ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ARTICLE TYPE

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

$\begin{array}{l} High-performance\ Supercapacitor\ Electrodes\ based\ on\ hierarchical\ Ti@MnO_2\ Nanowire\ Arrays \end{array}$

Dongdong Zhu,^{1,2} Yadong Wang³, Guoliang Yuan¹ and Hui Xia,^{1,2,*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Ti nanowire arrays (NAs) prepared by a facile and templatefree hydrothermal method were used as three-dimensional (3D) current collector for the electrodeposition of MnO₂. The resulting Ti@MnO₂ NAs exhibit remarkable electrochemical ¹⁰ behavior with high specific capacitance, good rate performance and desirable cycling stability.

Recently, supercapacitors (SCs) have attracted extensive research interests because of their intrinsic characteristics such as high power density, fast charge-discharge rate, long service life and 15 low maintenance cost. These outstanding advantages make SCs very promising candidates for applications in numerous fields,

- including portable electronic devices, backup power sources, electric vehicles and renewable energy power plants.¹⁻⁵ However, the major bottleneck of commercial SCs based on carbonaceous ²⁰ materials is their low energy density. Therefore, it is imperative
- to develop new electrode materials with both high energy and high power densities. Among various electrode materials, transition metal oxides are the most attractive candidates due to their high energy density arising from the fast and reversible ²⁵ faradaic redox reactions at the electrode /electrolyte interfaces.⁶⁻¹⁰
- Compared to other transition metal oxides, MnO_2 was the most investigated material because of its intriguing features including natural abundance, low cost, environmental benignity and high theoretical specific capacitance (1370 F g⁻¹). However, limited by
- ³⁰ the poor electrical conductivity and limited surface area, the theoretical specific capacitance has rarely been achieved in bulk MnO₂.¹¹⁻¹⁵ Two effective strategies were often used to improve the supercapacitive performance of MnO₂: making nanosized MnO₂ to increase the surface area and incorporating conductive
- ³⁵ additives to improve the electrical conductivity. Recently, great progress have been made by depositing MnO₂ nanoparticles on conductive metal oxide NAs, such as SnO₂ and Zn₂SnO₄, which were used as 3D current collectors to improve the electrical conductivity and capacitive performance.^{8,16-21} The enhanced
- ⁴⁰ electrochemical performance can be attributed to the large surface areas, short ion diffusion pathways and relatively good electrical conductivity. Usually, the electrical conductivity of metal oxides is far below that of metals. However, very limited papers have been reported for using metal NAs as 3D current collectors for
- ⁴⁵ depositing MnO₂ nanoparticles as electrodes for supercapacitors, which are probably due to the lacking of facile methods to fabricate metal NAs. The mostly used method to fabricate metal NAs is the template-assisted method, which includes complex

experimental procedures and is not suitable for large-scale $_{\rm 50}$ fabrication. $^{\rm 22\text{-}24}$

Fig. 1 Schematic illustration of the fabrication process of the Ti@MnO₂ NAs.

Herein, we developed a simple method to prepare hierarchical ⁵⁵ Ti@MnO₂ NAs for high-performance supercapacitors (see details in ESI[†]). The fabrication procedure is schematically illustrated in Fig. 1. Ti can be dissolved in HCl solution under certain condition.²⁵ In this work, Ti NAs were formed on the Ti substrate by a etching process in an appropriate concentration of HCl ⁶⁰ solution under hydrothermal treatment. It is speculated that the preformed TiO₂ layer on the Ti substrate is not uniform, inducing different etching rates at the surface of Ti substrate. The different etching rates at the surface probably result in a relatively selective etching, thus forming the nanowire structure of Ti. It is also ⁶⁵ possible that the etching is relatively anisotropic, tending to form the nanowires on the Ti substrate.

Fig. 2a shows the scanning electron microscopy (SEM) image of a planar Ti foil, revealing a flat surface with some cavities. After the hydrothermal treatment with acid solution, freestanding 70 and homogeneously aligned Ti NAs were formed on the substrate (Fig. 2b). The morphology of Ti NAs was greatly influenced by the hydrothermal conditions (Fig. S1, ESI[†]). In the present study, a hydrothermal reaction at 180° C for 16 h can lead to the best morphology. The Ti nanowires are rectangular in shape with 75 diameters ranging between 10 and 50 nm. Fig. 2c shows the SEM image of the MnO₂ thin film directly electrodeposited on the Ti foil. The film is highly porous and comprised of thin MnO₂ nanoflakes. Fig. 2d shows the SEM image of the Ti@MnO₂ NAs. Obviously, amorphous MnO₂ nanoflakes (as confirmed by the 80 XRD in Fig. S2, ESI⁺) are uniformly covered on the surface of Ti NAs and fill the space in between (Fig. S3, ESI[†]). A crosssection transmission electron microscopy (TEM) specimen of the Ti@MnO₂ NAs was prepared by a focused ion beam (FIB) system. As show in Fig. 2e, a clear interface between Ti@MnO₂

