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Titanocene carboxylate 1 is an excellent chemoselective 
reagent for unprecedented αααα-regioselective Barbier-type 
reactions. It constitutes the first titanocene(III) to tolerate 
epoxides and readily reduced carbonyl compounds, such as 10 

aromatic and α,βα,βα,βα,β-unsaturated aldehydes.  

 Titanocene(III) complexes are useful tools for mediating 
and catalyzing a number of useful transformations,1 such as 
homolytic epoxide opening,2 pinacol coupling reactions,3 and 
Barbier-type additions of allylic and propargylic halides or 15 

carbonates to carbonyl compounds.4 A drawback of these 
procedures is the lack of chemoselectivity in the electron 
transfer step. For that reason, aromatic and α,β-unsaturated 
carbonyl compounds are usually unsuitable substrates in 
Barbier-type reactions.4 Here, we demonstrate that this 20 

shortcoming can be resolved with complex 1 (Scheme 1) in 
the presence of Mn dust via complex 2a (Figure 1).5,6 

 
Scheme 1. Ti-mediated regioselective α-prenylation of benzaldehyde (3) 
and citral (4). 25 

 Gratifyingly, 3 and 4, model compounds for aromatic and 
α,β-unsaturated aldehydes, reacted with 5 in the presence of 
complex 1 and Mn dust to exclusively yield α-prenylated 
compounds 6 and 7. Thus, the highly useful α-regioselectivity 
of prenylation noted earlier could be maintained.4a,6 30 

Remarkably, in the absence of 5, no pinacol products are 
formed.7 Further exploring of this new reactivity concluded 
that epoxides were also tolerated by this reagent. This 
suggests that the aldehydes or epoxides can not bind to Mn-1. 
 To rationalize these findings, cyclic voltammograms (CVs) 35 

of 1 and Mn-1 in THF were recorded (Figure 1). The 
oxidation of electrochemically reduced 1 reveals the presence 
of two species. 1- (Epc = -1.38 V vs Fc+/Fc) is formed via 
electron transfer at the electrode. The process is irreversible 
due to the formation of 2a (Epa1 = -1.00 V) through loss of 40 

chloride. For Mn-1, 2a (Epa1 = -0.95 V) is formed as expected, 
due to the more efficient abstraction of the chloride and 
formation of MnCl2. The more negative value of Epa1 

compared to Cp2TiCl (Epa1 = -0.83 V) is in line with the 
carboxylate is a better donor ligand than chloride. The second 45 

peak (Epa2 = -0.65 V) is also observed at higher sweep rates (ν 
= 1 – 50 V s-1). Thus, the species being oxidized is an initial 
component8 of Mn-1 in THF and is not formed during the 
sweep. We suggest that 2b and not the cationic 2c is the 
second component of Mn-1 for a number of reasons. 2c should 50 

have a potential similar to that of [Cp(C5H4
tBu)Ti]+ (Epa = 

-0.47 V). It has been recently shown that cationic 
titanocene(III) complexes open epoxides.9 Both findings are 
in contradiction to the behavior of Mn-1. In agreement with 
the observations, 2b is more difficult to oxidize than 2a 55 

because electron density is withdrawn from Ti through 
carboxylate coordination. The steric shielding of Ti in 2b will 
be similar to 2a and thus epoxide and aldehyde binding as 
difficult for 2b as for 2a. 

60 

 

 
Fig. 1 CV of 2 mM solution of 1 (red) and Mn/1 (black) recorded at ν = 

100 mV s-1 in 0.2 M TBAPF6/THF. 

 To understand the unprecedented chemoselectivity, we 65 

carried out the model reactions with Mn-reduced 
Cp2TiCl(OMe),10 Cp2TiCl(OAc),11 and Cp2TiCl(OBz).12 
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Unselective electron transfer reactions as with the Cp2TiCl2 
were observed. This suggests that the tethering of the 
carboxylate to the ligand is essential.  
 To highlight this point, the coordination of 2a to THF, 
benzaldehyde, and trimethyloxirane was studied by DFT 5 

calculations (Table 1).7  
Table 1: Structures and Energies of the interactions of THF, 
benzaldehyde (B), and trimethyloxirane (Ep) with 2a (For Computational 
Details see Supporting Information, Energies are in kcal mol-1). 

