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Reaction pathways characterizing macromolecular systemsof biological interest are associated with high free energybarriers.
Resorting to standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed
to observe relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-
directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly
cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover,
extended DM-d-MD was combined with a reweighting scheme enabling to saveon-the-flyinformation about Boltzmann distri-
bution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling,
Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of
one order of magnitude with respect to plain MD simulations.For alanine-12, our algorithm allows to highlight all important
unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount
of computational time by plain MD simulations. Our method isreaction coordinate free, shows little dependence on ana priori
knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with
respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is
known.

1 Introduction

For several decades now, understanding the dynamics under-
lying proteins function and reaction mechanisms has been a
broad and fascinating topic. From the theoretical standpoint,
the study of these systems implies the use of advanced compu-
tational techniques to account for the complexity of biomolec-
ular systems. Among these techniques, all-atom molecular
dynamics (MD) simulations have been widely used and pro-
vide an important complement to the experiments1,2. Never-
theless, MD has important limitations among which the sam-
pling of complex high-dimensional configuration spaces. As
the free energy barriers between different metastable minima
of a given protein can be relatively high, the computational
time needed by MD simulations to observe transitions of bi-
ological relevance may be extraordinarily long, should these
transitions be eventually observed. Therefore, transition bar-
riers are often poorly sampled thus giving very few details
about the reaction paths and very rough estimates of the equi-
librium distributions around these regions. To address these
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issues, several biased methods have been suggested over the
past decades to rapidly find the transition barriers and generate
a large number of samples along them (for a recent review of
these methods, see Ref. 3). For instance, transition path sam-
pling (TPS) relies on Monte Carlo procedures to build up the
new samples from slight changes of a given trajectory along
the transition path4,5. However, this implies that the initial
trajectory is generated beforehand, thus requiring that initial
and final states have been identified. Other recent TPS-like
techniques such as transition interface sampling (TIS)6 and
forward flux sampling (FFS)7,8 consist of defining interfaces
along the transition regions so as to avoid the need to simulate
the full reactive paths as well as to prevent multiple recross-
ings of the trajectories. For systems with multiple paths, TIS
and FFS may have difficulty obtaining a good sampling of the
various pathways. Further similar techniques were suggested
recently to address this issue9,10. Another category of meth-
ods known as state-based methods such as string methods11,
Markov state models12 or directional milestoning,13 can also
be used to generate a large number of samples along reac-
tion paths (for a review of state-based methods, see Ref. 14).
Most of these techniques require that we dispose of an initial
set of configurations covering a wide area of the energy land-
scape. The initial configurations can be obtained,e.g., from
high-temperature simulations or biased methods based on the
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determination of appropriate reaction coordinates. It is worth
mentioning that the definition of reaction coordinates remains
a tricky issue15.

A radically different approach to identify the reaction paths
in macromolecular systems has been proposed based on the
dynamics of the current density associated with molecular dy-
namics16–20. The method was recently referred to as transition
current sampling19. While metastable basins are characterized
by quasi-Boltzmann distributions and thus small currents,the
regions constituting rare events - which contribute to reaction
rates - are characterized by large steady currents when the re-
actants and products are out of equilibrium. In the same way
as molecular dynamics can approximate theprobability den-
sity, it is possible, by integrating appropriate Langevin equa-
tions, to generate stochastic trajectories which account for the
current density, thus resulting in a large number of samples
along the barriers. The above mentioned technique does not
require any knowledge of appropriate reaction coordinates(in-
deed, current dynamics are integrated on the entire configura-
tion space) which makes it well-adapted for a wide range of
macromolecular systems. In particular, the method was used
to explore the energy landscape of a short alanine peptide ex-
hibiting a helix-coil transition18; in this case, the simulation
time needed to populate the energy barrier of the system was
found two orders of magnitude shorter than the characteristic
time associated with normal MD. The same approach based
on current density dynamics was also applied to the popular
test-system of 38 atoms interacting through Lennard-Jonespo-
tential (LJ38). Again, the method allowed to rapidly explore
the reactions that take place between the different phases that
characterize the system19.

Very recently, another reaction-coordinate-free algorithm
designed to increase sampling along transition paths has
been proposed, known as diffusion-map directed MD (DM-
d-MD)21. The method is based on a previously developed
dimensionality reduction technique, locally scaled diffusion
map (LSDMap)15,22–24, which extracts, directly from MD, a
set of collective coordinates, referred to as diffusion coordi-
nates (DCs), that decorrelate the motion of a macromolecular
system over different time scales. By periodically restarting
the dynamics from the furthest point along the slowest time
scale (1st DC), it becomes easier to visit unexplored regions
of the configuration space instead of being trapped in local
minima. Notably, DM-d-MD algorithm was applied to two
systems, alanine dipeptide and alanine-12 and was reportedin
both cases to find the transition barriers about three ordersof
magnitude faster than normal MD.

