This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
We describe a novel, versatile method for the fabrication of poly(ferrocylnylsilane) (PFS) based microspheres using microfluidics. Cross-linked microgel particles were obtained by UV-induced crosslinking of precursor droplets. By variation of the substitution of the silane units of PFS, organogel as well as hydrogel particles were prepared. Applications of these redox active microspheres to form in-situ Ag nanoparticles, as well as loading and release of guest molecules were demonstrated.

Microgels are spherical particles, consisting of cross-linked, three-dimensional polymer networks, with dimensions ranging from the submicrometers to tens of micrometers. These gel particles have been used for preparing sensors, regulating cell culture, controlling drug release, and in many other areas. It is evident that engineering of gel particle size and morphology has a major impact for gel performance in these applications. Here we used microfluidic particle synthesis which offers a facile approach to the continuous production of microgels with precise control over their size, shape and morphology.

Poly(ferrocylnylsilane)s, (PFS)s, composed of skeletal ferrocene and silane repeat units, are established redox responsive materials. Water soluble PFSs have been developed e.g. by side group modification to allow one to process PFS to obtain nanostructures from water. For example, capsules possessing a PFS shell in aqueous environment, fabricated by template layer-by-layer assembly of polyionic PFSs, showed expansion accompanied by a drastic permeability change in response to a small chemical oxidation trigger. PFS microspheres constitute a novel class of redox-responsive structures. Manners et al. used a precipitation polymerization method for the formation of hydrophobic PFS microspheres. Relatively well-defined microparticles with average diameters of 1–3 \(\mu \text{m} \) (polydispersity index, PDI 1.1–1.5) were obtained by this method. Depending on the composition of the reaction medium employed during polymerization, xylene-swellable microgel particles were formed. Chemical oxidation of the PFS particles allowed the Manners group to electrostatically bind negatively charged silica spheres to the PFS microparticle surface. Examples of organic solvent-swellable, redox-active, crosslinked networks, gels and nanogels formed from PFS homopolymers and block copolymers were also reported. However, in all these microsphere preparation procedures, particle size control (size and its uniformity, cross-linking) was cumbersome.

In contrast, microfluidic techniques allow one to prepare microparticles with precise control of (monodisperse) size, shape and composition. The microfluidic approach can be used to break up a liquid jet formed by two immiscible phases (e.g. aqueous and organic) to form colloids of reactive monomers. These can then be polymerized (e.g. by UV polymerization). In this study we demonstrate the use of this technique to obtain novel PFS microgels in both organic and aqueous phases. Applications of these redox responsive microspheres are illustrated for in-situ preparation of Ag nanoparticles (e.g. for catalysis) and in redox triggered release systems.

The organometallic microgels reported here are fabricated from PFS macro-crosslinkers featuring either acrylate side groups (PFS M1; soluble in organic solvents; Fig. 1b) or vinylimidazole side groups (PFS M2; soluble in water; Fig. 2b). PFS microgels were produced by the generation of monodisperse PFS macro-crosslinker droplets in a microfluidic device and subsequent off-chip photopolymerization. The PFS particles were then washed several times to remove residual surfactant. By careful selection of fluidic chip device parameters, dispersed phase, continuous phase and surfactants, monodisperse PFS microgels were obtained.

For PFS M1, a glass chip with T-junction was chosen to generate oil-in-water droplets, using toluene as the hydrophobic solvent. The two immiscible streams in this case were a solution of PFS M1 in toluene and 1% Tween 20 in water as the dispersed phase, continuous phase and surfactants. A representative image of the microfluidic T-junction taken by a CCD camera (Orca ER) to illustrate particle formation. Subsequent UV-irradiation yielded cross-linked microparticles and led to the formation of spherical PFS microgels. Near monodisperse (PDI<1.1) microspheres can easily be produced with a range of diameters, depending on the fluid flow rates. Fig. 1c and 1d display SEM images of representative PFS microgels with different sizes and smooth surfaces. We observed that microsphere size decreased monotonically with increasing water-to-oil flow rate ratios, in agreement with the literature. Particle diameters obtained with our device were in the range of 5–12 \(\mu \text{m} \). This range can be easily extended by varying device design and flow rate ratio to produce spheres with submicrometer
to many tens of micrometers sizes. A 2D packed assembly of highly monodisperse spheres on silicon substrates can be seen on Fig. 1c, with a high degree of order and symmetry.

For the formation of water soluble, crosslinkable PFS M2 based particles, a flow-focusing PDMS device was used (see Fig. 2a). The polymer shown in Fig. 2b was a vinyl imidazole-functionalized PFS polycation, which we recently reported as constituent of a PFS polyionic liquid. The immiscible liquid streams in this case included an aqueous solution of PFS M2 and a 1% Span 80 in hexadecane solution as the dispersed and continuous phases, respectively. A representative image captured by a high speed camera during droplet formation is shown in Fig. 2a. A highly periodic break-up of the thread of the dispersed phase yields droplets with a narrow size distribution. Subsequent UV-irradiation led to the formation of PFS M2 microgels. Fig. 2c shows SEM images of the beads obtained, possessing a uniform size of about 20 µm. The PFS M2 particles displayed a rough surface morphology after drying (Fig. 2d), likely resulting from aggregation of the hydrophobic PFS backbone chains at high concentrations in the dispersing water forming micelles prior to polymerization.