 10 

Complex ∆H −T∆S ∆G 
2a 0.0 0.0 0.0 

2a-THF -2.8 +13.7 +10.9 
2a-B -4.2 +12.5 +8.3 
2a-Ep -0.5 +12.5 +12.0 

 
 The generation of these coordination complexes is 
characterized by: (a) an only slightly negative enthaply of 
formation and (b) a highly unfavorable entropy of formation. 
This results in ∆G values of about +8 to +12 kcal mol-1.13 15 

Therefore, aldehyde and epoxide complexation seems to be 
precluded as observed experimentally.  
 Next, we explored the chemoselectivity of electron transfer 
further (Scheme 2 and Table 2). Gratifyingly, our Barbier-
type reactions using activated halides as pronucleophiles are 20 

general and take place with moderate to excellent yields.7 A 
variety of aromatic and α,β-unsaturated aldehydes are 
suitable. Even acetophenone, as an example for aromatic 
ketones, is an excellent substrate (Scheme 2). All products are 
valuable building blocks for terpene synthesis.1d Even more 25 

interesting and demanding are Barbier-type reactions with 
electrophiles (19-20) or nucleophiles as 23, incorporating 
epoxides (Table 2).  
 In agreement with our DFT calculations, epoxides are 
readily tolerated by Mn-1.7 Thus, functionalized 30 

epoxypolyprenes that are highly attractive intermediates for 
natural products synthesis1d can be prepared from either 
epoxide containing carbonyl compounds or activated halides. 
As an attractive additional feature, our novel method allows 

the elimination of the often difficult regioselective 35 

epoxidation step of the polyprenic starting materials. 
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9, X = Me: 96 %

10, X = OMe: 82 %

11, X = Cl: 80 %

12, 88 % 13, 60 %

14, 98 % 16, 78 %a
15, 88 %

17, 60 % 18, 53 %  
Scheme 2. Ti-mediated regioselective α-prenylation of aromatic and α,β-
unsaturated carbonyl compounds. Conditions: For aromatic aldehydes: 1 
(1 mmol), Mn dust (8 mmol), aldehyde (1 mmol), and activated halide (2 40 

mmol) in THF. Otherwise: 1 (1.5 mmol), Mn dust (8 mmol), carbonyl 
compound (1 mmol), and activated halide (3 mmol) in THF. a Prenyl 
chloride can be used with similar yield (77 %). 

 An important aspect of this study is the regioselectivity of 
the addition of the allylic nucleophile. In contrast to the 45 

numerous γ-selective additions, α-regioselective additions are 
considerably less common.14 Here, we obtained the α-
regioisomers in very high selectivity (>92:<8) when prenyl 
derivatives 5, 8 and 23 were used as pronucleophiles. 
Moreover, commercially available Mn dust could be used at 50 

room temperature.  
Finally, we also investigated Wurtz-type couplings mediated 
by Mn-1. Such reactions can be carried out in the presence of 
Cp2TiCl.15 However, the chemoselectivity of these reactions is 
low. This is not the case in our system and, hence, epoxide 55 

containing substrates can be readily coupled (Table 2, entry 
8). The reaction took place with excellent yield and also with 
a high α,α-regioselectivity (86:14). 
 In summary, we have demonstrated that Mn-1 is a reagent 
for Barbier-type allylation reactions delivering the α-addition 60 

products with almost complete regioselectivity. The reactions 
proceed with an unprecedented chemoselectivity because 
epoxides and readily reduced carbonyl compounds, such as 
aromatic and α,β-unsaturated aldehydes, are tolerated. The 
compounds obtained are difficult to prepare using other 65 

methodologies and are valuable substrates in terpene 
synthesis. Moreover, the reactions can be perfomed at room 
temperature and no preformed organometallic reagents (B or 
Li) or especially activated metals (Ba) have to employed. 
 We thank the Spanish MICINN (Grants CTQ-2011.22455 70 

and PRI-AIBDE-2011-1122) and (SFB 813 ‘Chemistry at 
Spin Centers’) for financial support. SPM thanks Regional 
Government of Andalucía for her contract. We also thank the 
Centro de Supercomputación de la Universidad de Granada 
(UGRGRID) for computational time.  75 
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Table 2 Regioselective Barbier-type reactions of electrophiles and 
nucleophiles presenting an oxirane ring mediated by Mn-1.a 

Entry Carbonyl compound Halide Product Yield (%) 

1  
19 

5 
O

O

OH

1

3
1'

4'

1''3''

24 

76 

2  
20 

5 
 

25 

68 

3 20 8 
 

26 

42 

4 20  
22  

27 

63 

5  
3 

 
23  

28 

77 

6 4 23 
 

29 

68 

7 
 

21 

23 
 

30 

72  

8 - 23 
O

O

 
31 

99b 

a Complex 1 (1.5 mmol), Mn dust (8 mmol), carbonyl compound (1 
mmol), and activated halide (3 mmol) in THF. b This compound was 
obtained as a 6:1 mixture of α,α and α,γ-regioisomers 5 
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