It should be stressed that resorting to biased methods such
as DM-d-MD or transition current sampling implies that most
of the information about the probability distribution associated
with molecular dynamics is lost as a result of the bias intro-
duced in the sampling. Additional techniques like umbrella

sampling25 or state-based models need to be applied to re-
cover Boltzmann distribution from the biased trajectories21.
However, as associated algorithms remain computationally
expensive with respect to MD, the post-processing of the sam-
pling may significantly hinder the efficiency of the overall
approach. In the present paper, we present a new reaction-
coordinate-free method that allows, from multiple MD trajec-
tories, not only to rapidly enhance and stabilize the sampling
around high-energy barriers but also to recoveron-the-flyin-
formation on Boltzmann distribution from the biased data. As
a consequence of the large number of sampled points, espe-
cially within the transition regions, equilibrium distribution is
achieved much faster than normal MD simulations. In Sec-
tion 2, we give the details of our algorithm: we use an ex-
tended version of the DM-d-MD technique mentioned above
(extended DM-d-MD) which consists in periodically restart-
ing MD trajectories from a set of chosen data points instead of
restarting them from the same point like in the original DM-d-
MD 21; the new starting points are picked uniformly along the
two slowest collective time scales of the dynamics, which are
directly given by the two first DCs of the data points. In this
way, the new MD trajectories are more likely to explore a wide
area of the free energy landscape within a given time interval.
As far as Boltzmann distribution is concerned, it is recovered
by assigning a statistical weight to each trajectory. Similarly
to the case of a single MD trajectory, the correct equilibrium
distribution is obtained from ergodic property by merging sev-
eral distributions of weights obtained at regular time intervals.
When dealing with multiple MD trajectories, the focus is not
on the simulation of the trajectoriesper sebut rather on the
evolution of the probability density. Therefore, it is possible
to ”spawn” or ”kill” particular trajectories as long as we en-
sure that the global population evolution is conserved. Each
time data points are selected as the starting points of new MD
trajectories, an appropriate reweighting scheme based on near-
est neighbor search is used to locally keep of the information
about Boltzmann distribution. Similarly to the original DM-
d-MD, our algorithm is applied to a well-studied test system,
alanine dipeptide, and to alanine-12, characterized by a much
more complex energy landscape. Main results are reported
in section 3. In both cases, extended DM-d-MD algorithm
allows to rapidly generate a large number of points covering
the entire free energy landscape and to recover equilibrium
distribution. For alanine dipeptide, we report a 1-order-of-
magnitude speedup in both the sampling of critical regions
and the recovery of Boltzmann distribution, with compared to
plain MD simulations. For alanine-12, standard all-atom MD
simulations do not allow to completely explore the free en-
ergy landscape atT = 300K in a reasonable amount of time,
i.e., about 30000 CPU-hours. Using extended DM-d-MD, all
important regions of the free energy landscape are explored
after only 32 hours of simulations on 64 CPU, namely, 2048
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CPU-hours. The sampled regions include important unfolded
basins that were left unexplored even using MD simulations
at T = 400K. Equilibrium distribution is found after 7000
CPU-hours. Convergence criteria are used to estimate the time
needed to achieve equilibrium for both systems.

2 Methods used

2.1 Locally scaled diffusion map (LSDMap)

Extended version of Diffusion-Map directed Molecular Dy-
namics (extended DM-d-MD) presented in this paper is based
on the computation of the locally scaled diffusion map (LS-
DMap) associated with molecular dynamics. LSDMap is a
recently developed method15,22–24used to decouple molecu-
lar dynamics on different time scales in terms of a few col-
lective coordinates. More explicitly, given a set{xi}n

i=1 of
simulated data points from molecular dynamics, it consists
in defining a graph built on thexi ’s in such a way that each
node of the graph corresponds to a pointxi and each edge is
associated with a weight functionK whose matrix elements
Ki j ≡ K(xi ,x j) can be given as

K(xi ,x j) = exp

(

−||xi −x j ||
2εiε j

)

. (1)

Here,||xi −x j || refers to the RMSD (of all atomic positions)
between configurationsxi andx j whereasεi stands for a char-
acteristic local scale associated withxi . The matrix element
K(xi ,x j) accounts for the ”ease” with which the system can
diffuse from the configurationxi to the configurationx j . By
using Eq. (1) (up to appropriate renormalization factors22) as
a starting point, it can be shown that the eigenvectors{Φk}n

k=1
of matrix K correspond to collective coordinates, referred to
asdiffusion coordinates(DCs), associated with different time
scales of the dynamics∗. The ”first” eigenvectorΦ1, i.e., the
one associated with the largest eigenvalue of the spectrum,ac-
counts for the slowest time scale of molecular dynamics, the
second eigenvectorΦ2 refers to the second slowest time scale,
and so on. The values of the scaling parametersεi appear-
ing in Eq. (1) must be chosen carefully: first,εi should be
small enough so thatK accounts locally for the geometry of
the manifold covering the set of data points and second, as we
are dealing with a finite number of points, it should be large
enough so as to reduce the effects of the local noise. We re-
fer the interested readers to papers by Coifman and Lafon26,27

for the original mathematical details on diffusion maps and

∗More explicitly, if we call{λk}n
k=1 the eigenvalues associated to the eigen-

vectors{Φk}n
k=1, it is found that the componenti of Φk corresponds to

the kth diffusion coordinate evaluated atxi . In other words, one can note
Φk,i ≡ Φk(xi), so that the diagonalization of the matrixK is equivalent to
∑n

j=1 K(xi ,x j )Φk(x j ) = λkΦk(xi).

the recent paper22 about the motivation and construction of a
locally scaled version of a diffusion map. In the latter, thelo-
cal scale is estimated from the intrinsic dimensionality around
each data point via multidimensional scaling (MDS)28 (see
also Refs. 15). This implies finding the eigendecompositionof
the distance matrix associated with the data set. Even though
some recent software libraries allows to quickly estimate the
eigenfunctions of large sparse matrices29, this kind of proce-
dure turned out to be time-consuming with respect to short
MD simulations (i.e. from 1 to 10 ps). As detailed in the next
section, extended DM-d-MD algorithm computes the DCs of
each data point periodically after short MD simulations. At
this stage, computing a correct local scale for each point using
MDS is no longer feasible. The way to set the local scale in
the extended DM-d-MD algorithm is discussed below.

