ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Communication

A Sulfur Mimic of 1,1-Bis(diphenylphosphino)methane: A New Ligand Opens Up

Peter E. Sues, Alan J. Lough and Robert H. Morris*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A simple method for synthesizing diphosphine monosulfide species was developed utilizing lithium sulfide and chlorophosphine starting materials. This afforded 1,1,2,2tetraphenyldiphosphine monosulfide (1), as well as 1,1,2,2-10 tetracyclohexyldiphosphine monosulfide (2), which could be used as convenient ligand precursors. Upon addition of 1 or 2 to the ruthenium compound Ru(C₅Me₅)(cod)Cl, the diphosphine monosulfides rearranged to give bidentate bis(ditertiaryphosphino)thioether ligands 15 Ru(C₅Me₅)(PPh₂SPPh₂)Cl (3) and Ru(C₅Me₅)(PCy₂SPCy₂)Cl

Bidentate phosphorus ligands have been widely employed by inorganic chemists in the synthesis of a large variety of metal complexes. A particularly noteworthy member of this class of 20 ligands is 1,1-bis(diphenylphosphino)methane (dppm), which has been used, along with its alkyl and aryl substituted analogues, to generate monometallic² and bimetallic (A-frame) compounds,³ as well as larger metal clusters.4 Moreover, many of these dppmcontaining species were found to be active catalysts for 25 hydroformylation and hydrocyanation reactions, as well as other chemical transformations.⁵⁻⁷

related class of ligands is constituted bis(ditertiaryphosphino)thioethers, which have a sulfur atom replacing the methylene backbone. Typically, synthetic strategies 30 utilizing low temperatures and/or large fluorinated or aliphatic substituents on the phosphorus centres have been employed to stabilize the free thioether species, but despite these efforts, a diphosphine monosulfide byproduct is also commonly seen.⁸⁻⁴² In addition, although much has been done in synthesizing and 35 isolating these types of molecules there are few examples of their metal complexes. To our knowledge only Burg et al. and Arnold et al. have reported nickel-25, 41 and molybdenum-carbonyl 22, 43 complexes, respectively.

bis(ditertiaryphosphino)thioethers superficially Although 40 resemble dppm, their stability and electronic properties are unlikely to be the same. P-S bonds are chemical analogues of P-O bonds and it is known that phosphines and phosphites have drastically different properties. 44,45 Phosphites are less sigma donating and are more pi acidic, while phosphines have the 45 opposite properties. 44 Moreover, P-C bonds are much more stable than P-O bonds, which are sensitive to hydrolysis, alcoholysis, alkoxide substitution reactions.45 and such,

bis(ditertiaryphosphino)thioethers may have unique bonding properties that could be useful in tuning the electronic nature of a 50 variety of transition metal catalysts.

In this paper we present a very simple method for synthesizing the previously reported diphosphine monosulfide species 1,1,2,2tetraphenyldiphosphine monosulfide, 1, which was formerly synthesized using thiourea and chlorodiphenylphosphine. 24,39 55 One equivalent of lithium sulfide was dissolved in acetonitrile, and two equivalents of chlorodiphenylphosphine were added, which afforded 1 as a white powder in high yields (87%, see Figure 1). The ³¹P{¹H} NMR spectrum of 1 was very diagnostic with two doublets at 42 and -16 ppm displaying an extremely 60 large J_{PP} coupling constant of 247 Hz (in agreement with literature values), indicating the presence of a P-P bond.^{24, 39} The structure of 1 was also determined by single crystal X-ray diffraction (XRD, see Figure S1), which matched the results reported by Aluri et al. with a P-P bond length of 2.226(2) Å and 65 a P-S bond length of Å 1.953(2) (see Table S1 for other notable bond lengths and angles).⁴⁵

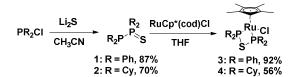


Figure 1. Synthesis of the monosulfides 1 and 2, as well as ruthenium complexes 3 and 4.

Using the same synthetic methodology employed in the production of 1, an analogous alkyl substituted compound, 1,1,2,2-tetracyclohexyldiphosphine monosulfide, generated as a white powder in moderate yields (70%) utilizing chlorodicyclohexylphosphine as a starting material. The ³¹P{¹H} 75 NMR spectrum of 2 was very similar to that of 1 with two doublets at 59.1 and -14.0 ppm and a J_{PP} coupling constant of 302 Hz. The XRD structure of the cyclohexyl-substituted analogue was also similar to that of the phenyl-substituted compound with a P-P bond length of 2.225(4) Å and a P-S bond 80 length of 1.972(2) Å (see Figure 2, and see Table S2 for other notable bond lengths and angles).