85 NAs and Ti substrate can be observed. The NAs are randomly orientated on the Ti substrate with an average length of about 300

This journal is © The Royal Society of Chemistry [year]

nm. As shown in the high-magnification TEM image (Fig. S4, ESI†), MnO₂ was found deposited on the Ti NWs even at the bottom interface area. The Pt nanoparticles filled in the space between Ti@MnO₂ NWs were deposited during the FIB milling ⁵ process for sample protection (Fig. S4, ESI†). Elemental mapping by energy-dispersive X-ray spectroscopy (EDS) further confirmed the Ti NAs/Ti substrate interface and the successful deposition of MnO₂ onto the surface of Ti NAs, agreeing well with the SEM results.

Fig. 2 SEM images of (a) Ti substrate, (b) Ti NAs, (c) MnO₂ film and (d) Ti@MnO₂ NAs, (e) cross-section TEM image of Ti@MnO₂ NAs, (f) enlarged TEM and EDS element maps of (g) Mn, (h) O and (i) Ti for the red square area in (e).

Fig. 3 CV curves of (a) the $Ti@MnO_2$ NAs and (b) the MnO_2 thin film at different scan rates.

Fig. 3 shows the cyclic voltammetry (CV) curves of the Ti@MnO₂ NAs and the MnO₂ thin film between 0 and 0.9 V vs. $_{20}$ Ag/AgCl at different scan rates ranging from 10 to 200 mV s⁻¹ in 1M Na₂SO₄ aqueous electrolyte. As shown in Fig. 3a, the CV curves of the Ti@MnO₂ NAs exhibit quasi-rectangular shape with a mirror image feature at all scan rates, which indicates the ideal capacitive behavior and high rate capability for the

²⁵ Ti@MnO₂ NAs. In contrast, the CV curves of the MnO₂ thin film were severely distorted, especially at high scan rates, with much smaller enclosed areas (Fig. 3b). Thus, by electrodepositing MnO₂ thin film on the Ti NAs, rather than the planar Ti substrate, larger specific capacitance and greatly enhanced rate performance ³⁰ can be achieved.

Fig. 4 (a) GCD curves of the Ti@MnO₂ NAs at different current densities,
 (b) specific capacitance of the Ti@MnO₂ NAs and the MnO₂ thin film at
 different current densities, (c) cycling performance of the Ti@MnO₂ NAs and the MnO₂ thin film at a current density of 5 A g⁻¹, (d) Nyquist plots of the Ti@MnO₂ NAs and the MnO₂ thin film at a current density of 5 A g⁻¹, (d) Nyquist plots of the Ti@MnO₂ NAs and the MnO₂ thin film.

The galvanostatic charge-discharge (GCD) curves of the Ti@MnO₂ NAs at different current densities are shown in Fig. 4a. ⁴⁰ The symmetric GCD curves with fairly linear slopes apparently demonstrate good electrochemical capacitive characteristics and superior reversibility of the Ti@MnO₂ NAs. No obvious internal resistance drop is observed at the beginning of the discharge curve, indicting a low internal resistance for the Ti@MnO₂ NAs. 45 Fig. 4b shows the specific capacitances of the Ti@MnO₂ NAs and the MnO₂ thin film calculated from the GCD curves at different current densities. Impressively, the Ti@MnO2 NAs can deliver much higher specific capacitances of 467.8, 413.3, 369.3 and 311.5 F g⁻¹ at current densities of 1, 5, 10 and 20 A g⁻¹, ⁵⁰ respectively, compared to 160.5, 125.8, 94.1 and 70.4 F g^{-1} for the MnO₂ thin film. In addition, when the current density increased from 1 to 20 A g⁻¹, about 66.5% of specific capacitance was retained for the Ti@MnO₂ NAs. In contrast, only 43.9% retention was retained for the MnO₂ film, indicating superior rate capability 55 of the Ti@MnO2 NAs.

Cycling stability is another critical factor that determines the practical applications of SCs. The cycling performance of the Ti@MnO₂ NAs and the MnO₂ thin film was investigated by GCD cycling at a current density of 5A g⁻¹ for 5000 cycles. As shown ⁶⁰ in Fig. 4c, the specific capacitance of the Ti@MnO₂ NAs fluctuated slightly for the initial 1500 cycles and then was relatively constant. After 5000 cycles, the specific capacitance retention for the Ti@MnO₂ NAs was 96.8%, while it was only 87.6% for the MnO₂ thin film, illustrating the excellent long-term ⁶⁵ cyclability of the Ti@MnO₂ NAs.