PFS chains have been shown to reduce silver ions to the corresponding metal. For cylindrical micelles possessing a PFS core, this redox reaction led to the formation of fascinating one-dimensional arrays of silver nanoparticles in the micellar core, as shown by Winnik, Manners and coworkers. When the PFS microspheres (M1) were immersed in a saturated solution of AgPF$_6$ in toluene, a color change from light yellow to black was observed. Silver nanostructures gradually formed on the surface of the microspheres, covering the surface through a nucleation and growth process (Fig. 3 and Fig. S1). The PFS microspheres not only acted as a reducing agent for the formation of metallic Ag but also served as templates that directed the growth of Ag structures, which can find applications in catalysis.

During generating the particles from PFS M2, we incorporated a fluorescent dye (Rhodamine 6G, R6G) as molecular cargo into the microparticle network of this water dispersable colloid (Fig. 2a). Cross-sectional confocal microscopy images taken at 2.6 µm depth steps through a single microsphere revealed that the dye molecules were uniformly distributed within the bead volume. In water, the microgel particles retained their dye cargo (Fig. 2b). In water, the microgel particles retained their dye cargo (Fig. 2c). Oxidation by ferric chloride (FeCl$_3$) has previously been shown to be an effective trigger for the release of cargo molecules from PFS capsules and multilayer films. We employed this approach to release the dye from the hydrogel particles. Fig. 4c and 4d display fluorescence microscopy images of PFS microgels before and after chemical oxidation. PFS microgels that originally showed no release of dye (Fig. 4c and Fig. S3) were treated with aqueous FeCl$_3$ solution (5 mg/mL) during in-situ imaging. As a result, the PFS microgels exhibited a continuous release of dye molecules accompanied by an increasing size expansion (Fig. 4d and Fig. S4). After oxidation, the PFS microgels remained intact due to their covalently crosslinked structure (Fig. S5). Upon oxidation, the polarity of the PFS network chains increases as they become positively charged. Therefore, swelling of the gel particles in water increases, resulting in an enlarged average pore size and enhanced dye release. Moreover, R6G is a weakly basic dye with a pKa value of ~8.3, making it positively charged at pH=7.4. Electrostatic repulsion between the positively charged R6G dye molecules and the positively charged microgel network chains is expected to drive dye release from the microgel particles.
before adding AgPF₆ and (d) SEM image of a single PFS M1 microsphere after adding AgPF₆.

In summary, two PFS macro-crosslinkers of different polarity, including PFS chains with acrylate side groups (soluble in organic solvents) and PFS chains with vinyl imidazole groups (soluble in water), were used as microgel precursors. Microfluidic processing enabled us to generate redox responsive microparticles with precisely controlled dimensions using these two polymers. We demonstrate potential applications of these responsive microspheres to obtain Ag nanoparticles in-situ, and in molecular release.

Fig. 4 Redox-induced molecular release. (a) Fluorescence microscopy images of Rhodamine 6G-loaded PFS M2 spheres. (b) Scanning confocal cross-sectional z-scans of a single PFS M2 microsphere, the dye is uniformly distributed throughout the bead volume. (c) After immersion of the loaded microgels in water for 30 min and (d) After immersion in 5 mg/mL FeCl₃ aqueous solution for 30 min.

This work was financially supported by the MESA Institute for Nanotechnology of the University of Twente and by the Netherlands Organization for Scientific Research (NWO, TOP Grant 700.56.322, Macromolecular Nanotechnology with Stimulus Responsive Polymers). We thank A. Di Luca for helping with florescent imaging.

Notes and references

- Materials Science and Technology of Polymers and MESA+ Institute for Nanotechnology, University of Twente. P.O. Box 217, 7500 AE Enschede, the Netherlands. Fax: +31 53 4893823; Phone: +31 53 4892967; E-mail: g.vanco@utwente.nl.
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- BIOS/Lab-on-a-Chip Group and MESA+ Institute for Nanotechnology, University of Twente. P.O. Box 217, 7500 AE Enschede, The Netherlands.
- Institute of Materials Research and Engineering, Research Link 3, 117602, Singapore.
- † Electronic Supplementary Information (ESI) available: [Materials and Methods, Microfluidic device and operation, Characterization equipment, SEM images showing the redox-induced formation and growth of silver nanostructures on the surface of a redox-active PFS M1 microsphere; Cross-sectional confocal microscopy of a single PFS M2 microsphere loaded with Rhodamine 6G dye; Dye-loaded PFS M2 microspheres immersed in water; Dye-loaded PFS M2 microspheres immersed in FeCl₃; PFS M2 microspheres before and after oxidation with FeCl₃]. See DOI: 10.1039/b00000x/.

1 E. Kumacheva, P. Garstecki, Microfluidic Reactors for Polymer Particles, Wiley, Chichester, 2011; ch. 8, pp. 146-169.

10 G. R. Whittell, M. D. Hager, U. S. Schubert and I. Manners, Nat. Mater., 2011, 10, 176-188.