ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Visible light responsive rhodium and antimony-codoped SrTiO₃ powdered photocatalyst loaded with IrO₂ cocatalyst for solar water splitting

Rikako Asai,^a Hiroaki Nemoto,^a Qingxin Jia,^a Kenji Saito,^{a,‡} Akihide Iwase^{a,b} and Akihiko Kudo*^{a,b}

s Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

IrO₂-loaded SrTiO₃ doped with rhodium and antimony synthesized by a conventional solid-state reaction split water under visible light and simulated sunlight irradiation giving 10 0.1% of the apparent quantum yield at 420 nm. The response

wavelength up to 500 nm is the longest among achieved photocatalytic water splitting with one-step photoexcitation.

Water splitting using photocatalysts has been extensively studied as a promising candidate for light energy conversion to chemical ¹⁵ energy.¹⁻⁶ To achieve efficient solar water splitting, it is necessary to develop efficient photocatalysts for one-step or twostep (Z-scheme) water splitting under visible light irradiation.^{3,6} Although metal oxides have been known as a useful material group for photocatalytic water splitting,¹⁻⁴ developing visible-²⁰ light-active metal oxide photocatalysts is still challenging.

A photocatalyst for one-step water splitting has to possess thermodynamically satisfied conduction and valence bands for reduction and oxidation of water to H_2 and O_2 , respectively. Moreover, a narrow band gap is required for response to visible

- ²⁵ light. Oxynitride photocatalysts such as GaN-ZnO⁷ and ZnGeN₂-ZnO⁸ solid solutions are well-established materials for water splitting under visible light irradiation. The visible light response of the oxynitride is due to the shallow valence band formed by N2p orbitals. In contrast, the valence band of a metal oxide
- ³⁰ photocatalyst usually consists of O 2p orbitals (approximately 3.0 V vs. NHE at pH0).³ The band gap inevitably becomes wider than 3.0 eV, when a conduction band of a metal oxide has an enough high potential for water reduction (0V vs. NHE at pH0). Therefore, many metal oxide photocatalysts show activities for ³⁵ water splitting only under UV light.^{1–4}

In order to sensitize metal oxide photocatalysts with wide band gaps to visible light, metal ion doping into the photocatalyst has been studied.^{9–13} We have found that Rh-doped SrTiO₃ efficiently produces H_2 from an aqueous solution containing a sacrificial

- ⁴⁰ reagent under visible light irradiation.¹³ In most cases, however, doped metal ions work as charge recombination centers, resulting in low or none photocatalytic activity. We have overcome this problem by codoping other metal cations to maintain the charge balance.^{11,12} For example, only Cr-doped TiO₂ is inactive as a
- ⁴⁵ photocatalyst, while it shows photocatalytic activity in visible light by codoping Sb.¹¹ Interestingly, the Rh-doped SrTiO₃ photocatalyst which is active for only H₂ evolution produces O₂

from water by codoping Sb, when the photocatalyst is prepared by a hydrothermal method.^{14,15} In other words, Rh and Sb-⁵⁰ codoped SrTiO₃ possesses suitable energy structure to split water under visible light irradiation.

In the present study, we investigated cocatalyst, synthesis, and reaction conditions for the Rh and Sb-codoped SrTiO₃ photocatalyst prepared by a conventional solid-state reaction in ⁵⁵ order to realize the ability of water splitting under visible light or simulated sunlight irradiation.