According to the original papers on diffusion maps26,27,
computing LSDMap kernel from Eq. (1) requires that the dis-
tribution of thexi ’s corresponds to a quasi thermal equilib-
rium. Nevertheless, it is possible to compute a LSDMap ker-
nel when a non-equilibrium distribution of points is involved.
This implies that the statistical weightswi which account for
the equilibrium situation is known for eachxi

24. The elements
of the ”weighted” kernel are computed as:

K(xi ,x j) =
√

wiw j exp

(

−||xi −x j ||
2εiε j

)

. (2)

As shown in the next section, even though extended DM-d-
MD is a sampling technique that deals with non-equilibrium
distributions of points, we have combined it with a reweight-
ing scheme. Whenever new samples are generated, we are
able, based on nearest neighbors search, to attribute the cor-
rect weights to each point in order to recover the correct quasi-
equilibrium distribution. These weights are in turn used asthe
wi ’s needed to compute the weighted kernel elements (2) dur-
ing the next selection step, and so on. Further details on the
implementation of the reweighting scheme are given in the
next section. When applying extended DM-d-MD to alanine
dipeptide and alanine-12, a uniform local scaleε = εi is used
for all i. However, the value ofε is recomputed at each it-
eration. To account both for the average effect of the local
noise and for the non-equilibrium distribution of points, we
setε as the average distance between each pointxi and it’s p
neighbor, wherep is the first neighbor such that the sum of
the weights of all previous neighbors is approximately equal
to

√
n, n being the total number of points. More explicitly, by

introducing the function of two variablesη such thatη(xi ,k)
gives the index of thekth nearest neighbor of pointxi , we have

ε = 〈||xi −xη(xi ,p)||〉i wherep satisfies
p

∑
k=1

wη(xi ,k) ≃
√

n, (3)

where||...|| stands for the RMSD and〈...〉i is an average
over all configurations.
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2.2 Extended diffusion-map-directed MD and nearest-
neighbors-based reweighting

As mentioned in the introduction, our main algorithm has
been designed(i) to enhance the sampling of MD trajecto-
ries, especially along high-energy barriers of macromolecular
systems and(ii) to recover information about Boltzmann dis-
tributions directly from the biased trajectories. The former
is made possible via an extended version of diffusion-map-
directed MD (extended DM-d-MD)21 which lies in periodi-
cally restarting MD trajectories by selecting the new starting
points so as to obtain a uniform distribution of their first and
second DCs. Since the first two DCs are associated with the
slowest time scales of the dynamics, by restarting new MD
trajectories from such a distribution of points, it becomespos-
sible to visit a wider area of the configuration space without
remaining trapped in local minima. Regarding Boltzmann dis-
tribution, i.e., point (ii), it is based on the assignment of sta-
tistical weights to each trajectory. In order to save information
associated with molecular dynamics, an appropriate reweight-
ing scheme, based on nearest neighbor search, is used each
time MD trajectories are restarted. The weights of each point
are used self-consistently in order to compute LSDMap at the
next iteration on the basis of equation (2).

The algorithm can be summarized in four steps:

1. Whent = 0, run short MD trajectories starting from an
initial distribution of n points (one trajectory per point)
and assign to each of them a statistical weightwi equal
to 1. Whent > 0, run short MD trajectories starting from
the endpoints selected in step 3 (the starting velocities are
the velocities associated with each endpoint coming from
previous MD simulations).

2. Compute LSDMap from the endpoints of each trajectory
and store their first and second DCs. LSDMap kernel
elements should be computed from Eq (2) by taking into
account the weightswi computed in step 4 (at the first
iteration, all the weights are equal to 1 in accordance with
step 1). The local scale is computed according to Eq (3).

3. Selectn new MD starting points among the endpoints so
that the distribution of new points is uniform along the
first and second DCs. The same endpoint can be selected
as a new point more than once or can be not selected
at all. The exact procedure is detailed in the paragraph
”selection step” below.

4. Before running new MD simulations, update the statisti-
cal weightswi of each MD trajectory so as to conserve
locally the probability density associated with molecular
dynamics after step 3. Each time more than one trajec-
tory will restart from a given endpoint, the weight of the

new trajectories will be the original weight divided by
the number of trajectories. Whenever an endpoint is not
used as a new starting point, distribute the original weight
over the first nearest new MD trajectories (see details in
paragraph ”reweighting step” below). Go back to step 1.

In the following, additional information are given regarding
steps 3 and 4.