The electrochemical impedance spectra (EIS) of the $Ti@MnO_2$ NAs and the MnO_2 thin film electrodes were measured to understand their different electrochemical behaviors. EIS measurements were performed over the frequency range $_{70}$ from 0.01 to 10^5 Hz under open-circuit potential, and the

110

corresponding Nyquist plots are shown in Fig.4d. The Nyquist plots of both the Ti@MnO₂ NAs and the MnO₂ thin film electrodes exhibit a straight line in the low frequency region, a depressed semicircle in the high-to-medium frequency region,

- s and a high frequency intercept in the real Z' axis. At high frequencies, the almost same intercepts for both the $Ti@MnO_2$ NAs and the MnO_2 thin film electrodes indicate the two electrodes have similar overall ohmic resistance. However, compared with the MnO_2 thin film, the diameter of the semicircle
- ¹⁰ for the Ti@MnO₂ NAs is much smaller, revealing a greatly reduced charge-transfer resistance (R_{cl}). The reduced R_{ct} should be attributed to the large surface area and remarkably improved electrical conductivity of the Ti@MnO₂ NAs. In the low frequency regime, the EIS spectrum of the Ti@MnO₂ NAs ¹⁵ exhibits a more vertical straight line along the imaginary axis,
- indicating a lower diffusion resistance.

The superior electrochemical performance of the $Ti@MnO_2$ NAs can be attributed to its hierarchical architecture and synergetic effect between Ti NAs and MnO_2 nanoflakes. First,

- ²⁰ the Ti NAs can function as 3D current collector, providing electron "superhighway" for effective charge storage and delivery. Second, comparing with 2D Ti foil, the 3D Ti NAs provide a much larger surface area for the deposition of MnO₂ nanoflakes, leading to more electroactive sites for the charge storage. Third,
- ²⁵ the ultrathin amorphous MnO₂ nanoflakes enable fast and reversible faradic reaction by providing short ion diffusion paths, and the highly porous and open structure of Ti@MnO₂ NAs benefites the penetration of electrolyte. Last but not the least, since the Ti NAs were fabricated by directly etching of the Ti foil,
- ³⁰ they have excellent mechanical adhesion and electrical connection to the substrate, enabling each MnO₂ nanoflake effectively participates in the redox reaction without "dead" volume. Due to the facile preparation method for Ti NAs, future works could be extended to prepare Ti@Co₃O₄, Ti@SnO₂, and
- ³⁵ etc. as 3D electrodes for both supercapacitors and thin film microbatteries.

Conclusions

In summary, Ti NAs synthesized by a facile, template-free hydrothermal method were for the first time used as 3D scaffolds

- ⁴⁰ to fabricate hierarchical Ti@MnO₂ NAs. The freestanding Ti nanowires provided large surface area for the deposition of MnO₂ nanoflakes, enabling a high utilization of MnO₂. More importantly, compared with previous reported metal oxides NAs, the Ti NAs can serve as high electronic conducting framework
- ⁴⁵ for enhancing the rate capability of MnO₂-based electrode. The smartly designed Ti@MnO₂ NAs exhibited outstanding electrochemical performance, in terms of large specific capacitance (467.8 F g⁻¹ at 1 A g⁻¹), desirable rate capability (66.5% capacitive retention at a high current density of 20 A g⁻¹)
- ⁵⁰ and remarkable cycling stability (only 3.2% capacitance degradation after 5000 cycles). These results indicate that the hierarchical Ti@MnO₂ NAs have great potential as electrode for the next generation high-performance supercapacitors. Moreover, the Ti NAs can open up new opportunities for the application in
- ss considerable fields such as Li-ion battery, photocatalysis, biosensor, and etc.

This work was supported by National Natural Science

Foundation of China (No. 51102134 and 11134004), Natural Science Foundation of Jiangsu Province (No. BK20131349),

⁶⁰ China Postdoctoral Science Foundation (No. 2013M530258), and Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1202001B).

Notes and references

¹School of Materials Science and Engineering, Nanjing University of 65 Science and Technology, Xiaolingwei 200, Nanjing 210094, China. Fax:

