ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ARTICLE TYPE

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Highly regioselective and chemoselective titanocene mediated Barbiertype allylations

Sara P. Morcillo,^{*a*} Ángela Martinez-Peragón,^{*a*} Verena Jakoby,^{*c*} Antonio J. Mota,^{*b*} Christian Kube,^{*c*} José Justicia,^{*a*} Juan M. Cuerva,^{*,*a*} and Andreas Gansäuer^{*,*c*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Titanocene carboxylate 1 is an excellent chemoselective reagent for unprecedented α -regioselective Barbier-type reactions. It constitutes the first titanocene(III) to tolerate 10 epoxides and readily reduced carbonyl compounds, such as aromatic and α , β -unsaturated aldehydes.

Titanocene(III) complexes are useful tools for mediating and catalyzing a number of useful transformations,¹ such as homolytic epoxide opening,² pinacol coupling reactions,³ and ¹⁵ Barbier-type additions of allylic and propargylic halides or carbonates to carbonyl compounds.⁴ A drawback of these procedures is the lack of chemoselectivity in the electron transfer step. For that reason, aromatic and α , β -unsaturated carbonyl compounds are usually unsuitable substrates in ²⁰ Barbier-type reactions.⁴ Here, we demonstrate that this shortcoming can be resolved with complex **1** (Scheme 1) in the presence of Mn dust via complex **2a** (Figure 1).^{5,6}

Scheme 1. Ti-mediated regioselective α -prenylation of benzaldehyde (3) ²⁵ and citral (4).

Gratifyingly, **3** and **4**, model compounds for aromatic and α,β -unsaturated aldehydes, reacted with **5** in the presence of complex **1** and Mn dust to exclusively yield α -prenylated compounds **6** and **7**. Thus, the highly useful α -regioselectivity ³⁰ of prenylation noted earlier could be maintained.^{4a,6} Remarkably, in the absence of **5**, no pinacol products are formed.⁷ Further exploring of this new reactivity concluded that epoxides were also tolerated by this reagent. This suggests that the aldehydes or epoxides can not bind to Mn-1.

- To rationalize these findings, cyclic voltammograms (CVs) of 1 and Mn-1 in THF were recorded (Figure 1). The oxidation of electrochemically reduced 1 reveals the presence of two species. 1⁻ ($E_{pc} = -1.38$ V vs Fc⁺/Fc) is formed via electron transfer at the electrode. The process is irreversible
- $_{\rm 40}$ due to the formation of **2a** ($E_{\rm pa1}$ = -1.00 V) through loss of

chloride. For Mn-1, 2a ($E_{pa1} = -0.95$ V) is formed as expected, due to the more efficient abstraction of the chloride and formation of MnCl₂. The more negative value of E_{pal} compared to Cp_2TiCl ($E_{pa1} = -0.83 V$) is in line with the 45 carboxylate is a better donor ligand than chloride. The second peak ($E_{pa2} = -0.65$ V) is also observed at higher sweep rates (v = $1 - 50 \text{ V s}^{-1}$). Thus, the species being oxidized is an initial component⁸ of Mn-1 in THF and is not formed during the sweep. We suggest that 2b and not the cationic 2c is the 50 second component of Mn-1 for a number of reasons. 2c should have a potential similar to that of $[Cp(C_5H_4^{t}Bu)Ti]^+$ $(E_{pa} =$ -0.47 V). It has been recently shown that cationic titanocene(III) complexes open epoxides.9 Both findings are in contradiction to the behavior of Mn-1. In agreement with 55 the observations, 2b is more difficult to oxidize than 2a because electron density is withdrawn from Ti through carboxylate coordination. The steric shielding of Ti in 2b will be similar to 2a and thus epoxide and aldehyde binding as difficult for 2b as for 2a.

Fig. 1 CV of 2 mM solution of 1 (red) and Mn/1 (black) recorded at $v = 100 \text{ mV s}^{-1}$ in 0.2 M TBAPF₆/THF.

⁶⁵ To understand the unprecedented chemoselectivity, we carried out the model reactions with Mn-reduced Cp₂TiCl(OMe),¹⁰ Cp₂TiCl(OAc),¹¹ and Cp₂TiCl(OBz).¹²

Unselective electron transfer reactions as with the Cp_2TiCl_2 were observed. This suggests that the tethering of the carboxylate to the ligand is essential.