Selection step (step 3) Let us suppose that we have run
n short MD trajectories and that we have computed the 1st

and 2nd DCs of each endpoint using LSDMap (steps 1 and 2
above). We want to selectn new starting points among the
endpoints so that the distribution of starting points is uniform
along the first two DCs.† The procedure to select one of those
starting points is the following: first, a histogram is builtup
from the 1st DC values of the endpoints. Then, a random num-
ber is generated uniformly between the minimum and maxi-
mum 1st DC values. The endpoints located in the same bin as
the random number are identified. A second random number
is generated uniformly between the minimum and maximum
2nd DC values of the endpoints located in the bin. The new
starting point will be the one, among these endpoints, with the
closest 2nd DC value to the random number. The above pro-
cedure is repeated in order to selectn new configurations. To
sum up, at each selection step, new starting points are picked
from the endpoints in such a way that the distribution of 1st

DCs is uniform. For each ”bin” of 1st DCs values, the 2nd

DCs of the new points are also distributed uniformly. Our
choice of a uniform sampling along the first two DCs is moti-
vated by the observation that, in general, points located around
transition regions will have very different values of theirDCs
whereas the DCs of points located inside a given minimum
will be globally the same. Within these minima, regions as-
sociated with faster transitions can be identified from points
having very different values of their 2nd DC whereas points
with similar 2nd DC will account for local minima, and so on.
Using a uniform sampling along the first two diffusion coor-
dinates to select the new starting points thus appears to be a
natural choice to cover the largest possible area of the con-
figuration space,i.e., to visit yet unexplored regions without
being trapped within local minima. Further details on the mo-
tivation behind our procedure to select the new starting points
are given in the supporting information.

As mentioned in the introduction, our sampling method is
comparable to the recently proposed diffusion-map-directed
molecular dynamics (DM-d-DM)21. However, several
changes have been made with respect to the original version:
(i) multiple parallel MD trajectories are run rather than a

† The number of endpoints can be slightly different from the number of new
starting points since extra endpoints can be selected as newstarting points
during the reweighting step (step 4) in case they have no close nearest neigh-
bors.
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single one;(ii) we do not restart all then trajectories from
the same endpoint, rather, the new starting points are picked
among the endpoints of each short MD trajectory so that the
distribution of 1st and 2nd DCs is uniform;(iii ) since the new
starting points will cover a large area of the energy landscape,
appropriate reweighting scheme can be used to locally save
the information about Boltzmann distribution despite the bi-
ased introduced with the sampling of the new starting points
(see paragraph ”reweighting step” below).

Our procedure is also similar in spirit to the recently
proposed transition current sampling method16–20 mentioned
briefly in the introduction. Apart from our reweighting
scheme, the main difference stems from the way of select-
ing the new points; for transition current sampling, the new
points are selected so as to push the dynamics towards regions
of high current density – transition regions, typically. Inthis
case, the probability of starting a new trajectory from an end-
point is computed via the Hessian matrix of the potential en-
ergy at this particular endpoint,i.e., which accounts locally for
the curvature of the free energy landscape. For complex high-
dimensional systems, periodically estimating the Hessianma-
trix can be computationally expensive with respect to MD sim-
ulations.

Reweighting step (step 4) The idea of the reweighting is
to recover information about the probability density associ-
ated with molecular dynamics right after the selection stepand
before MD simulations are restarted from the new selected
points. In the case of normal MD simulations, free energy
landscapes are constructed by locally estimating the density
of configurations that were obtained as a result of the simu-
lations. In the density estimate, each MD configuration has a
weight equal to 1. The weights are summed locally to com-
pute the correct density and thus the correct free energy land-
scape. In the case of extended DM-d-MD, a bias in the density
distribution is introduced as soon as some configurations are
selected as the starting points of new MD trajectories (selec-
tion step, step 3). In order to correct for this bias a reweighting
scheme is introduced: new weights are reassigned to each con-
figuration in such a way that locally the sum of the weights is
approximately the same before and after the selection step.By
computing the local density from the sum of the weights, the
free energy landscape associated with the unbiased dynam-
ics is approximately recovered. Supposing that the starting
points of the new MD trajectories were determined in step 3,
our reweighting scheme can be summarized as follows: each
timeone or moretrajectories will restart from a particular end-
point, we attribute to these trajectories statistical weights such
that their sum equals the statistical weight of the ”old trajec-
tory”, i.e., each new trajectory will have the statistical weight
of the trajectory that stopped at this particular endpoint at the
last iteration, divided by the number of new starting trajecto-

Fig. 1 Illustration of the reweighting scheme used in our algorithm
with six trajectories starting from the same point O. We note
{wi}6