XRD patterns of SrTiO₃:Rh(0.5%),Sb(x%) powders synthesized by a solid-state reaction were the same as that of nondoped SrTiO₃ (Figure S1). No observation of additional peaks 60 related with Rh and/or Sb species indicated that Rh and Sb ions were doped into the SrTiO₃ lattice. Rh and Sb ions were substituted for a Ti⁴⁺ ion site which is the B site of perovskite structure (ABO₃), judging from the ionic radii (Ti⁴⁺: 0.605 Å, Rh³⁺: 0.665 Å, Rh⁴⁺: 0.6 Å, Sb³⁺: 0.76 Å, Sb⁵⁺: 0.6 Å for 6 65 coordination). However, any peak shifts in XRD were not observed between SrTiO₃ and SrTiO₃:Rh,Sb. This is probably because the balance of the larger ionic radius of Rh³⁺ and smaller ionic radius of Sb^{5+} than that of Ti^{4+} ; the doped Rh and Sb mainly possessed trivalent and pentavalent, respectively, as discussed in ⁷⁰ the next paragraph. Although no peak shift was observed in XRD, the substitution of Rh³⁺ and Sb⁵⁺ for a Ti⁴⁺ ion site is strongly supported by Raman measurement. A new Raman band at around 800 cm⁻¹, that was not observed for non-doped SrTiO₃, appeared with doping Rh and Sb (Figure S2A-a and b). It has been reported 75 that the Raman band at around 800 cm⁻¹ is generally observed, when another element is substituted for the B-site of perovskite structure (ABO₃).¹⁶ Interestingly, the intensity of the appeared Raman band at around 800 cm⁻¹ depended on the wavelength (532 nm and 785 nm) of the excitation laser (Figure S2); ⁸⁰ Excitation by 532 nm gave higher intensity than that by 785 nm. This was due to a resonance Raman effect at 532 nm.

- SrTiO₃:Rh,Sb can absorb the light at 532 nm accompanied with the excitation relating doped Rh. Therefore, the resonance Raman effect indicates the doped Rh ions are located at a Ti⁴⁺ site of
- ⁸⁵ SrTiO₃. On the basis of XRD and Raman measurements, we can conclude that Rh and Sb ions were doped into a Ti⁴⁺ ion site of SrTiO₃, being similar to the SrTiO₃:Rh,Sb synthesized by a hydrothermal method^{14,15} and TiO₂:Rh,Sb by a solid-state reaction.¹⁷ The full-width at half maximum (FWHM) of XRD

This journal is © The Royal Society of Chemistry [year]

Figure 1. Photocatalytic water splitting over $IrO_2(3.0 \text{ wt}\%)$ -loaded SrTiO₃:Rh(0.5%),Sb(1.0%) under visible light irradiation. Catalyst: 0.2 g, reactant solution: 120 mL of H_2SO_4 aq. (pH 3.0), cell: top-irradiation cell, light source: 300-W Xe lamp with a cutoff filter (λ >440 nm).

peak of SrTiO₃:Rh,Sb was the same as that of non-doped SrTiO₃, indicating that Rh and Sb codoping did not affect the crystallinity of SrTiO₃.

Diffuse reflectance spectra of Rh and Sb-codoped SrTiO₃ were ⁵ measured. Although non-doped SrTiO₃ had no absorption bands in the visible light range (Figure S3-a), Rh-doped SrTiO₃ (Figure S3-b) had two absorption bands at around 420 nm and 580 nm in addition to the band gap absorption of the SrTiO₃ host, as previously reported.¹³ These two absorption bands have been

- ¹⁰ identified to the Rh³⁺ and Rh⁴⁺-related transition by X-ray emission spectroscopy and X-ray absorption spectroscopy.¹⁸ The intensity of the absorptions at around 420 nm and 580 nm increased and decreased, respectively, with increasing the amounts of doped Sb ions (Figure S3-c and d), resulting in the ¹⁵ similar profile of the diffuse reflectance spectrum of
- SrTiO₃:Rh,Sb to that of H₂-reduced SrTiO₃:Rh (Figure S3-e). This indicates that the amount of Rh ions with lower oxidation number increased by Sb codoping. In other words, the valency of Rh was controlled to trivalent by codoping Sb⁵⁺ ion to Ti⁴⁺ ion
- ²⁰ site, as observed for the hydrothermal-synthesized SrTiO₃:Rh,Sb.^{14,15} The donor level formed by Rh³⁺ stabilized by Sb-codoping plays an important role for O₂ evolution.^{14,15} Rh(0.5%) and Sb(1.0%)-codoped SrTiO₃ gave completely different diffuse reflectance spectrum (Figure S3) and photograph
- ²⁵ (Figure S4) from the mixture of SrTiO₃:Rh(0.5%) and SrTiO₃:Rh(0.5%),Sb(2.0%) at 1:1 in a molar ratio. This result also indicates that Sb was codoped with Rh in the same particles and contributed to the valency control of doped Rh. As the role of doped Sb⁵⁺, not only maintaining the charge balance but also
- ³⁰ forming a new conduction band as previously reported⁴ would be considered. However, the fact that no shift in the band gap absorption between SrTiO₃ and SrTiO₃:Rh,Sb was observed (Figure S3) indicates that doped Sb⁵⁺ did not form a new conduction band in the forbidden band of SrTiO₃. Moreover, the
- $_{35}$ doped Sb would not affect the position of the conduction band of the SrTiO_3 host, because the amount of doped Sb was only 1.0%.