ChemComm Page 2 of 4

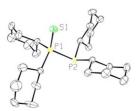


Figure 2. ORTEP3 representation and atom numbering for 2 (thermal ellipsoids at 50% probability; all the hydrogens are omitted for clarity).

Unexpectedly, given that a chromium complex bearing a 5 1,1,2,2-tetraphenyldiphosphine monosulfide ligand is known in the literature, ⁴⁷ diphosphine monosulfides 1 and 2 were found to be convenient precursors for metal complexes bearing bis(diphenylphosphino)thioether (dppte) and bis(dicyclohexylphosphino)thioether (dcpte) ligands, 10 respectively. Treatment of RuCp*(cod)Cl with tetraphenyldiphosphine monosulfide generated a neutral ruthenium complex RuCp*((PPh₂)₂S)Cl, 3, which could be isolated as a yellow powder in excellent yield (92%, see Figure 1), while 1,1,2,2-tetracyclohexyldiphosphine monosulfide gave 15 RuCp*((PCy₂)₂S)Cl, 4, as a yellow powder in 56% yield (see Figure 1). The ³¹P{¹H} NMR spectrum of **3** and **4** were very informative as only one peak could be seen at 39 ppm and 67 ppm, respectively, demonstrating that the inequivalent phosphorus moieties in the initial ligand precursors had become 20 chemically equivalent. In addition, the ruthenium dppte and dcpte species were found to be tolerant of a wide variety of solvents, including acetonitrile, acetone, dichloromethane, methanol, ethanol, and isopropanol. The tolerance to alcohol solvents is of particular interest due to the sensitivity of other P-O and P-S 25 bonds to alcoholysis and alkoxide substitution. 45, 48

A single crystal XRD study showed that 3 displays a pianostool structure with Cp* occupying one half of the coordination sphere, while a chloride ligand along with dppte are bound at the other three coordination sites (see Figure 3a). The bidentate 30 ligand has a P(1)-Ru(1)-P(2) bite angle of 75.8(2)°, which is larger than analogous dppm structures, which have bite angles around 72°.2, 43 The P(1)-S(1)-P(2) bond angle is quite acute, 82.1(2)°, which is more compressed than the P-S-P bond angle of 86.9(1)° found in a monometallic molybdenum carbonyl complex 35 bearing a single dppte ligand (see Table S2 for other notable bond lengths and angles). 43 Moreover, the P(1)-S(1)-P(2) bond angle is also significantly smaller than the P-C-P bond angle found in monometallic dppm structures (around 97°).²

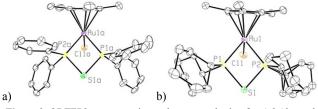


Figure 3. ORTEP3 representation and atom numbering for a) 3 (thermal ellipsoids at 50% probability (the solvent molecules and all the hydrogens are omitted for clarity); and b) a) 4 (thermal ellipsoids at 50% probability (all the hydrogens are omitted for clarity).

Complex 4 was also characterized by XRD, and displays a 45 similar coordination geometry as complex 3 (see Figure 3b). The bidentate dcpte ligand has a P(1)-Ru(1)-P(2) bite angle of

74.71(6)° and a P(1)-S(1)-P(2) bond angle of 82.19(9)°, which are very similar to the metrical parameters seen for the dppte ligand in 3. The P(1)-Ru(1) and P(2)-Ru(1) bond lengths of 50 2.315(2) and 2.302(2) Å, respectively, however, are longer than the P(1)-Ru(1) and P(2)-Ru(1) bond lengths of 2.288(4) and 2.278(4) Å, respectively, seen for complex 3 (see Table S3 for other notable bond lengths and angles). This increase in bond length is most likely caused by the more sterically demanding 55 cyclohexyl substituents, which are pushed away by the Cp* methyl groups.

Based on our coordination studies we propose that the ligand precursors 1 and 2 exist in equilibrium with their corresponding thioether constitutional isomers in solution (see Figure 4). 60 Initially, the bisphosphinothioether likely forms from an intermediate monophosphine monosulfide species, but the diphosphine monosulfide form is significantly more stable. This drives the equilibrium far to the right, and therefore only 1 and 2 are seen.

$$\begin{array}{c|c}
CI & \text{Li}_2S & S^{\cdot} \text{Li}^{+} & \text{CIPR}_2 \\
R^{\cdot} & & & \\
R^{\cdot} & R & & \\
\end{array}
\xrightarrow{\text{LiCI}}
\begin{array}{c}
R_2P & \\
R_2P & S
\end{array}
\xrightarrow{PR_2}
\xrightarrow{R_2P}
\xrightarrow{P_S}$$

Figure 4. Proposed mechanism for the formation of 1 and 2.