i=1 the initial weights of each trajectory. (a) shows the
trajectories before the first selection step; the endpoints of each
trajectory are highlighted. (b) shows trajectories before the first
selection step (in blue) and trajectories between the first and second
selection steps (in red). The number of red trajectories starting from
each endpoint of the blue trajectories is given for illustrative
purpose. The weights of the red trajectories are computed according
to our reweighting scheme. If an endpoint of a blue trajectory is not
used as the starting point of red trajectories, we look for new starting
points within a RMSD range ofr around the endpoint (when
applying our algorithm, we only considered the first ten nearest
points within this range). The weights of the new starting
trajectories within the range will be increased by the weight of the
old trajectory divided by the number of trajectories. If no new
starting points is located within the RMSD range (for example, at
the bottom right of Figure (b)), the trajectory is kept. In this case,
the number of new trajectories may slightly differ from the original
number set att = 0. If an endpoint of a blue trajectory is used as the
starting point of red trajectories, we attribute to these trajectories
weights such that their sum equals the weight of the blue trajectory
(plus the weights of possible dead nearest neighbors).
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ries. Alternatively, ifno trajectories will restart from a given
endpoint, we look for the new MD trajectories whose start-
ing points are among the 10 nearest neighbors in RMSD‡ of
this specific endpoint. The weight of the old trajectory is dis-
tributed over these new trajectories,i.e., the weight of each
new nearest MD trajectory is increased by the weight of the
old trajectory divided by the number of trajectories. The rea-
son of considering the first ten nearest starting points –e.g.,
instead of the first nearest point – is that we want to smooth
locally the distribution of weights in such a way that we do not
finally end up with single points having a very large weight.
Such singularities might be a problem especially when com-
puting LSDMap that is sensitive to local dynamical properties.
Moreover, to avoid spreading the weights over nearest neigh-
bors located too far away from a given endpoint, we introduce
a cutoff distance in RMSDr. If a given endpoint should be
removed after the selection step but no nearest neighbors is
found within this range, the point is finally kept,i.e., it will
be used as the starting point of new MD trajectories. A natu-
ral choice forr is provided by the local scale used in LSDMap
computation (step 2) which accounts for the scale of the noise.
In other words, we setr = ε, whereε is given by Eq. (3). In
this way, the sum of the weights of the trajectories is expected
to be locally the same before and after the selection step (step
3). Since the statistical weights are initially set to 1 for each
trajectory, by summing them locally, we obtain the probability
density associated with MD; thus this quantity will be approx-
imately unaffected by the bias introduced in step 3.

3 Results and discussion

In this section, we present the main results obtained by ap-
plying the algorithm introduced in section 2.2 to two systems:
alanine dipeptide and alanine-12. Alanine dipeptide is a stan-
dard test case for sampling methods, as it is a small (22 atoms)
and well-studied system, and its dynamics contains processes
at very different time scales. Alanine-12 is a much more chal-
lenging system (135 atoms) characterized by a complex free
energy landscape whose exploration using all-atoms MD re-
quires significant computational resources. As specified be-
low, the number of short MD trajectories was set ton= 10000
for alanine dipeptide and ton= 5000 for alanine-12. At first
sight, running multiple MD trajectories may appear to be com-
putationally demanding compared with single MD trajecto-
ries. However, since the dynamics of MD trajectories are all
independent, our code has been easily parallelized. Informa-
tion about the parallelization procedure can be found in the
supporting information.

‡ For complex systems, other metrics than RMSD may lead to more accurate
partitioning of the conformational space30,31. Nevertheless, using RMSD ap-
pears reasonable here as only close configurations are involved.

Fig. 2 Free energy landscape of alanine dipeptide in equilibrium in
terms ofΦ/Ψ angles. The system is characterized by three minima:
C5, C7 andαL. The transition betweenαL andC5-C7 minima is the
slowest one; using regular MD, it is around three orders of
magnitude slower than theC5 ↔C7 transition.

3.1 Alanine dipepdide

Simulations on alanine dipeptide have been performed using
GROMACS with Amber03 force field in vacuum. In order
to visualize the results, we projected the trajectory data on
the dihedral anglesΦ and Ψ, two commonly used reaction
coordinates for alanine dipeptide. The free energy landscape
of alanine dipeptide is characterized by three important en-
ergy minima:C5, C7 andαL as shown in Figure 2. Whereas
the transition betweenC5 andC7 is relatively fast – of the or-
der of 50 ps using normal MD with our setup – the transition
involving αL with the two other minima is definitely slower,
around two orders of magnitude slower than theC5−C7 tran-
sition. Since our algorithm has been designed to handle high-
energy barriers, we will focus the application on the transition
to αL minimum. In our simulations,n = 10000 trajectories
have been considered initially, each starting att = 0 from the
same configuration inside theC7 minimum with coordinates
(Φ,Ψ) = (−68.0,54.9). Parameters related to MD such as the
temperature, the viscosity (per mass unit) and the time steph
have been set toT = 300K, γ = 1.0 ps−1 andh = 10−3 ps,
respectively. To run extended DM-d-MD algorithm, we had
to set the length∆t of the MD trajectories. The algorithm was
run for different values of∆t from ∆t = 800 fs to∆t = 2 ps.
As expected, fast exploration of the free energy landscape was
reported for small values of∆t. As reported in the support in-
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formation, significant speedup with respect to plain MD sim-
ulations was observed for∆t < 1.5 ps,i.e., of the order of 1/γ.
Using smaller values of∆t does not contribute to significantly
increase the overall performance of the algorithm.

The free energy was computed from the equation:
F(Φ,Ψ, t) =−kT ln(P(Φ,Ψ, t)) where the probability density
P(Φ,Ψ, t) has been estimated by summing locally the weights
wi associated with each trajectory. In other words, we have

P(Φ,Ψ, t)≃
n

∑
i=1

wiδ (Φ−Φi(t))δ (Ψ−Ψi(t)).

