This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A Sulfur Mimic of 1,1-Bis(diphenylphosphino)methane: A New Ligand Opens Up

Peter E. Sues, Alan J. Lough and Robert H. Morris*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A simple method for synthesizing diphosphine monosulfide species was developed utilizing lithium sulfide and chlorophosphine starting materials. This afforded 1,1,2,2-tetraphenyldiphosphine monosulfide (1), as well as 1,1,2,2-tetraacyclohexyldiphosphine monosulfide (2), which could be used as convenient ligand precursors. Upon addition of 1 or 2 to the ruthenium compound Ru(C5Me5)(cod)Cl, the diphosphine monosulfides rearranged to give bidentate bis(ditertiaryphosphino)thioether ligands in Ru(C5Me5)(PPh2SPPPh2)Cl (3) and Ru(C5Me5)(PCy2SPCy2)Cl (4).

Bidentate phosphorus ligands have been widely employed by inorganic chemists in the synthesis of a large variety of metal complexes. A particularly noteworthy member of this class of ligands is 1,1-bis(diphenylphosphino)methane (dppm), which has been used, along with its alkyl and aryl substituted analogues, to generate monometallic and bimetallic (A-frame) compounds, as well as larger metal clusters. Moreover, many of these dpmm-containing species were found to be active catalysts for hydroformylation and hydrocyanation reactions, as well as other chemical transformations.

A related class of ligands is constituted by bis(ditertiaryphosphino)thioethers, which have a sulfur atom replacing the methylene backbone. Typically, synthetic strategies utilizing low temperatures and/or large fluorinated or aliphatic substituents on the phosphorus centres have been employed to stabilize the free thioether species, but despite these efforts, a diphosphine monosulfide byproduct is also commonly seen. In addition, although much has been done in synthesizing and isolating these types of molecules there are few examples of their metal complexes. To our knowledge only Burg et al. and Arnold et al. have reported nickel and molybdenum-carbonyl complexes, respectively.

Although bis(ditertiaryphosphino)thioethers superficially resemble dpmm, their stability and electronic properties are unlikely to be the same. P-S bonds are chemical analogues of P-O bonds and it is known that phosphines and phosphites have drastically different properties. Phosphites are less sigma donating and are more pi acidic, while phosphines have the opposite properties. Moreover, P-C bonds are much more stable than P-O bonds, which are sensitive to hydrolysis, alcoholysis, and alkoxy substitution reactions. As such, bis(ditertiaryphosphino)thioethers may have unique bonding properties that could be useful in tuning the electronic nature of a variety of transition metal catalysts.

In this paper we present a very simple method for synthesizing the previously reported diphosphine monosulfide species 1,1,2,2-tetraphenyldiphosphine monosulfide, 1, which was formerly synthesized using thiourea and chlorodiphenylphosphine. One equivalent of lithium sulfide was dissolved in acetonitrile, and two equivalents of chlorodiphenylphosphine were added, which afforded 1 as a white powder in high yields (87%, see Figure 1). The 31P{1H} NMR spectrum of 1 was very diagnostic with two doublets at 42 and -16 ppm displaying an extremely large Jpp coupling constant of 247 Hz (in agreement with literature values), indicating the presence of a P-P bond. The structure of 1 was also determined by single crystal X-ray diffraction (XRD, see Figure S1), which matched the results reported by Aluri et al. with a P-P bond length of 2.226(2) Å and a P-S bond length of 1.953(2) Å (see Table S1 for other notable bond lengths and angles).

![Image](Image)

**Figure 1.** Synthesis of the monosulfides 1 and 2, as well as ruthenium complexes 3 and 4.

Using the same synthetic methodology employed in the production of 1, an analogous alkyl substituted compound, 1,1,2,2-tetraacyclohexyldiphosphine monosulfide, 2, was generated as a white powder in moderate yields (70%) utilizing chlorodicyclohexylphosphine as a starting material. The 31P{1H} NMR spectrum of 2 was very similar to that of 1 with two doublets at 59.1 and 814.0 ppm and a Jpp coupling constant of 302 Hz. The XRD structure of the cyclohexyl-substituted analogue was also similar to that of the phenyl-substituted compound with a P-P bond length of 2.225(4) Å and a P-S bond length of 1.972(2) Å (see Figure 2, and see Table S2 for other notable bond lengths and angles).
bis(dicyclohexylphosphino)thioether (dcpte) ligands, phosphorus moieties in the initial ligand precursors had become informative as only one peak could be seen at 39 ppm and 67 ppm, respectively, demonstrating that the inequivalent bidentate dcpte ligand has a P(1)8Ru(1)8P(2) bite angle of 86.9(1)° found in a monometallic molybdenum carbonyl complex 82.1(2)°, which is more compressed than the P8S8P bond angle of around 72°.