When the ruthenium(cod) metal precursor is introduced into the system, we believe that the diphosphine monosulfides coordinate to the metal first. There is precedent in the literature 70 for this type of structure in the form of the chromium complex discussed previously.⁴⁷ Once coordinated, the diphosphine monosulfide ligands can still interconvert into their thioether isomers and "open up". When this happens, however, the metal centre traps the thioether as a bidentate ligand, and the 75 equilibrium is forced to the left (see Figure 5). As such, this reaction is likely to be very general and a wide variety of metal precursors should suitable for this ligand architecture. The most crucial requirement, though, is that the metal has at least one vacant site to facilitate initial coordination of the diphosphine 80 monosulfide precursor, and then the ability to make another site available to trap the thioether species.

Figure 5. Proposed mechanism for the formation of 3 and 4.

Our group has recently reported the synthesis of ruthenium 85 phosphido complexes with bidentate phosphine donors and their reactions with molecular oxygen. 49, 50 In an effort to generate similar phosphido species with a dppte ligand, attempts were made to replace the chloride in 3 with a secondary phosphine using a synthetic procedure that has been successfully employed 90 for the synthesis of other phosphido products from analogous ruthenium starting materials.⁴⁹ The method stoichiometric amounts of AgOTf as the halogen abstracting agent, but in the dppte case, an excess of AgOTf was necessary to ensure the removal of all of the chloride ligand. This in turn 95 required an excess of diphenylphosphine as the excess silver cations in solution competed with the ruthenium centre for the monodentate phosphine (see Figure 6, A). Separation of the silver and ruthenium species was not trivial and required several recrystallization steps, which led to unacceptable yields of the target complex (less than 10%).

⁵ **Figure 6.** Two alternative routes to synthesizing complex **5**, starting from 3 (left) or RuCp*codCl (right).

In light of these poor results, an alternative synthetic scheme developed exploiting RuCp*(cod)Cl (cod cyclooctadiene) as the starting material. In the first step, the ligand was abstracted with diphenylphosphine was installed in its place (see Figure 6, B). A ³¹P NMR spectrum (decoupled) of the reaction mixture revealed two species in solution, at 31.6 and 30.5 ppm, both with a large P-H coupling, 374 and 347 Hz, respectively. Upon addition of 1, 15 the signal at 31.6 ppm disappeared over time to give a new product, which showed a doublet, and a doublet of doublets at 32.4 and 29.4 ppm, respectively, while the other signal persisted in solution along with unreacted 1. The signal at 30.5 ppm has since been identified as [RuCp*(HPPh₂)₃][OTf], S1 (see 20 Supporting Information for a crystal structure of S1 and a more detailed account of the synthesis of 5), which, based on our proposed mechanism for the formation of the bidentate ligand, explains why this species was inert to ligand substitution; the diphosphine monosulfide 1 was unable to displace a 25 diphenylphosphine ligand. The doublet and doublet of doublets, on the other hand, were very diagnostic for the desired product: the doublet represented the equivalent phosphorus nuclei from the bidentate ligand, while the doublet of doublets corresponded to diphenylphosphine, which displayed a strong P-H coupling of ₃₀ 356 Hz (the P-H proton was also evident in the ¹H NMR). Recrystallization of the reaction mixture allowed for separation of the desired product [RuCp*((PPh₂)₂)S)(HPPh₂)]OTf, 5, in poor vields (45%) as a vellow crystalline solid (see Figure 6).

The XRD structure of 5 revealed a piano-stool structure with 35 the bidentate and diphenylphosphine ligands cis to one another (see Figure 7). The dppte ligand had a P(1)-Ru(1)-P(2) bite angle of 74.90(6)°, which is smaller than the bite angle seen in 3, but still larger than that of dppm.² The P(1)-S(1)-P(2) bond angle, on the other hand, was found to be 82.46(9)° in 5, which is larger 40 than that of 3, but still much smaller than the molybdenum carbonyl species and monometallic dppm complexes found in the literature (see Table S3 for other notable bond lengths and angles).2,41

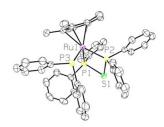


Figure 7. ORTEP3 representation and atom numbering for 5 (thermal ellipsoids at 50% probability; the solvent, counter ion and all the hydrogens are omitted for clarity)

It should be noted that the ³¹P{¹H} NMR spectrum of 5 varies significantly depending on the NMR solvent. Both the chemical 50 shift and the J_{PP} coupling constants change upon moving from deuterated THF to deuterated MeOH. Both sets of signals shift downfield to 36.3 and 34.4 ppm in the more polar solvent, for the doublet of doublets and the doublet, respectively. The Ph₂PH phosphorus nucleus seems to be more affected by the different 55 solvents, and the doublet of doublet shape becomes more apparent in MeOH- d_4 : J_{PP} changes from 36 and 35 Hz to 37 and 33 Hz. The diphenylphosphine ligand produces a doublet of doublets rather than a triplet pattern because of residual coupling to the P-H proton due to the extremely high J_{PH} (a decoupling 60 problem).