On the top of Figure 3, we have plotted the free energy land-
scape of alanine dipeptide after 2 iterations of our algorithm.
MD trajectories with length∆t = 1ps were used, thus the fig-
ure was obtained att = 2ps. Even though equilibrium has not
been reached, many samples have been generated along the
transition path toαL, including the minimum itself. As a fair
comparison, using plain MD simulations with the very same
parameters, theαL minimum is significantly populated after
at least 50 ps,i.e., around one order of magnitude slower than
our algorithm. Although the free energy landscape of alanine
dipeptide is explored very rapidly using extended DM-d-MD,
one must wait longer before Boltzmann distribution is com-
pletely recovered. On the bottom of Figure 3, we have plotted
the free energy landscape obtained att = 600ps (that is, 600
iterations using MD trajectories with length∆t = 1ps) where
we can see that Boltzmann distribution has been achieved. To
compare the convergence to equilibrium between plain MD
simulations and extended DM-d-MD, we have introduced the
coefficientσ defined as the difference between the minimum
free energy inαL minimum and the global minimum free en-
ergy on the entire free energy landscape. On the top of Figure
4, σ(t) has been plotted using 10000 plain MD simulations
(again withT = 300K,γ = 1.0 ps−1 andh= 10−3 ps) showing
that Boltzmann distribution is reached aftert = 2000−3000
ps. On the bottom of Figure 4, we show the comparison with
σ(t) computed from our algorithm using trajectories of length
∆t = 1ps. The convergence is reached aftert = 300−400 ps,
that is, about one order of magnitude faster than plain MD sim-
ulations. The limit value forσ matches perfectly with MD re-
sults. Additional details on the convergence and its sensitivity
to the parameters can be found in the supporting information.

Even though the distribution of weights is changing over
hundreds of picoseconds, the associated distribution of points
becomes stationary very soon (after a dozen iterations) cover-
ing all the important minima of the free energy landscape. In
Figure 5, we have reported the distribution of points as a func-
tion of Φ andΨ when Boltzmann distribution is reached. The
density is given as an effective free energy. The reaction paths
leading toαL minimum can be clearly identified; it is seen that
points starting from theC7 minimum are unlikely to reachαL

Fig. 3 Top: free energy landscape of alanine dipeptide obtained at
t = 2 ps using extended DM-d-MD algorithm with reweighting (two
iterations using trajectories with length∆t = 1ps). Bottom: free
energy landscape of alanine dipeptide obtained att = 600 ps using
extended DM-d-MD algorithm with reweighting. The contour plots
correspond to Boltzmann distribution obtained with regular MD;
each contour marks an increase of the free energy of 0.4 kcal/mol.
Note that on the bottom figure, 34 snapshots aroundt = 600 ps with
10000 points each, have been merged together for the sake of clarity.
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Fig. 4 Top: using standard MD simulations, convergence parameter
σ of alanine dipeptide in vacuum as a function of time.σ is
computed as the difference between the minimum free energy inαL
minimum and the global minimum free energy on the entire free
energy landscape. Each value ofσ(t) was obtained by merging 5-6
snapshots of the free energy landscape at timest ′ close tot. The
black dashed line corresponds to the (averaged) limit ofσ(t) at large
t using plain MD simulations. Bottom: comparison withσ(t)
obtained from extended DM-d-MD algorithm (the length of each
short MD trajectory is∆t = 1ps).

Fig. 5 Distribution of points obtained when applying extended
DM-d-MD on alanine dipeptide by merging 34 snapshots around
t = 600 ps. It is given as an effective free energy−kT ln(n) wheren
is the density of points. The contour plots correspond to Boltzmann
distribution obtained with regular MD; each contour marks an
increase of the free energy of 0.4 kcal/mol.

without going through theC5 minimum first. In order to visu-
alize the efficiency of the selection step in our main algorithm
(step 3), we have reported, in Figure 6, the two most proba-
ble distributions of 1st DCs that can be observed over time.
Both types of distributions are generally observed within 1-2
iterations of our algorithm. Again, we should recall that, at
each iteration, the new starting points are picked so as to get
a uniform distribution of points along the first two DCs. On
the top of Figure 6, we can see the distribution of 1st DCs
when bothαL andC5−C7 minima are well populated (the
points have been stored between step 2 and step 3 (see sec-
tion 2.2), i.e., right before the selection step). In this case,
it turns out that points located insideαL or C5−C7 minima
share globally the same 1st DC whereas points located on both
sides ofαL barrier cover a wide range of the 1st DC values.
Thus new starting points will be mainly located on the barrier
whereas points within both minima will be more likely to be
definitely remove. The weight of points from which multiple
MD trajectories are restarted will be spread over all the new
starting trajectories whereas the weights of killed trajectories
will be distributed to their nearest neighbors according toour
reweighting scheme (see section 2.2). The distribution of 1st

DCs on the bottom of Figure 6 is representative of a distribu-
tion whenC5−C7 minimum is less populated. As noticed,
the new points are still favorably selected around the barrier
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Fig. 6 Top and bottom: the two most representative distributions of
1st DCs that can be obtained over time from our algorithm as a
function ofΦ/Ψ angles. Insets stand for corresponding histograms
along the 1st DC.

Fig. 7 In blue, configurations obtained when applying extended
DM-d-MD algorithm on alanine-12 as a function of the RMSD from
the helical native state and the radius of gyration Rg (blue). The data
are obtained after 32 hours of simulation on 64 CPUs using 5000
trajectories, corresponding to 2048 CPU-hours. We have also
superimposed the original DM-d-MD simulations data (in green)
and plain MD simulations data (in yellow) obtained by Zheng et
al.21 at 300K after 6000 CPU-hours and at 400K after 24000
CPU-hours, respectively.

to αL minimum but also alongC5−C7 minima. More details
about the distributions of diffusion coordinates (including the
role of 2nd DCs) can be found in the supporting information
both for alanine dipeptide and alanine-12.