Based on our coordination studies we propose that the ligand precursors 1 and 2 exist in equilibrium with their corresponding thioether constitutional isomers in solution (see Figure 4). Initially, the biphosphinothioether likely forms from an intermediate monophosphine monosulfide species, but the diphosphine monosulfide form is significantly more stable. This drives the equilibrium far to the right, and therefore only 1 and 2 are seen.

When the ruthenium(cod) metal precursor is introduced into the system, we believe that the diphosphine monosulfides coordinate to the metal first. There is precedent in the literature for this type of structure in the form of the chromium complex discussed previously. Once coordinated, the diphosphine monosulfide ligands can still interconvert into their thioether isomers and “open up”. When this happens, however, the metal centre traps the thioether as a bidentate ligand, and the equilibrium is forced to the left (see Figure 5). As such, this reaction is likely to be very general and a wide variety of metal precursors should suitable for this ligand architecture. The most crucial requirement, though, is that the metal has at least one vacant site to facilitate initial coordination of the diphosphine monosulfide precursor, and then the ability to make another site available to trap the thioether species.

Our group has recently reported the synthesis of ruthenium phosphido complexes with bidentate phosphine donors and their reactions with molecular oxygen. In an effort to generate similar phosphido species with a dppte ligand, attempts were made to replace the chloride in 3 with a secondary phosphine using a synthetic procedure that has been successfully employed for the synthesis of other phosphido products from analogous ruthenium starting materials. The method utilized stoichiometric amounts of AgOTf as the halogen abstracting agent, but in the dppte case, an excess of AgOTf was necessary to ensure the removal of all of the chloride ligand. This in turn required an excess of diphenylphosphine as the excess silver cations in solution competed with the ruthenium centre for the monodentate phosphine (see Figure 6, A). Separation of the silver and ruthenium species was not trivial and required several.
recrystallization steps, which led to unacceptable yields of the target complex (less than 10%).

Figure 6. Two alternative routes to synthesizing complex 5, starting from 3 (left) or RuCp*(cod)Cl (right).

In light of these poor results, an alternative synthetic scheme was developed exploiting RuCp*(cod)Cl (cod 1,5-cyclooctadiene) as the starting material. In the first step, the chloride ligand was abstracted with AgOTf and diphenylphosphine was installed in its place (see Figure 6, B). A $^{31}$P NMR spectrum (decoupled) of the reaction mixture revealed two species in solution, at 31.6 and 30.5 ppm, both with a large P-H coupling, 374 and 347 Hz, respectively. Upon addition of I, the signal at 31.6 ppm disappeared over time to give a new product, which showed a doublet, and a doublet of doublets at 32.4 and 29.4 ppm, respectively, while the other signal persisted in solution along with unreacted I. The signal at 30.5 ppm has since been identified as [RuCp*(HPPPh)$_2$][OTf], S1 (see Supporting Information for a crystal structure of S1 and a more detailed account of the synthesis of 5), which, based on our proposed mechanism for the formation of the bidentate ligand, explains why this species was inert to ligand substitution; the diphenylphosphine monosulfide I was unable to displace a diphenylphosphine ligand. The doublet and doublet of doublets, on the other hand, were very diagnostic for the desired product: the doublet represented the equivalent phosphorus nuclei from the other hand, was found to be 82.46(9)° in 5, which is larger than that of 3, but still much smaller than the molybdenum carbonyl species and monomeric dppm complexes found in the literature (see Table S3 for other notable bond lengths and angles).

Conclusions

We have developed a simple and effective way of preparing alkyl- and aryl-substituted ligand precursors in the form of diphosphine monosulfides, and demonstrated that in the presence of a metal these compounds ‘open up’ to give the desired bidentate ligand. This valuable discovery makes a previously unattainable class of dppm-like ligands, with varied substituents on the phosphorus donors, readily available, even those thought to be inaccessible due to the instability of the free bisphosphinothioether. In addition, we have characterized three metal complexes bearing these ligands and explored their stability with respect to different solvents and basic conditions. It was found that they tolerated a wide range of solvents, but were unstable in the presence of a strong base. More research is needed to explore the chemistry of this underutilized class of ligands.

Notes and references

*Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada. E-mail: rmorris@chem.utoronto.ca
† Electronic Supplementary Information (ESI) available: Experimental Section. Crystal Structure and Discussion of I. Crystal Structure and Discussion of S1. Selected Bond Lengths and Angles for 1, 2, 3, 4, and 5. Crystallographic Data Tables for Compounds 1, 2, 3, 4, 5, and S1. See DOI: 10.1039/b000000x/
This work was funded by NSERC Canada as Discovery and RTI grants to RHM.