To highlight this point, the coordination of **2a** to THF, ⁵ benzaldehyde, and trimethyloxirane was studied by DFT calculations (Table 1).⁷

Table 1: Structures and Energies of the interactions of THF, benzaldehyde (**B**), and trimethyloxirane (**Ep**) with **2a** (For Computational Details see Supporting Information, Energies are in kcal mol⁻¹).

Complex	ΔH	$-T\Delta S$	ΔG
2a	0.0	0.0	0.0
2a-THF	-2.8	+13.7	+10.9
2a-B	-4.2	+12.5	+8.3
2a-Ep	-0.5	+12.5	+12.0

10

The generation of these coordination complexes is characterized by: (a) an only slightly negative enthaply of formation and (b) a highly unfavorable entropy of formation. ¹⁵ This results in ΔG values of about +8 to +12 kcal mol⁻¹.¹³

Therefore, aldehyde and epoxide complexation seems to be precluded as observed experimentally.

Next, we explored the chemoselectivity of electron transfer further (Scheme 2 and Table 2). Gratifyingly, our Barbier-20 type reactions using activated halides as pronucleophiles are

- general and take place with moderate to excellent yields.⁷ A variety of aromatic and α , β -unsaturated aldehydes are suitable. Even acetophenone, as an example for aromatic ketones, is an excellent substrate (Scheme 2). All products are
- ²⁵ valuable building blocks for terpene synthesis.^{1d} Even more interesting and demanding are Barbier-type reactions with electrophiles (**19-20**) or nucleophiles as **23**, incorporating epoxides (Table 2).

In agreement with our DFT calculations, epoxides are ³⁰ readily tolerated by Mn-1.⁷ Thus, functionalized epoxypolyprenes that are highly attractive intermediates for natural products synthesis^{1d} can be prepared from either epoxide containing carbonyl compounds or activated halides. As an attractive additional feature, our novel method allows ³⁵ the elimination of the often difficult regioselective epoxidation step of the polyprenic starting materials.

Scheme 2. Ti-mediated regioselective α-prenylation of aromatic and α,βunsaturated carbonyl compounds. Conditions: For aromatic aldehydes: **1** ⁴⁰ (1 mmol), Mn dust (8 mmol), aldehyde (1 mmol), and activated halide (2 mmol) in THF. Otherwise: **1** (1.5 mmol), Mn dust (8 mmol), carbonyl compound (1 mmol), and activated halide (3 mmol) in THF. ^a Prenyl chloride can be used with similar yield (77 %).

An important aspect of this study is the regioselectivity of ⁴⁵ the addition of the allylic nucleophile. In contrast to the numerous γ -selective additions, α -regioselective additions are considerably less common.¹⁴ Here, we obtained the α regioisomers in very high selectivity (>92:<8) when prenyl derivatives **5**, **8** and **23** were used as pronucleophiles. ⁵⁰ Moreover, commercially available Mn dust could be used at room temperature.

Finally, we also investigated Wurtz-type couplings mediated by Mn-1. Such reactions can be carried out in the presence of Cp₂TiCl.¹⁵ However, the chemoselectivity of these reactions is ⁵⁵ low. This is not the case in our system and, hence, epoxide containing substrates can be readily coupled (Table 2, entry 8). The reaction took place with excellent yield and also with a high α, α -regioselectivity (86:14).

In summary, we have demonstrated that Mn-1 is a reagent for Barbier-type allylation reactions delivering the α -addition products with almost complete regioselectivity. The reactions proceed with an unprecedented chemoselectivity because epoxides and readily reduced carbonyl compounds, such as aromatic and α , β -unsaturated aldehydes, are tolerated. The 65 compounds obtained are difficult to prepare using other methodologies and are valuable substrates in terpene synthesis. Moreover, the reactions can be performed at room temperature and no preformed organometallic reagents (B or Li) or especially activated metals (Ba) have to employed.

