitting parameter \(D\), \(E\), \(U_{\text{eff}}\) and \(t_0\) of compound 1-5

<table>
<thead>
<tr>
<th>Complex</th>
<th>1 (H)</th>
<th>2 (Cl)</th>
<th>3 (Br)</th>
<th>4 (I)</th>
<th>5 (t-Bu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^s) (cm(^{-1}))</td>
<td>-0.34</td>
<td>-0.29</td>
<td>-0.33</td>
<td>-0.36</td>
<td>-0.29</td>
</tr>
<tr>
<td>(E^s) (cm(^{-1}))</td>
<td>1.0 \times 10^3</td>
<td>5.2 \times 10^3</td>
<td>5.2 \times 10^3</td>
<td>9.1 \times 10^3</td>
<td>7.8 \times 10^3</td>
</tr>
<tr>
<td>(g^s)</td>
<td>2.01</td>
<td>2.06</td>
<td>2.04</td>
<td>2.07</td>
<td>2.04</td>
</tr>
<tr>
<td>(D^t) (cm(^{-1}))</td>
<td>-0.34</td>
<td>-0.28</td>
<td>-0.27</td>
<td>-0.29</td>
<td>-0.26</td>
</tr>
<tr>
<td>(E/D^t)</td>
<td>0.0429</td>
<td>0.0244</td>
<td>0.0397</td>
<td>0.0426</td>
<td>0.0418</td>
</tr>
<tr>
<td>(U_{\text{eff}}) (K)</td>
<td>5.9</td>
<td>7.0</td>
<td>11.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_0)</td>
<td>4.0 \times 10^7</td>
<td>/</td>
<td>3.7 \times 10^7</td>
<td>2.5 \times 10^8</td>
<td>/</td>
</tr>
</tbody>
</table>

\(a\) and \(b\) values fitted by ANISOFIT with giant spin model;

\(\ast\) \(D\) and \(E\) values calculated by DFT method at B3LYP/TZVP level of theory.

Magneto–structural Correlation Studies

Magnetic studies demonstrated that the anisotropy barrier can be successfully tuned by introducing different substituent in the ligand. In this series of Fe\(^{III}\)\(_3\) clusters, the energy barrier of 3 and 4 are higher than that of archetype compound 1. Compound 4 possesses the highest relaxation barrier \((U_{\text{eff}} = 11.0\) K\), which is comparable to the Fe\(^{III}\)\(_3\) family compounds with high relaxation barrier reported by Gatteschi, Sessoli, and Cornia et al.\(^6\) Their researches demonstrated that the relaxation barrier can be enhanced by the replacement of axis tridentate ligand. Our results indicated that modification of remote substituent of ligand can also work. So a question emerges naturally, how does the remote substituent influence the anisotropy energy barrier in this family of Fe\(^{III}\)\(_3\) molecules?

The origin of magnetic anisotropy is the first question need be answered. As the detailed structure discussions in the section of solid-state structure, the central Fe\(^{3+}\) ion and peripheral Fe\(^{3+}\) ions are in the very different coordination environment (see Figure 9). The central Fe\(^{3+}\) ion are located in slightly distorted triangular prism coordination environment. For example, the central Fe\(^{3+}\) ion in these series complexes have pseudo-C\(_3\) symmetry.

Previous study revealed that the high order axial symmetry at least C\(_5\) or D\(_3\) symmetry can minimize the quantum tunneling of magnetization and enhance anisotropy barrier significantly.\(^{6,25}\) The three peripheral Fe\(^{3+}\) ions, however, are very different, which are located in slightly distorted octahedral coordination environment. This type of coordination mode of peripheral Fe\(^{3+}\) ion can also produce magnetic anisotropy by the distortion of coordination sphere, which may produce minor contribution to the \(D\) value of the whole molecule. For convenience of the following theoretical study, we proposed a preliminary model that assumed the contribution of magnetic anisotropy in this series of molecules mainly comes from the central Fe\(^{3+}\) ion.

Since the main contribution of magnetic anisotropy comes from the central Fe\(^{3+}\) ion, the difference of the central Fe\(^{3+}\) ion’s coordination environment may be the crucial factor to affect the magnetic anisotropy. In these Fe\(^{III}\)\(_3\) molecules, the central Fe\(^{3+}\) ions are in the slightly distorted-triangular-prism coordination environment. According to Neumann’s Principle,\(^{26}\) the C\(_3\) axis of the molecule must be one of the magnetic principal axes. Since this molecule behaves a typical SMM behavior, it is reasonable to claim that this C\(_3\) axis is the unique easy axis. The derivation to ideal symmetry can cause the transverse zero-field splitting contribution, which may reduce the effective anisotropy energy barrier through the quantum tunneling of magnetization (QTM). The degree of derivation from trimer can be analyzed by a quantitative method named “Continuous Symmetry Measures”, developed by Alvarez and Aynur et al. It is an effective mathematical method to describe the derivation to the standard symmetry of coordination sphere.\(^{27}\) By using this method, we obtained the deviation parameter \(P\) (defined by equation 2) of central Fe\(^{3+}\) ion and three peripheral Fe\(^{3+}\) ions in compound 1-5 according to the derivation from triclinic prism and octahedron, respectively. The results demonstrate that the coordination symmetry of central Fe\(^{3+}\) ion approaches trigonal prism and that of peripheral Fe\(^{3+}\) ion approaches octahedron. For the central Fe\(^{3+}\) ion, the value of derivation parameter to trigonal prism is found to be lowest for 1 and increases in the order \(1 < 2 < 3 \approx 4 < 5\).