Figure 1 shows water splitting under visible light irradiation over the optimized IrO₂-loaded SrTiO₃:Rh,Sb photocatalyst. The highest activity was obtained at pH3 and 3 wt% of the loading 40 amount (Figures S5a and b). The optimum preparation condition

of a solid-state reaction was calcined at 1373 K for 10 h (Figure

Figure 2. Loading effects of IrO₂ cocatalyst on (A) sacrificial H₂ evolution and (B) O₂ evolution under visible light irradiation over SrTiO₃:Rh(0.5%),Sb(1.0%). (a) absence and (b) presence of IrO₂(3 wt%) cocatalyst. Catalyst: 0.2 g, reactant solution: (A) 120 mL of 10vol% MeOH aq., (B) 120 mL of 20 mmol L⁻¹ AgNO₃ aq., cell: top-irradiation cell, light source: 300-W Xe lamp with a cutoff filter (λ >420 nm).

S5c). No H₂ and O₂ evolved in the dark period, indicating that mechano-catalytic water splitting^{1,19} did not occur under the current experimental condition. When photocatalyst was ⁴⁵ irradiated with visible light, water splitting proceeded steadily, resulting in that 71 µmol of H₂ and 31 µmol of O₂ evolved for 21 h. The turnover numbers of the reacted electrons/holes to the amount of IrO₂ cocatalyst and doped Rh were 4.7 and 23, respectively. To check the further potential of this photocatalyst ⁵⁰ for water splitting under accelerated condition, a 400 W highpressure lamp was used (Figure S6). The UV light was filtered by an aqueous NaNO₂ solution to pass only visible light (λ >400 nm)⁷. The amounts of evolved H₂ and O₂ were 510 µmol and 240 µmol over 21 h, respectively, giving turnover numbers of 14 for ⁵⁵ IrO₂ cocatalyst and 71 for doped Rh. These results indicate that

the water splitting proceeded photocatalytically. Various cocatalysts were employed for water splitting over SrTiO₃:Rh,Sb. Non- and CoO_x-loaded

SrTiO₃:Rh,Sb. Non- and CoO_x-loaded
SrTiO₃:Rh(0.5%),Sb(1.0%) were inactive for water splitting
(Entries 1 and 2 in Table S1). In contrast,
SrTiO₃:Rh(0.5%),Sb(1.0%) produced H₂ and O₂ from water in a stoichiometric amount under visible light irradiation, when RuO₂,
Ru, and IrO₂ were loaded (Entries 3–7 in Table S1). Among them, impregnated IrO₂ was the most effective cocatalyst for water
splitting. Non-doped and neither only Rh(0.5%) or Sb(1.0%)-doped SrTiO₃ did not show the activity for water splitting even under UV irradiation (Entries 8–10 in Table S1), even if IrO₂ was loaded, being different from SrTiO₃:Rh(0.5%),Sb(1.0%).