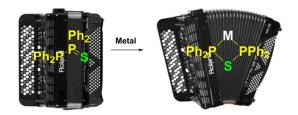
With 5 in hand, deprotonation of the diphenylphosphine ligand was attempted in THF with an excess of KH. The reaction, however, did not proceed cleanly and did not yield the desired phosphido species. Deprotonation with KOtBu gave even poorer 65 results and resulted in complete decomposition of the ruthenium dppte complex.

Conclusions

We have developed a simple and effective way of preparing alkyl- and aryl-substituted ligand precursors in the form of 70 diphosphine monosulfides, and demonstrated that in the presence of a metal these compounds 'open up' to give the desired bidentate ligand. This valuable discovery makes a previously unattainable class of dppm-like ligands, with varied substituents on the phosphorus donors, readily available, even those thought 75 to be inaccessible due to the instability of the free bisphosphinothioether. In addition, we have characterized three metal complexes bearing these ligands and explored their stability with respect to different solvents and basic conditions. It was found that they tolerated a wide range of solvents, but were 80 unstable in the presence of a strong base. More research is needed to explore the chemistry of this underutilized class of ligands.

Notes and references

- *Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada, E-mail: rmorris@chem.utoronto.ca 85 † Electronic Supplementary Information (ESI) available: Experimental Section, Crystal Structure and Discussion of 1, Crystal Structure and Discussion of S1. Selected Bond Lengths and Angles for 1, 2, 3, 4, and 5. Crystallographic Data Tables for Compounds 1, 2, 3, 4, 5, and S1. See DOI: 10.1039/b000000x/
- 90 This work was funded by NSERC Canada as Discovery and RTI grants to RHM.
 - 1. H. A. Mayer and W. C. Kaska, Chem. Rev., 1994, 94, 1239-1272.


46.

90.47.