We thank the Spanish MICINN (Grants CTQ-2011.22455 and PRI-AIBDE-2011-1122) and (SFB 813 'Chemistry at Spin Centers') for financial support. SPM thanks Regional Government of Andalucía for her contract. We also thank the Centro de Supercomputación de la Universidad de Granada 75 (UGRGRID) for computational time. Chemical Communications Accepted Manuscri

2 | Journal Name, [year], [vol], 00-00

ChemComm

 Table 2 Regioselective Barbier-type reactions of electrophiles and nucleophiles presenting an oxirane ring mediated by Mn-1.^a

^{*a*} Complex **1** (1.5 mmol), Mn dust (8 mmol), carbonyl compound (1 mmol), and activated halide (3 mmol) in THF. ^b This compound was ⁵ obtained as a 6:1 mixture of α,α and α,γ-regioisomers

Notes and references

^a Department of Organic Chemistry and ^b Department of Inorganic Chemistry, University of Granada. Fuentenueva Campus. Granada 18071. Spain. E-mail: jmcuerva@ugr.es

10 ^c Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany. E-mail: agansaeu@uni-bonn.de

† Electronic Supplementary Information (ESI) available: [Experimental Methods and characterisation of new compounds]. See 15 DOI: 10.1039/b000000x/

- (a) A. Gansäuer, T. Lauterbach and S. Narayan, Angew. Chem. Int. Ed., 2003, 42, 5556–5573; (b) J. M. Cuerva, J. Justicia, J. L. Oller-López and J. E. Oltra, Top. Curr. Chem., 2006, 264, 63–91; (c) A.
- Gansäuer, J. Justicia, C. -A. Fan, D. Worgull and F. Piestert, *Top. Curr. Chem.*, 2007, **279**, 25–52; (d) J. Justicia, L. Álvarez de Cienfuegos, A. G. Campaña, D. Miguel, V. Jakoby, A. Gansäuer and J. M. Cuerva, *Chem. Soc. Rev.* 2011, **40**, 3525–3537.
- For seminal works, see: (a) T. V. RajanBabu and W. A. Nugent, J.
 Am. Chem. Soc. 1994, 116, 986–997; (b) A. Gansäuer, H. Bluhm and M. Pierobon, J. Am. Chem. Soc. 1998, 120, 12849–12859.
- 3 (a) Y. Handa and J. Inanaga, *Tetrahedron Lett.* 1987, 28, 5717–5718;
 (b) A. Gansäuer, *Chem. Commun.* 1997, 457–458;
 (c) A. Gansäuer and D. Bauer, *J. Org. Chem.* 1998, 63, 2070–2071;
 (d) A. Gansäuer

- and D. Bauer, *Eur. J. Org. Chem.* 1998, 2673–2676; (e) T. Hirao, B. Hatano, M. Asahara, Y. Muguruma and A. Ogawa, *Tetrahedron Lett.* 1998, **39**, 5247–5248; (f) M. C. Barden and J. Schwartz, *J. Am. Chem. Soc.* 1996, **118**, 5484–5485; (g) M. Paradas, A. G. Campaña, R. E. Estévez, L. Álvarez de Cienfuegos, T. Jiménez, R. Robles, J. M. Cuerva and J. E. Oltra, *J. Org. Chem.*, 2009, **74**, 3616–3619.
- 4 (a) R. E. Estévez, J. Justicia, B. Bazdi, N. Fuentes, M. Paradas, D. Choquesillo-Lazarte, J. M. García-Ruiz, R. Robles, A. Gansäuer, J. M. Cuerva and J. E. Oltra, *Chem. Eur. J.*, 2009, 15, 2774–2791; (b) A. G. Campaña, B. Bazdi, N. Fuentes, R. Robles, J. M. Cuerva, J. E.

Oltra, S. Porcel and A. M. Echavarren, *Angew. Chem., Int. Ed.*, 2008, 47, 7515–7519; (c) A. Millán, L. Álvarez de Cienfuegos, A. Martín-Lasanta, A. G. Campaña and J. M. Cuerva, *Adv. Synth. Catal.*, 2011, 353, 73–78; (d) A. Martínez-Peragón, A. Millán, A. G. Campaña, I. Rodríguez-Márquez, S. Resa, D. Miguel, L. Álvarez de Cienfuegos

- ⁴⁵ and J. M. Cuerva, *Eur. J. Org. Chem.*, 2012, 1499–1503; (e) J. Muñoz-Bascón, I. Sancho-Sanz, E. Álvarez-Manzaneda, A. Rosales and J. E. Oltra, *Chem. Eur. J.*, 2012, **18**, 14479–14486.
- 5 (a) A. Gansäuer, D. Franke, T. Lauterbach and M. Nieger, J. Am. Chem. Soc., 2005, 127, 11622–11623; (b) A. Gansäuer, I. Winkler,
- 50 D. Worgull, D. Franke, T. Lauterbach, A. Okkel, and M. Nieger, Organometallics 2008, 27, 5699-5707.
- 6 T. Jiménez, S. P. Morcillo, A. Martín-Lasanta, D. Collado-Sanz, D. J. Cárdenas, A. Gansäuer, J. Justicia and J. M. Cuerva, *Chem. Eur. J.*, 2012, 18, 12825–12833.
- 55 7 See ESI for details.