The central Fe\(^{3+}\) ion in 1 possesses the higher symmetry in this series compounds.

\[
P(\text{sym}) = 100 \sum_{i=0}^{n-1} \frac{P_i - P^\wedge_i}{P_i} \cdot \frac{1}{n}
\]

The intermolecular interaction between the neighboring clusters is another factor to reduce the anisotropy barrier. The intermolecular interaction may cause antiferromagnetic coupling between the paramagnetic carriers in the neighboring cluster at
low temperature. Through the carefully observation of packing mode of compound 1, 2, and 3, the π-π stacking of the benzene ring between the neighboring cluster was found (see Figure S14-S16), which can transmit weak antiferromagnetic coupling and decrease the relaxation barrier. However, due to the steric effect of functional group 1 and t-Bu, no apparent intermolecular interaction can be formed in compound 4 and 5. Though the central Fe3+ ions in compound 1-3 also have the relatively high symmetries, the possible higher magnetic anisotropy barrier may be reduced by the intermolecular interaction. So it may be an effective approach to obtain the FeI4 SMMs with a high anisotropy barrier by increasing the axial symmetry and eliminating the intermolecular interaction simultaneously.

<table>
<thead>
<tr>
<th>Table 4 The continuous symmetry measures results of compound 1–5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>FeI</td>
</tr>
<tr>
<td>FeBr</td>
</tr>
<tr>
<td>FeI</td>
</tr>
<tr>
<td>FeS</td>
</tr>
<tr>
<td>FeCl</td>
</tr>
<tr>
<td>FeBr</td>
</tr>
<tr>
<td>FeI</td>
</tr>
</tbody>
</table>

* Trigonal prism; ** Octahedron

Circular Dichroism (CD) Spectrum Studies

The optical activity and enantiomeric nature of compounds 2R/2S was confirmed by circular dichroism (CD) spectra, in both solution and solid-state. In DMF solution, the spectrum of 2R exhibits a positive Cotton effect at $\lambda_{max} = 281.345$, and 396 nm and the negative signal at $\lambda_{max} = 315.440$, and 520 nm, while 2S shows Cotton effects of the opposite sign at the same wavelengths (see Figure 10). The peak shape and position of 2R/2S is very similar to that of 1R/1S in ref 13. The CD signals of the pair compounds form a clear mirror image, which also indicates that they are enantiomeric compounds. The solid-state CD spectra gave similar signals as those in solution, which revealed that the optical activity in solution and solid-state is consistent (see Figure S17).

![Fig. 10 CD spectra of 2R and 2S at 298 K (5 × 10⁻⁵ M, DMF).](image)

Conclusions

In summary, a new family of enantiopure star-shape FeIII4 clusters with different chiral Schiff-base ligand derivatives has been synthesized and magnetically characterized. All five compounds show SMMs behavior. Systematic magnetic studies revealed that the SMM properties can be tuned by the little change of ligand. The iodine derivative compound 4 possesses the highest relaxation barrier. Magneto-structural correlation analysis demonstrated that the coordination symmetry of central FeIII ion and the intermolecular interaction are two key factors to affect the SMM properties. Compounds with higher axial symmetry and less intermolecular exchange interaction between neighboring molecules may possess the larger magnetic relaxation barrier, which is helpful to design and predict new SMMs in this series.

To deeply understanding the magnetic anisotropy in detail in this series FeIII4 clusters, the comprehensive DFT calculation which consider the contribution of peripheral Fe3+ ions, the HF-EPR study and single crystal magnetic characterization are underway, and will be reported in the near future. Also, the magnetic studies of single-molecule and single-molecule layer that applied in spintronics are in progress.

Acknowledgement

This work was supported by the NSFC (21071008, 21321001, 21371043, and 21302035), BJSCF (2122023), and the National Basic Research Program of China (2010CB934601, 2013CB933401). Y. -Y. Zhu is thankful for the financial support by the Open Fund of Beijing National Laboratory for Molecular Sciences (BNLMS). We thank Dr. X. Hao, Ms. L. Wang and Ms. T.-L. Liang (ICCAS) for the X-ray measurement and Dr J.-H. Jia and Dr N. Li for help in structure refinement.

Notes and references

* Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, and School of Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.

B. National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. Fax: (+86)10-6275-1708; Tel: (+86)10-6276-7569; E-mail: gaoqiang@pku.edu.cn, bwwang@pku.edu.cn.

Electronic Supplementary Information (ESI) available: Experimental procedures, structure and magnetic characterization, Fig. S1-17, Table S1-6, and the cif file for 1-5. For ESI and crystallographic data see DOI: 10.1039/b000000x/

We report a new family of enantiopure star-shaped Fe$^{III}_4$ single-molecule magnets (SMMs). Interestingly, the SMM properties of this series clusters can be finely tuned by the remote substituent of the ligands.