To clarify whether the IrO₂ cocatalyst enhanced H₂ or O₂ ⁷⁰ evolution, sacrificial H₂ and O₂ evolutions under visible light irradiation were examined as shown in Figure 2. Non-loaded SrTiO₃:Rh,Sb was inactive for sacrificial H₂ evolution, while the activity appeared with loading IrO₂. This appearance of the activity for H₂ evolution clearly indicates that the IrO₂ particle ⁷⁵ worked as a H₂ evolution site. The activity of SrTiO₃:Rh,Sb for O₂ evolution was also improved by loading IrO₂. In the presence of Ag⁺ ions, the photogenerated electrons in the SrTiO₃:Rh,Sb are consumed by Ag⁺ ions because of a large driving force for the reduction of Ag⁺. Therefore, the oxidation reaction by holes ⁸⁰ should be the rate-controlling step in this case; the driving force for the oxidation of water to form O₂ by holes photogenerated in

2 | Journal Name, [year], [vol], 00–00

Figure 3. Diffuse reflectance spectra of (a) non-doped SrTiO₃ and (b) SrTiO₃:Rh(0.5%),Sb(1.0%), and an action spectrum for water splitting over $IrO_2(3.0 \text{ wt\%})/SrTiO_3$:Rh(0.5%),Sb(1.0%). Catalyst: 0.1 g, reactant solution: 120 mL of H₂SO₄ aq. (pH 3.0), cell: top-irradiation cell.

an impurity level consisting of Rh^{3+} would not be large. Therefore, we can conclude that the improved O₂ evolution activity is due to the improvement for the water oxidation by the loaded IrO₂. Thus, IrO₂ which is a well-known cocatalyst for O₂ s evolution^{20,21} enhanced not only O₂ evolution but also H₂ evolution in water splitting using SrTiO₃:Rh,Sb. The similar enhancement in both reduction and oxidation reactions was observed for RuO₂ cocatalyst.²² The mechanism of the enhancement in the H₂ evolution by IrO₂ has not been clarified

- ¹⁰ yet, while the possible explanation would be that partially reduced IrO₂ worked as an active site for H₂ evolution. In general, the backward reaction to form H₂O from H₂ and O₂ evolved by water splitting proceeds rapidly on the surface of metallic Ir.²⁰ However, a decrease in evolved H₂ and O₂ was not observed in
- ¹⁵ the dark period after the 1st run of water splitting as shown in Figure 1, indicating that the backward reaction between H_2 and O_2 to form water was negligible. This result implies that the partially-reduced IrO₂ still remained as an oxide denoted as IrO_x.
- In order to clarify that the water splitting is caused by the ²⁰ photoexcitation of SrTiO₃:Rh,Sb, an action spectrum for water splitting over IrO₂-loaded SrTiO₃:Rh(0.5%),Sb(1.0%) was measured as shown in Figure 3. The onset of the action spectrum agreed well with the edge of an absorption band relating doped Rh³⁺. Therefore, the agreement of the action spectrum with the
- ²⁵ diffuse reflectance spectrum of SrTiO₃:Rh(0.5%),Sb(1.0%) indicates that water splitting over IrO₂-loaded SrTiO₃:Rh(0.5%),Sb(1.0%) proceeded accompanied with the transition from electron donor levels consisting of Rh³⁺ to the conduction band of SrTiO₃. The photocatalyst responded to indicate the sponder of the splitter of the split
- $_{30}$ visible light up to 500 nm. This response wavelength was longer than 480 nm for both $(Ga_{1-x}Zn_x)(N_{1-x}O_x)^7$ and $(Zn_{1.44}Ge)(N_{2.08}O_{0.38})^8$ of visible-light-driven photocatalysts for water splitting. The apparent quantum yield was calculated to be 0.1% at 420 nm.
- To indicate the possibility of the solar water splitting for practical use, $IrO_2/SrTiO_3:Rh,Sb$ was also irradiated with simulated sunlight. $IrO_2/SrTiO_3:Rh,Sb$ split water into H_2 and O_2 steadily in a stoichiometric amount under simulated sunlight irradiation (Figure S7). When 1 m² of the irradiated area was
- $_{40}$ assumed, the rates of $\rm H_2$ and $\rm O_2$ evolution were 26 mL h^{-1} and 13 mL $h^{-1},$ respectively, giving 0.01% of solar energy conversion efficiency.