75

- 8 (a) R. J. Enemærke, G. H. Hjøllund, K. Daasbjerg and T. Skrydstrup, C. R. Acad. Sci. 2001, 4, 435–438; (b) R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, Organometallics 2004, 23, 1866-1874; (c) R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, J.
- Am. Chem. Soc. 2004, 126, 7853–7864; (d) R. J. Enemærke, J. Larsen, G. H. Hjøllund, T. Skrydstrup and K. Daasbjerg, Organometallics 2005, 24, 1252–1262; (e) J. Larsen, R. J. Enemærke, T. Skrydstrup and K. Daasbjerg, Organometallics 2006, 25, 2031–2036; (f) A. Gansäuer, A. Barchuk, F. Keller, M. Schmitt,
- 65 S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, K. Daasbjerg and H. Svith, *J. Am. Chem. Soc.* 2007, **129**, 1359–1371; (g) A. Gansäuer, K. Knebel, C. Kube, M. van Gastel, A. Cangönül, K. Daasbjerg, T. Hangele, M. Hülsen, M. Dolg and J. Friedrich, *Chem. Eur. J.* 2012, **18**, 2591–2599.
- 70 9 A. Cangönül, M. Behlendorf, A. Gansäuer and M. van Gastel, *Inorg. Chem.*, 2013, **52**, 11859-11866.
 - 10 D. H. Gibson, Y. Ding, M. S. Mashuta and J. F. Richardson, Act. Cryst. Sec. C 1996, 559–560.
 - 111 V. A. Knizhnikov, V. L. Shirokii and Y. A. Oldekop, Vesti Akadem. Navuk BSSR, Ser. Khimichnykh Navuk, 1983, 3, 102–104.
 - 12 B. S. Kaliral, J. -D. Foulon, T. A. Hamor, C. J. Jones, P. D. Beer and S. P. Fricker, *Polyhedron*, 1991, **10**, 1847–1856.
- A direct comparison of the binding capabilities of complex 2a with parent Cp₂TiCl is not simple owing to it is known that chloride anion dissociates in THF solution generating cationic species (ref. 9). Such effect cannot take place with tethering ligand in complex 2. Related zwitterionic species 2c were calculated and the results showed that in absence of a ligand (L) the zwitterion is too high in energy to be a real intermediate, as CV experiments suggest. In the presence of a ligand, cationic complexes 2c-L also showed to be thermodynamically highly disfavoured species.
- 14 (a) P. Girard, J. L. Namy and H. B. Kagan, J. Am. Chem. Soc., 1980, 102, 2693–2698; (b) B.-S. Guo, W. Doubleday and T. Cohen, J. Am. Chem. Soc., 1987, 109, 4710–4711; (c) A. Yanagisawa, S. Habaue,
- K. Yasue and H. Yamamoto, J. Am. Chem. Soc., 1994, 116, 6130–6141; (d) S. Matsukawa, Y. Funabashi and T. Imamoto, *Tetrahedron Lett.*, 2003, 44, 1007–1010; (e) K. M. Depew, S. J. Danishefsky, N. Rosen and L. Sepp-Lorenzino, J. Am. Chem. Soc., 1996, 118, 12463–12464; (h) B. Y. Park, T. P. Montgomery, V. J. Garza and M. J. Krische, J. Am. Chem. Soc. 2013, 135, 16320–16323.
- (a) A. F. Barrero, M. M. Herrador, J. F. Quilez del Moral, P. Arteaga, J. F. Arteaga, M. Piedra and E. M. Sanchez, *Org. Lett.* 2005, 7, 2301-2304.;
 (b) A. Millán, A. G. Campaña, B. Bazdi, D. Miguel, L. Álvarez de Cienfuegos, A. M. Echavarren and J. M. Cuerva, *Chem. Eur. J.*, 2011, 17, 3985–3994.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00-00 | 3