3.2 Alanine-12

In order to test our approach on a more challenging system,
we have applied our extended DM-d-MD algorithm to sam-
ple the configuration space of alanine-12, which has a much
more complex free energy landscape than alanine dipeptide.
Simulations were performed using GROMACS with Amber96
force field in vacuum. The value of the viscosity and the MD
time step were set equal toγ = 0.5 ps−1 andh = 2.10−3 ps,
respectively, whereas the length of the short MD trajectories
was set to∆t = 1 ps.

Starting from a helical configuration, the unfolding events
for this system are too rare to be adequately sampled using
standard MD simulations at 300 K with our computational
resources. We have observed one single misfolding event in
2 full CPU days of 100 MD trajectories in parallel. To give
an idea, Zheng et al.21 performed plain MD simulations of
alanine-12 with the same setup at 400K. Starting from the
same folded helical configuration, they have been able to find
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Fig. 8 Top: free energy landscape of alanine-12 obtained with
extended DM-d-MD algorithm, typically when main unfolded
basins become visible (convergence is not reached yet).
Representative configurations of important local minima or critical
regions are shown. Bottom: free energy landscape of alanine-12
obtained by plain MD simulations after the same amount of
computational time as the top figure. Both plots were obtained after
65 hours of simulations on 64 CPUs using 5000 trajectories, which
corresponds to 4160 CPU-hours. In both cases, the same parameters
for MD simulations are used:T = 300K,γ = 0.5 ps−1 and
h= 2.10−3 ps. For the sake of accuracy on the top figure, 60
snapshots (i.e., about 300000 points) stored around the same CPU
time, are merged together.

Fig. 9 Distribution of points obtained when applying extended
DM-d-MD on alanine-12 after 4160 CPU-hours using 5000
trajectories (simulation time: 2.5 ns). It is given as an effective free
energy−kT ln(n) wheren is the density of points.

important unfolded basins using 40 trajectories of length 4µs,
which is equivalent to 24000 CPU-hours. Zheng et al.21

also tested the original DM-d-MD algorithm on alanine-12.
In the original DM-d-MD, the short MD trajectories are all
restarted from the same endpoint (associated with the con-
figuration with the largest first DC). As a result, information
about Boltzmann distribution cannot be saved during the pro-
cedure, which implies that some additional method, like um-
brella sampling or state-based models, needs to be used to re-
cover the correct equilibrium distribution. All in all, it was re-
ported that, at 300K, original DM-d-MD algorithm explored
the region colored in dark green in Figure 7, in 6000 CPU-
hours. Using the extended DM-d-MD algorithm at 300K, the
free energy landscape of alanine-12 was completely explored
after 2048 CPU-hours using 5000 trajectories, more specifi-
cally, after 32 hours of simulations on 64 CPUs. The con-
figurational space spanned by extended DM-d-MD incluses
the unfolded regions that were left completely unexplored by
original DM-d-MD algorithm at 300K or standard MD simu-
lations at 400K. The data are reported in Figure 7 in terms of
two commonly used reaction coordinates for alanine-12, the
RMSD from the helical native state and the radius of gyration
Rg. After 2048 CPU-hours of extended DM-d-MD, which
corresponds to a simulation time of 1.2 ns for 5000 trajecto-
ries, the distribution of points remains quasi-stationary. Re-
gion around the helical basin(RMSD,Rg) = (0.14,0.62) can
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Fig. 10 Top: Evolution of theσ values as a function of the
simulation timet. We have notedσAB = FB−FA, i.e., the difference
of free energies between minima B and A and so on. Labels
associated with each minimum can be found on the bottom figure.
Bottom: free energy landscape of alanine-12 obtained with extended
DM-d-MD algorithm after 7000 CPU-hours using 5000 trajectories
(simulation time: 4.1 ns), typically when theσ values become all
stable.

remain unsampled for short periods of time but, similarly to
MD simulations, data from multiple snapshots obtained at pre-
vious times can be merged together to obtain more accurate
free energy estimate. Like in the case of alanine dipeptide,
even when the free energy landscape has been completely ex-
plored, extra time is required to recover the correct distribu-
tion of weights associated with thermal equilibrium. On the
top of Figure 8, we have plotted the free energy landscape
obtained after 4160 CPU-hours using 5000 trajectories (sim-
ulation time: 2.5ns), typically when important unfolded min-
ima become apparent. On the bottom of Figure 8, we show
the free energy landscape after the very same computational
amount of time using 5000 plain MD simulations at 300K.
It is found that even the closest misfolded minimum B has
not been reached yet. On the contrary, using extended DM-d-
MD algorithm, many interesting metastable states are already
found at such an early stage of the simulation. Typical con-
figurations in state B along the pathway between folded and
unfolded states indicate that the helical turn at the N-terminus
breaks first during the unfolding. State E corresponds to a hair-
pin structure, whereas state D corresponds to a curved hairpin
structure. More information about the main pathways leading
to unfolded structures can be found by looking at the density
of points (Figure 9). For example, we find that only one single
pathway (from state C to state F) leads to the completely un-
folded structure (state G) whereas it is seen that points in state
E are unlikely to reach states F or G without going through the
C-D minimum first. Similarly to alanine dipeptide, the sam-
pling significantly slows down when larger values of∆t are
used. Typically, when∆t ≃ 1.5 ps, only a small part of the en-
ergy landscape (from minimum A to minimum C) is covered
after 4000 CPU-hours. Like in the case of alanine dipeptide,
convergence to equilibrium is measured via a set ofσ parame-
ters defined as the difference in free energy between represen-
tative minima of the free energy landscape. More explicitly,
we noteσAB = FB−FA, i.e., the difference in free energy be-
tween minima B and A and so on. On the top of Figure 10, it
is shown that theσ values become all stable after a simulation
time t = 4 ns suggesting that equilibrium has been reached.
On the bottom of Figure 10, we have plotted the free energy
landscape at that time, which corresponds to 7000 CPU-hours
using 5000 trajectories. Minima A, B, C, and D which corre-
spond to folded and misfolded regions can be identified like at
t = 2.1 ns (top of Figure 8). New minima are reported in the
unfolded region including hairpin structures (E’ and F’) which
slightly differ from basin E identified at 2.1 ns.