Conclusions

In conclusion, Rh and Sb were homogeneously codoped into the 45 SrTiO₃ crystal lattice by a simple solid-state reaction. IrO₂-loaded SrTiO₃:Rh,Sb photocatalyst of a one-step photoexcitation system split water under visible light irradiation. We successfully achieved water splitting under visible light irradiation using a metal oxide photocatalyst with well-controlled band structure.

- ⁵⁰ This photocatalyst responded to visible light up to 500 nm. This response wavelength is the longest among previously reported photocatalysts for water splitting with one-step photoexcitation system. Thus, the doping of metals to provide visible light response and the codoping to control the valency of the doped ⁵⁵ metals will be a new and effective strategy to develop visible-
- light-driven metal oxide photocatalysts for overall water splitting.

Notes and references

- ^a Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, JAPAN, Tel:
- 60 +81-3-5228-8267; E-mail: a-kudo@rs.kagu.tus.ac.jp
 - ^b Photocatalyst International Research Center, Research Institute of Science and Technology, Tokyo University of Science, JAPAN
 † Electronic Supplementary Information (ESI) available: [Experimental details, characterization, optimization]. See DOI: 10.1039/b000000x/
- 65 ‡ Office for Development of Young Researchers, Research Planning and Promotion Division, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, JAPAN
 - K. Domen, J. N. Kondo, M. Hara, T. Takata, Bull. Chem. Soc. Jpn. 2000, 73, 1307.
- 70 2 F. E. Osterloh, *Chem. Mater.* 2008, **20**, 35.
- 3 A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
- 4 Y. Inoue, Energy Environ. Sci. 2009, 2, 364.
- 5 K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655.
- 6 R. Abe, J. Photochem. Photobiol. C 2010, 11, 179.
- K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, K. Domen, *J. Phys. Chem. B* 2005, **109**, 20504.
 Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H.
- Kobayashi, K. Domen, J. Phys. Chem. C 2007, 111, 1042.
 M. Matsumura, M. Hiramoto, H. Tsubomura, J. Electrochem. Soc.
- 1983, **130**, 326.
- 10 H. P. Maruska, A. K. Ghosh, Sol. Energy. Mater. 1979, 1, 237.
- 11 H. Kato, A. Kudo, J. Phys. Chem. B 2002, 106, 5029.
- 12 T. Ishii, H. Kato, A. Kudo, J. Photochem. Photobiol. A 2004, 163, 181.
- 85 13 R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 2004, 108, 8992.
- 14 K. Furuhashi, Q. Jia, A. Kudo, H. Onishi, J. Phys Chem. C 2013, 117, 19101.
- 15 R. Niishiro, S. Tanaka, A. Kudo, *Appl. Cat. B: Environ.*, 10.1016/j.apcatb.2013.12.015.
- 16 H. Zheng, I. M. Reaney, G. D. C. Csete de Györgyfalva, R. Ubic, J. Yarwood, M. P. Seabara, V. M. Ferreira, J. Mater. Res. 2004, 19, 488.
- 17 R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, A. Kudo, J. Phys. Chem. C 2007, 111, 17420.
- 95 18 S. Kawasaki, K. Akagi, K. Nakatsuji, S. Yamamoto, I. Matsuda, Y. Harada, J. Yoshinobu, F. Komori, R. Takahashi, M. Lippmaa, C. Sakai, H. Niwa, M. Oshima, K. Iwashina, A. Kudo, *J. Phys. Chem. C* 2012, **116**, 24445.
- S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara, J. N. Kondo, K.
 Domen, H. Hosono, H. Kawazoe, A. Tanaka, *Chem. Commun.* 1998, 2185.
 - 20 A. Iwase, H. Kato, A. Kudo, Chem. Lett. 2005, 34, 946.
 - 21 M. Hara, C. C. Waraksa, J. T. Lean, B. A. Lewis, T. E. Mallouk, J. Phys. Chem. A 2000, 104, 5275.
- 105 22 K. Maeda, R. Abe, K. Domen, J. Phys. Chem. C 2011, 115, 3057.

This journal is © The Royal Society of Chemistry [year]