- R. J. Puddephatt, Chem. Soc. Rev., 1983, 12, 99-127.
- B. Chaudret, B. Delavaux and R. Poilblanc, Coord. Chem. Rev., 1988, 86, 191-243.
- 4. S. E. Kabir and G. Hogarth, *Coord. Chem. Rev.*, 2009, **253**,
- 5 1285-1315.
- I. Ojima, C.-Y. Tsai, M. Tzamarioudaki and D. Bonafoux, in Organic Reactions, John Wiley & Sons, Inc., 2004.
- Z. Freixa and P. W. N. M. van Leeuwen, *Dalton Trans.*, 2003, 1890-1901.
- P. W. N. M. van Leeuwen, P. C. J. Kamer and J. N. H. Reek, *Pure Appl. Chem.*, 1999, 71, 1443-1452.
- 8. C. Krawiecki and J. Michalski, *J. Chem. Soc.*, 1960, 881-885.
- J. B. Lambert, G. F. Jackson and D. C. Mueller, J. Am. Chem. Soc., 1970, 92, 3093-3097.
- 15 10. L. Maier, Helv. Chim. Acta, 1962, 45, 2381-2383.
 - 11. L. Maier, J. Inorg. Nucl. Chem., 1962, 24, 275-283.
 - A. Marinetti and F. Mathey, *Organometallics*, 1982, 1, 1488-1492.
- 13. H. C. E. McFarlane, W. McFarlane and J. A. Nash, *J. Chem. Soc., Dalton Trans.*, 1980, 240-244.
- E. N. Ofitserov, O. G. Sinyashin, E. S. Batyeva and A. N. Pudovik, *J. Gen. Chem. USSR (Engl. Transl.)*, 1981, 51, 738-745
- 15. A. A. Pinkerton and R. G. Cavell, *J. Am. Chem. Soc.*, 1972, 94, 1870-1874.
- R. Schmutzler, O. Stelzer and N. Weferling, *Chem. Ber.*, 1988, 121, 391-395.
- M. Well and R. Schmutzler, Phosphorus, Sulfur, and Silicon and the Related Elements, 1992, 72, 171-187.
- H. Westerman, M. Nieger and E. Niecke, *Chem. Ber.*, 1991, 124, 13-16.
- M. Yoshifuji, K. Shibayama and N. Inamoto, *Chem. Lett.*, 1984, 13, 115-118.
- 20. E. W. Abel, D. A. Armitage and R. P. Bush, *J. Chem. Soc.*, 1964, 5584-5587.
- T. Appleby and J. Derek Woollins, Coord. Chem. Rev., 2002, 235, 121-140.
- 22. D. É. J. Arnold, E. R. Cromie and D. W. H. Rankin, *J. Chem. Soc., Dalton Trans.*, 1977, 1999-2004.
- 40 23. D. J. Berg, R. A. Andersen and A. Zalkin, *Organometallics*, 1988, 7, 1858-1863.
- P. Bhattacharyya, A. M. Z. Slawin, M. B. Smith, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 3647-3651.
- A. B. Burg and R. A. Sinclair, J. Am. Chem. Soc., 1966, 88, 5354-5355.
- A. B. Burg and D.-K. Kang, J. Am. Chem. Soc., 1970, 92, 1901-1908.
- A. B. Burg and K. Gosling, J. Am. Chem. Soc., 1965, 87, 2113-2116.
- 28. R. G. Cavell and H. J. Emeleus, *J. Chem. Soc.*, 1964, 5825-
- R. G. Cavell and A. A. Pinkerton, J. Am. Chem. Soc., 1971, 93, 2384-2390.
- R. G. Cavell, R. D. Leary, A. R. Sanger and A. J. Tomlinson, *Inorg. Chem.*, 1973, 12, 1374-1380.
- 31. R. C. Dobbie, L. F. Doty and R. G. Cavell, *J. Am. Chem. Soc.*, 1968, **90**, 2015-2020.
- 32. R. C. Dobbie and M. J. Hopkinson, *J. Fluorine Chem.*, 1974, **3**, 367-374.
- 33. L. F. Doty and R. G. Cavell, *Inorg. Chem.*, 1974, **13**, 2722-
- J. A. S. Duncan, E. A. V. Ebsworth, R. O. Gould, C. L. Jones,
 D. W. H. Rankin and J. D. Whitelock, J. Chem. Soc., Dalton Trans., 1981, 1028-1033.
- M. A. El-Hinnawi, E. J. Wucherer, R. Lal De and H. Vahrenkamp, J. Organomet. Chem., 1987, 329, 381-390.
- Foss V. L., P. L. Kukhimisterov and I. F. Lutsenko, J. Gen. Chem. USSR (Engl. Transl.), 1982, 52, 1054-1062.
- K. Gosling and A. B. Burg, J. Am. Chem. Soc., 1968, 90, 2011-2015.
 - G. M. Gray and C. S. Kraihanzel, J. Organomet. Chem., 1982, 238, 209-222.

- M. Gruber, P. G. Jones and R. Schmutzler, *Chem. Ber.*, 1990, 123, 1313-1317.
- M. Gruber and R. Schmutzler, Phosphorus, Sulfur, and Silicon and the Related Elements, 1993, 80, 181-194.
- H. Einspahr and J. Donohue, *Inorg. Chem.*, 1974, 13, 1839-1843.
- M. Scheer, F. Uhlig, T. T. Nam, M. Dargatz, H. D. Schädler and E. Herrmann, Z. Anorg. Allge. Chemie, 1990, 585, 177-188.
- F. A. Cotton, L. R. Falvello, M. Tomas, G. M. Gray and C. S. Kraihanzel, *Inorg. Chimica Acta*, 1984, 82, 129-139.
- 85 44. Tolman, C. A. Chem. Rev. 1977, 77, 313-348
 - van Leeuwen, P. W. N. M., Kamer, P. C. J., Claver, C.,
 Pàmies, O., Diéguez, M. Chem. Rev. 2011, 111, 2077–2118.
 - B. R. Aluri, S. Peitz, A. Wöhl, N. Peulecke, B. H. Müller, A. Spannenberg and U. Rosenthal, *Acta Cryst. E*, 2009, **65**, o404.
 - P. G. Jones, A. K. Fischer, M. Farkens and R. Schmutzler, *Acta Cryst. E*, 2002, **58**, m478-m479.
 - Pudovik, M. A., Kibardina, L. K., Aleksandrova, I. A., Khairullin, V. K., Pudovik, A. N. J. Gen. Chem. USSR 1981, 51, 530 - 538.
- 95 49. P. E. Sues, A. J. Lough and R. H. Morris, Submitted, 2013.
- P. E. Sues, M. W. Forbes, A. J. Lough and R. H. Morris, *Dalton Trans*. 2013, DOI: 10.1039/C3DT53495B.

TOC Graphic