4 Conclusion

In this paper, a new sampling strategy, extended DM-d-MD,
has been introduced to rapidly explore the free energy land-
scape of macromolecular systems characterized by high free
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energy barriers. Based on LSDMap, a multidimensional re-
duction technique, our method provides a way to periodically
sample MD trajectories to cover the widest possible region
of the free energy landscape at a given time, including critical
transition regions. The algorithm is combined with a reweight-
ing scheme ensuring that information about Boltzmann dis-
tributions is kept despite the biased dynamics. We observe
that Boltzmann distribution is achieved much faster than plain
MD simulations. As a case in point, our present algorithm
was applied to two test systems of biological interest, alanine
dipeptide and alanine-12. For alanine dipeptide, we report
a speedup of 1 order of magnitude both in the sampling of
critical regions and in the recovery of Boltzmann distribution.
For alanine-12, characterized by a more complex energy land-
scape, the speedup is significantly larger as all important min-
ima were sampled after 2048 CPU-hours whereas plain MD
simulations do not allow to correctly explore the configuration
space within at least 24000 CPU-hours. Equilibrium distribu-
tion is found after 7000 CPU-hours. In addition, while widely-
used sampling techniques such as transition-path-sampling-
like or state-based techniques require direct or indirect infor-
mation on the system’s reaction coordinates to define the states
or initiate the sampling22, extended DM-d-MD is reaction co-
ordinate free and can be used without any previous knowledge
of the configurational landscape. Because we are considering
multiple independent MD trajectories, our method has been
easily parallelized so that the amount of computational time
saved is quasi-proportional to the number of cups used. Simi-
larly to the recently proposed DM-d-MD method on which our
algorithm is partly based, we expect our method to be more
efficient when applied to systems characterized by higher free
energy barriers. In this way, we expect that this might open
the way to a more exact comparison with experimental results
as well as predictions not yet accessible to experiment.
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13 P. Ḿajek and R. Elber,J. Chem. Theory Comput., 2010,6,
1805–1817.

14 E. Weinan and E. V. Eijnden,Annu. Rev. Phys. Chem.,
2010,61, 391–420.

15 W. Zheng, M. A. Rohrdanz, M. Maggioni and
C. Clementi,J. Chem. Phys., 2011,134, 144109.

16 S. T̆anase-Nicola and J. Kurchan,Phys. Rev. Lett., 2003,
91, 188302.

17 S. T̆anase-Nicola and J. Kurchan,J. Stat. Phys., 2004,116,
1201–1245.

18 A. Mossa and C. Clementi,Phys. Rev. E, 2007, 75,
046707.

19 M. Picciani, M. Ath̀enes, J. Kurchan and J. Tailleur,J.
Chem. Phys., 2011,135, 034108.

20 M. Picciani,PhD thesis, Politecnico di Milano, Universit́e
Paris VI - Pierre et Marie Curie, 2012.

21 W. Zheng, M. A. Rohrdanz and C. Clementi,J. Phys.
Chem. B, 2013,117, 12769–12776.

22 M. A. Rohrdanz, W. Zheng, M. Maggioni and
C. Clementi,J. Chem. Phys., 2011,134, 124116.

23 M. A. Rohrdanz, W. Zheng, B. Lambeth and C. Clementi,
Proceedings of the Conference on Extreme Science and

12 | 1–13

Page 12 of 13Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Engineering Discovery Environment: Gateway to Discov-
ery, 2013, 4.

24 W. Zheng, A. V. Vargiu, M. A. Rohrdanz, P. Carloni and
C. Clementi,J. Chem. Phys., 2013,139, 145102.

25 G. M. Torrie and J. P. Valleau,J. Comput. Phys., 1977,23,
187–199.

26 R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni,
B. Nadler, F. Warner and S. W. Zucker,Proc. Natl. Acad.
Sci. U. S. A., 2005,102, 7426–7431.

27 R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni
and B. Nadler,Multiscale Model. Simul., 2008,7, 842–
864.

28 A. Little, Y.-M. Jung and M. Maggioni,Proc. AAAI, 2009.
29 E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney and D. Sorensen,LAPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 3rd edn, 1999.

30 A. Rajan, P. L. Freddolino and K. Schulten,PLoS One,
2010,5, e9890.

31 B. Keller, X. Daura and W. F. van Gunsteren,J. Chem.
Phys., 2010,132, 074110.

1–13 | 13

Page 13 of 13 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t