- ² Schene and Technology, Nationg wei 200, Nationg 210094, Ohna, Tax. XX XXXX XXXX; Tel: XX XXXX XXXX; E-mail: xiahui@njust.edu.cn ² Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China ³ Schene (E-main) National Science, National Scien
- ³ School of Engineering, Nanyang Polytechnic, 180 Ang Mo Kio Ave 8, 70 Singapore 569830
- † Electronic Supplementary Information (ESI) available: [Experimental details, SEM images of Ti NAs prepared at different hydrothermal conditions, enlarged SEM and TEM images of the Ti@MnO₂ NAs]. See DOI: 10.1039/b000000x/
- 75 ‡ Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.
- G. P. Wang, L. Zhang and J. J. Zhang, Chem. Soc. Rev., 2012, 41, 797.
 C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, X. G. Zhang and X. W.
- Lou, Energy Environ. Sci., 2012, 5, 7883. 3 Q. T. Qu, Y. S. Zhu, X. W. Gao and Y. P. Wu, Adv. Energy Mater.,
- 3 Q. 1. Qu, Y. S. Zhu, X. W. Gao and Y. P. Wu, Adv. Energy Mater., 2012, 2, 950.
- 4 H. C. Chen, J. J. Jiang, L. Zhang, H. Z. Wan, T. Qi and D. D. Xia, Nanoscale, 2013, 5, 8879.
- 85 5 L. F. Chen, Z. H. Huang, H. W. Liang, Q. F. Guan and S. H. Yu, Adv. Mater., 2013, 25, 4746.
 - 6 Z. N. Yu, B. Duong, D. Abbitt and J. Thomas, Adv. Mater., 2013, 25, 3302.
- 7 P. H. Yang, X. Xiao, Y. Z. Li, Y. Ding, P. F. Qiang, X. H. Tan, W. J. Mai, Z. Y. Lin, W. Z. Wu, T. Q. Li, H. Y. Jin, P. Y. Liu, J. Zhou, C. P. Wang and Z. L. Wang, ACS Nano, 2013, 7, 2617.
- 8 L. Yu, G. Q. Zhang, C. Z. Yuan and X. W. Lou, Chem. Commun., 2013, 49, 137.
- 9 X. M. Feng, Z. Z. Yan, N. N. Chen, Y. Zhang, Y. W. Ma, X. F. Liu, Q. 5 L. Fan, L. H. Wang and W. Huang, J. Mater. Chem. A, 2013, 1,
- 12818.. 10 X. H. Lu, G. M. Wang, T. Zhai, M. H. Yu, J. Y.Gan, Y. X. Tong and
- Y. Li, Nano Lett., 2012, 12, 1690.
 H. Jiang, C. Z. Li, T. Sun and J. Ma, Chem. Commun., 2012, 48, 2606.
- 10 12 Z. P. Sun, S. Firdoz, E. Y. Yap, L. Li and X. M. Lu, Nanoscale, 2013, 5, 4379.
 - 13 J. C. Chou, Y. L. Chen, M. H. Yang, Y. Z. Chen, C. C. Lai, H. T. Chiu, C. Y. Lee, Y. L. Chueh and J. Y. Gan, J. Mater. Chem. A, 2013, 1, 8753.
- ¹⁰⁵ 14 J. Y. Tao, N. S. Liu, W. Z. Ma, L. W. Ding, L. Y. Li, J. Su and Y. H. Gao, Sci. Rep, 2013, 3, 2286.
 - 15 H. Pang, S. M. Wang, G. C. Li, Y. H. Ma, J. Li, X. X. Li, L. Zhang, J. S. Zhang and H. H. Zheng, J. Mater. Chem. A, 2013, 1, 5053.
 - 16 X. Sun, Q. Li, Y. N. Lü and Y. B. Mao, Chem. Commun., 2013, 49, 4456.
 - 17 J. P. Liu, J. Jiang, C. W. Cheng, H. X. Li, J. X. Zhang, H. Gong and H. J. Fan, Adv. Mater., 2011, 23, 2076.
 - 18 J. Yan, E. Khoo, A. Sumboja and P. S. Lee, ACS Nano, 2010, 4, 4247. 19 J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan and X. W. Lou,
- Adv. Mater., 2012, 24, 5166.
 20 X. H. Lu, T. Zhai, X. H. Zhang, Y. Q. Shen, L. Y. Yuan, B. Hu, L.
 - Gong, J. Chen, Y. H. Gao, J. Zhou, Y. X. Tong and Z. L. Wang, Adv. Mater., 2012, 24, 938.
- 21 J. X. Li, M. Yang, J. P. Wei and Z. Zhou, Nanoscale, 2012, 4, 4498.
- 120 22 Y. Lei, B. Daffos, P. L. Taberna, P. Simon and F. Favier, Electrochim.Acta., 2010, 55, 7454.
 - 23 W. B. Yan, J. Y. Kim, W. D. Xing, K. C. Donavan, T. Ayvazian and R. M. Penner, Chem. Mater., 2012, 24, 2382.
- 24 Y. L. Chen, P. C. Chen, T. L. Chen, C. Y. Lee and H. T. Chiu, J. Mater. 125 Chem. A, 2013, 1, 13301.
 - 25 N. K. Allam and C. A. Grimes, J. Phys. Chem. C, 2007, 111, 13028.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 3